JPH07157313A - Production of calcium-vanadium based ferrimagnetic garnet - Google Patents

Production of calcium-vanadium based ferrimagnetic garnet

Info

Publication number
JPH07157313A
JPH07157313A JP31055793A JP31055793A JPH07157313A JP H07157313 A JPH07157313 A JP H07157313A JP 31055793 A JP31055793 A JP 31055793A JP 31055793 A JP31055793 A JP 31055793A JP H07157313 A JPH07157313 A JP H07157313A
Authority
JP
Japan
Prior art keywords
garnet
calcium
vanadium
ferrimagnetic garnet
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31055793A
Other languages
Japanese (ja)
Inventor
Hiroshi Marusawa
博 丸澤
Kunisaburo Tomono
国三郎 伴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP31055793A priority Critical patent/JPH07157313A/en
Publication of JPH07157313A publication Critical patent/JPH07157313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Abstract

PURPOSE:To prevent the leaching of Ca and V in a production process and obtain a product free from unevenness in compsn. with a high reproducibility by previously converting at least CaCO3 and V2O5 among starting materials into a slightly water-soluble compd. by dry mixing and burning. CONSTITUTION:When magnetic garnet represented by the general formula (YaCa3-a) (Fe5-b-c-dInbVcAld)O12 (where 0.1<=a<=2.9, 0.0<=b<=0.5, 0.1<=c<=1.5 and 0.0<=d<=0.8) is produced, powders of Y2O3, CaCO3, Fe2O3, In2O3, V2O5 and Al2O3 as starting materials for the garnet are dry-mixed and burnt at >=950 deg.C to form a slightly water-soluble garnet phase and then wet mixing, burning and firing are carried out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波回路素子に用い
られるカルシウム−バナジウム系フェリ磁性ガーネット
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a calcium-vanadium ferrimagnetic garnet used for a high frequency circuit element.

【0002】[0002]

【従来の技術】高周波回路素子、特にマイクロ波回路素
子に用いられる磁性体には、任意の飽和磁化(4πM
s)に設定することができ、強磁性共鳴半価幅(ΔH)
が小さく、磁気的損失・誘電損失が低いことが要求され
る。さらに、高周波回路素子の温度特性の面から、4π
Msの温度係数(β)が極めて小さいことが望まれる。
2. Description of the Related Art A magnetic substance used in a high frequency circuit element, particularly a microwave circuit element, has an arbitrary saturation magnetization (4πM).
s), and the full width at half maximum of ferromagnetic resonance (ΔH)
Is required to be small, and magnetic loss and dielectric loss are low. Furthermore, in terms of the temperature characteristics of the high frequency circuit element, 4π
It is desired that the temperature coefficient (β) of Ms be extremely small.

【0003】現在、高周波帯、特にマイクロ波帯や準マ
イクロ波帯で使用する磁性体材料としては、イットリウ
ム−鉄系ガーネット、カルシウム−バナジウム系ガーネ
ット、マンガン−マグネシウムスピネル系フェライト等
が知られている。
At present, yttrium-iron-based garnet, calcium-vanadium-based garnet, manganese-magnesium spinel-based ferrite and the like are known as magnetic materials used in the high frequency band, particularly in the microwave band and quasi-microwave band. .

【0004】このうち、イットリウム−鉄系ガーネット
は、従来のスピネル系フェライトと比較して低損失材料
であり、Al置換により適切な4πMsに設定でき、G
d置換により4πMsの温度係数(β)を小さくできる
ため、高周波回路素子の磁性体材料として最もよく用い
られていた。
Of these, yttrium-iron garnet is a low loss material as compared with the conventional spinel ferrite, and can be set to an appropriate 4πMs by Al substitution.
Since the temperature coefficient (β) of 4πMs can be reduced by d substitution, it was most often used as a magnetic material for high frequency circuit elements.

【0005】これに対して、カルシウム−バナジウム系
ガーネットは、イットリウム−鉄系ガーネットと比較し
てより低損失の材料であり、Al置換により適切な4π
Msに設定でき、さらにGd置換等により4πMsの温
度係数βを小さくできるため、高周波回路素子用の磁性
体材料としてはイットリウム−鉄系ガーネットに比べ優
れている。
On the other hand, calcium-vanadium garnet is a material having a lower loss than yttrium-iron garnet, and it has an appropriate 4π by Al substitution.
Since it can be set to Ms and the temperature coefficient β of 4πMs can be reduced by Gd substitution or the like, it is superior to yttrium-iron-based garnet as a magnetic material for high frequency circuit elements.

【0006】[0006]

【発明が解決しようとする課題】しかし、以下に詳述す
るように、その製造過程において磁性体材料の組成にず
れが生じるため、あまり用いられていなかった。まず、
このカルシウム−バナジウム系磁性ガーネットは、一般
に、次のようにして製造されていた。即ち、原料である
2 3 ,CaCO3 ,Fe2 3 ,In2 3 ,V2
3 およびAl23 の粉末を湿式で混合する。次に、
脱水乾燥して仮焼した後粉砕し、その後圧縮成形した
後、1300〜1500℃の温度で焼成していた。
However, as will be described in detail below, since the composition of the magnetic material material is deviated in the manufacturing process, it has not been used so much. First,
This calcium-vanadium-based magnetic garnet was generally manufactured as follows. That is, the raw materials Y 2 O 3 , CaCO 3 , Fe 2 O 3 , In 2 O 3 and V 2
The O 3 and Al 2 O 3 powders are wet mixed. next,
It was dehydrated and dried, calcined, crushed, then compression molded, and then fired at a temperature of 1300 to 1500 ° C.

【0007】このカルシウム−バナジウム系ガーネット
の原料の中で、V2 5 は水に対して約0.007g/
リットル溶解し、その溶液は酸性を示す。さらに、Ca
CO3 はその酸性水溶液の作用により容易にCO2 を遊
離し、生成したCaOはH2 Oと反応し、水に対する溶解
度が約0.126g/リットルのCa(OH)2 を生成
する。したがって、従来のカルシウム−バナジウム系ガ
ーネットの製造方法では、原料粉末の湿式混合時にCa
とVが溶出して組成ずれが起こり、調合組成に比べてC
aとVの量が少ない組成のカルシウム−バナジウム系磁
性ガーネットとなる。この溶出して減少するCaとVの
量は、湿式混合時の水温等の変化により異なるために正
確に予測できず、再現性よくカルシウム−バナジウム系
磁性ガーネットを得るのが非常に困難であるという問題
点を有していた。
In the raw material of this calcium-vanadium garnet, V 2 O 5 is about 0.007 g / water.
1 liter is dissolved and the solution shows acidity. Furthermore, Ca
CO 3 easily liberates CO 2 by the action of its acidic aqueous solution, and the produced CaO reacts with H 2 O to produce Ca (OH) 2 having a solubility in water of about 0.126 g / liter. Therefore, according to the conventional method for producing a calcium-vanadium garnet, when the raw material powder is wet mixed, Ca
And V elute and composition shift occurs, and C
The calcium-vanadium-based magnetic garnet has a composition in which the amounts of a and V are small. The amounts of Ca and V that decrease due to this elution differ depending on changes in water temperature during wet mixing, and therefore cannot be accurately predicted, and it is very difficult to obtain a calcium-vanadium magnetic garnet with good reproducibility. I had a problem.

【0008】そこで、本発明の目的は、原料粉末の混合
物を成形し焼成して得るカルシウム−バナジウム系フェ
リ磁性ガーネット、例えば、一般式{Ya Ca3-a
[Fe5-b-c-d Inb c Ald ]O12(但し、0.1
≦a≦2.9,0.0≦b≦0.5,0.1≦c≦1.
5,0.0≦d≦0.8)で表される磁性ガーネットの
製造に関して、CaやVが製造過程で溶出して組成ずれ
を起こすことのない製造方法を提供することにある。
Therefore, the object of the present invention is to obtain a calcium-vanadium-based ferrimagnetic garnet obtained by molding and firing a mixture of raw material powders, for example, the general formula {Y a Ca 3-a }.
[Fe 5-bcd In b V c Al d ] O 12 (however, 0.1
≦ a ≦ 2.9, 0.0 ≦ b ≦ 0.5, 0.1 ≦ c ≦ 1.
5,0.0 ≦ d ≦ 0.8), it is to provide a manufacturing method in which Ca and V do not elute in the manufacturing process to cause compositional deviation.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のカルシウム−バナジウム系フェリ磁性ガー
ネットの製造方法は、原料粉末の混合物を成形して焼成
するカルシウム−バナジウム系フェリ磁性ガーネットの
製造において、あらかじめカルシウム−バナジウム系フ
ェリ磁性ガーネットの原料のうちの少なくともCaCO
3 およびV2 5を乾式で混合し仮焼して、水に難溶性
の化合物を得ることを特徴とする。
In order to achieve the above object, a method for producing a calcium-vanadium ferrimagnetic garnet according to the present invention is a method for producing a calcium-vanadium ferrimagnetic garnet in which a mixture of raw material powders is molded and fired. In advance, at least CaCO among the raw materials of the calcium-vanadium ferrimagnetic garnet
3 and V 2 O 5 are dry-mixed and calcined to obtain a water-insoluble compound.

【0010】また、原料粉末の混合物を成形して焼成す
る、一般式{Ya Ca3-a }[Fe5-b-c-d Inb c
Ald ]O12(但し、0.1≦a≦2.9,0.0≦b
≦0.5,0.1≦c≦1.5,0.0≦d≦0.8)
で表されるカルシウム−バナジウム系フェリ磁性ガーネ
ットの製造において、カルシウム−バナジウム系フェリ
磁性ガーネットの原料であるY2 3 ,CaCO3 ,F
2 3 ,In2 3,V2 5 およびAl2 3 の粉
末を乾式で混合し950℃以上で仮焼して、水に難溶性
のガーネット相を生成させた後、湿式で混合して仮焼し
た後、焼成することを特徴とする。
Further, calcined by molding a mixture of raw material powders, the general formula {Y a Ca 3-a} [Fe 5-bcd In b V c
Al d ] O 12 (however, 0.1 ≦ a ≦ 2.9, 0.0 ≦ b
≦ 0.5, 0.1 ≦ c ≦ 1.5, 0.0 ≦ d ≦ 0.8)
In the production of the calcium-vanadium-based ferrimagnetic garnet represented by the formula, Y 2 O 3 , CaCO 3 , and F which are raw materials of the calcium-vanadium-based ferrimagnetic garnet
Powders of e 2 O 3 , In 2 O 3 , V 2 O 5 and Al 2 O 3 are dry-mixed and calcined at 950 ° C. or higher to form a hardly soluble garnet phase in water, and then wet. It is characterized in that it is mixed and calcined and then fired.

【0011】[0011]

【作用】本発明の製造方法によれば、あらかじめ少なく
ともCaCO3 およびV2 5を乾式で混合した後、仮
焼して水に難溶性の化合物、例えばガーネット相とする
ため、湿式で混合する過程でCaCO3 あるいはV2
5 が水に溶解して組成ずれを生じることはない。
According to the manufacturing method of the present invention, at least CaCO 3 and V 2 O 5 are mixed in advance by a dry method, and then calcined to form a compound hardly soluble in water, for example, a garnet phase, so that they are mixed by a wet method. CaCO 3 or V 2 O in the process
5 does not dissolve in water to cause compositional deviation.

【0012】[0012]

【実施例】【Example】

(実施例)以下、本発明のカルシウム−バナジウム系フ
ェリ磁性ガーネットの製造方法の実施例を説明する。ま
ず、表1に示す組成のカルシウム−バナジウム系フェリ
磁性ガーネットになるように、原料であるY2 3 ,C
aCO3 ,Fe2 3 ,In2 3 ,V2 3 およびA
2 3 の粉末を乾式で混合して5種類の混合粉末を得
た。なお、乾式で混合するに際し、各原料間の混合度合
いを向上させるために、各原料共、平均粒径が約1.2
μm以下の原料を用いた。また、乾式混合機には、容器
固定型混合機(高速流動型)を用いて混合度合いを向上
させた。さらに、この乾式混合機の内壁と原料との滑り
性を向上させるために、調合前に各原料を十分に乾燥さ
せるとともに、滑り材である有機粉末を原料に対して1
〜2wt%程度添加した。
(Examples) Examples of the method for producing a calcium-vanadium-based ferrimagnetic garnet of the present invention will be described below. First, Y 2 O 3 and C, which are raw materials, were used so as to obtain a calcium-vanadium-based ferrimagnetic garnet having the composition shown in Table 1.
aCO 3 , Fe 2 O 3 , In 2 O 3 , V 2 O 3 and A
The powder of l 2 O 3 was dry mixed to obtain 5 kinds of mixed powder. It should be noted that, in order to improve the degree of mixing between the respective raw materials during dry mixing, the average particle diameter of each raw material is about 1.2.
A raw material having a size of μm or less was used. As the dry mixer, a fixed container type mixer (high-speed flow type) was used to improve the degree of mixing. Further, in order to improve the slipperiness between the inner wall of the dry mixer and the raw materials, each raw material is sufficiently dried before compounding, and the organic powder as a sliding material is added to the raw material in an amount of 1%.
About 2 wt% was added.

【0013】次に、乾式混合した5種類の粉末それぞれ
をガーネット相が生成する950℃以上で仮焼し、Ca
とVを水に難溶性の化合物状態とした。なお、仮焼温度
が750℃を超え950℃未満では、CaCO3 がCa
Oに熱解離して水溶性のCa(OH)2 を生成するため
適当ではない。
Next, each of the five dry-mixed powders was calcined at 950 ° C. or higher at which a garnet phase was formed, and Ca
And V were made to be in the state of a compound sparingly soluble in water. When the calcination temperature is higher than 750 ° C and lower than 950 ° C, CaCO 3 is
It is not suitable because it thermally dissociates into O to form water-soluble Ca (OH) 2 .

【0014】その後、得られたガーネット粉末それぞれ
を湿式で混合粉砕した後、脱水乾燥し、950℃で再度
仮焼した。これは、乾式混合のみでは得られたガーネッ
ト粉末中の原料の混合・分散が不十分なため、仮焼粉末
を湿式で混合粉砕して均一に分散させた後、再度仮焼を
行なったものである。なお、湿式混合においては、硬質
な玉石とポットを用い粉砕時間を調整して、所望の粉砕
粒径となるようにするとともに、均一分散を図った。
Thereafter, each of the obtained garnet powders was wet mixed and ground, dehydrated and dried, and calcined again at 950 ° C. This is because the mixing and dispersion of the raw materials in the obtained garnet powder is insufficient only by dry mixing, so the calcined powder is wet-mixed and pulverized to be uniformly dispersed, and then calcined again. is there. In the wet mixing, a hard cobblestone and a pot were used to adjust the crushing time to obtain a desired crushed particle size and to achieve uniform dispersion.

【0015】再度仮焼して得られた5種類のガーネット
粉末700gそれぞれに対して、ポリ酢酸ビニルアルコ
ール系のバインダー約70gと、純水1500mlを添
加してバインダーを分散させた。その後、これを脱水処
理した後、約130℃で約一昼夜乾燥して#40メッシュ
の篩に通し、粒度の揃った極めて細かいガーネット粉末
を得た。このガーネット粉末を約1.5ton/cm2
の圧力で板状にプレス成形し、1300〜1500℃で
焼成してカルシウム−バナジウム系フェリ磁性ガーネッ
ト焼成体を得た。以上の操作を繰り返して、各組成毎に
15ロットのカルシウム−バナジウム系フェリ磁性ガー
ネット焼成体を得た。
Approximately 70 g of a polyvinyl acetate alcohol-based binder and 1500 ml of pure water were added to 700 g of each of the five types of garnet powder obtained by calcination again to disperse the binder. Then, this was dehydrated, dried at about 130 ° C. for about 24 hours, and passed through a # 40 mesh sieve to obtain an extremely fine garnet powder having a uniform particle size. About 1.5 ton / cm 2 of this garnet powder
It was press-formed into a plate-like shape under pressure and was fired at 1300 to 1500 ° C. to obtain a calcium-vanadium-based ferrimagnetic garnet fired body. The above operation was repeated to obtain 15 lots of calcium-vanadium-based ferrimagnetic garnet fired body for each composition.

【0016】次に、これらの磁性ガーネット焼成体の飽
和磁化(4πMs)と磁気的損失の程度を示す強磁性共
鳴吸収半値幅(ΔH)を測定した。表1にその結果を示
す。なお、同表における括弧内の数値は、15ロット間
でのばらつきを示す標準偏差σn-1 である。
Next, the saturation magnetization (4πMs) and the ferromagnetic resonance absorption half-value width (ΔH) showing the degree of magnetic loss of these magnetic garnet fired bodies were measured. The results are shown in Table 1. In addition, the numerical value in the parentheses in the same table is the standard deviation σ n-1 indicating the variation among 15 lots.

【0017】(従来例)比較用の従来例として、以下の
通りカルシウム−バナジウム系フェリ磁性ガーネット焼
成体を得た。即ち、実施例と同一のY2 3 ,CaCO
3 ,Fe2 3 ,In2 3 ,V2 3 およびAl2
3 の粉末を、実施例と同一の組成で湿式で混合粉砕した
後、脱水乾燥し、950℃で仮焼して5種類のガーネッ
ト粉末を得た。なお、湿式混合においては、実施例と同
様に硬質な玉石とポットを用い粉砕時間を調整して、所
望の粉砕粒径となるようにするとともに、均一分散を図
った。
(Conventional Example) As a conventional example for comparison, a calcium-vanadium-based ferrimagnetic garnet fired body was obtained as follows. That is, the same Y 2 O 3 and CaCO as in the example
3 , Fe 2 O 3 , In 2 O 3 , V 2 O 3 and Al 2 O
The powder of No. 3 was wet-mixed and pulverized with the same composition as in Example, dehydrated and dried, and calcined at 950 ° C. to obtain 5 kinds of garnet powder. In the wet mixing, a hard boulder and a pot were used in the same manner as in the examples to adjust the crushing time to obtain a desired crushed particle size and to achieve uniform dispersion.

【0018】次に、仮焼して得られた5種類のガーネッ
ト粉末700gそれぞれに対して、ポリ酢酸ビニルアル
コール系のバインダー約70gと、純水1500mlを
添加してバインダーを分散させた。その後、これを脱水
処理した後、約130℃で約一昼夜乾燥して#40メッシ
ュの篩に通し、粒度の揃った極めて細かいガーネット粉
末を得た。このガーネット粉末を約1.5ton/cm
2 の圧力で板状にプレス成形し、1300〜1500℃
で焼成して、カルシウム−バナジウム系フェリ磁性ガー
ネット焼成体を得た。以上の操作を繰り返して、各組成
毎に15ロットのカルシウム−バナジウム系フェリ磁性
ガーネット焼成体を得た。
Next, to each of 700 g of the five types of garnet powder obtained by calcination, about 70 g of a polyvinyl acetate alcohol-based binder and 1500 ml of pure water were added to disperse the binder. Then, this was dehydrated, dried at about 130 ° C. for about 24 hours, and passed through a # 40 mesh sieve to obtain an extremely fine garnet powder having a uniform particle size. About 1.5 ton / cm of this garnet powder
Press-molded into a plate with a pressure of 2 , 1300-1500 ° C
Was fired to obtain a calcium-vanadium-based ferrimagnetic garnet fired body. The above operation was repeated to obtain 15 lots of calcium-vanadium-based ferrimagnetic garnet fired body for each composition.

【0019】次に、これらの磁性ガーネット焼成体の4
πMsとΔHを測定した。表1にその結果を示す。な
お、同表における括弧内の数値は、実施例と同様に15
ロット間でのばらつきを示す標準偏差σn-1 である。
Next, 4 of these magnetic garnet fired bodies were prepared.
πMs and ΔH were measured. The results are shown in Table 1. The numerical value in parentheses in the table is 15 as in the example.
It is the standard deviation σ n-1 which shows the variation between lots.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示すように、本発明の製造方法で得
られたカルシウム−バナジウム系フェリ磁性ガーネット
の4πMsおよびΔH特性のロット間ばらつき(標準偏
差)は、従来法のそれと比較して、4πMsで1/3〜
1/4、ΔHで1/6〜1/37と、極めて小さくなっ
ている。従って、本発明によるカルシウム−バナジウム
系フェリ磁性ガーネット製造方法によれば、従来のYI
Gと比較して極めて低い磁気的損失を有するカルシウム
−バナジウム系フェリ磁性ガーネットを再現性よく安定
して製造することができることがわかる。
As shown in Table 1, the lot-to-lot variation (standard deviation) of 4πMs and ΔH characteristics of the calcium-vanadium-based ferrimagnetic garnet obtained by the production method of the present invention is 4πMs as compared with that of the conventional method. And then 1/3 ~
It is extremely small, 1/4 to 1/37 in 1/4 and ΔH. Therefore, according to the method for producing a calcium-vanadium-based ferrimagnetic garnet according to the present invention, the conventional YI
It is understood that the calcium-vanadium-based ferrimagnetic garnet having extremely low magnetic loss as compared with G can be stably produced with good reproducibility.

【0022】なお、上記実施例においては、カルシウム
−バナジウム系フェリ磁性ガーネット用原料の全てを一
括して乾式混合・仮焼して水に難溶性のガーネット相を
生成させているが、本発明はこれのみに限定されるもの
でなく、カルシウム−バナジウム系フェリ磁性ガーネッ
ト用原料の中で、少なくとも水に溶解するCaCO3
よびV2 5 のみを乾式混合・仮焼して水に難溶性の化
合物を生成させる方法でも、同様の効果が得られること
は言うまでもない。
In the above examples, all the calcium-vanadium-based ferrimagnetic garnet raw materials are dry-mixed and calcined at once to form a water-insoluble garnet phase. It is not limited only to this, but in the calcium-vanadium-based ferrimagnetic garnet raw material, at least only CaCO 3 and V 2 O 5 which are soluble in water are dry-mixed and calcined to give a compound that is hardly soluble in water. It goes without saying that the same effect can be obtained by the method of generating.

【0023】また、カルシウム−バナジウム系フェリ磁
性ガーネットの組成としては、上記実施例に限定される
ことなく、特公昭56−31288で開示の一般式{Y
a Ca3-a }[Fe5-b-c-d Inb c Ald ]O
12(但し、0.1≦a≦2.9,0.0≦b≦0.5,
0.1≦c≦1.5,0.0≦d≦0.8)で表される
磁性ガーネット全般ついて同様の効果が得られた。
The composition of the calcium-vanadium ferrimagnetic garnet is not limited to the above-mentioned examples, but the general formula {Y disclosed in Japanese Patent Publication No. 56-31288.
a Ca 3-a } [Fe 5-bcd In b V c Al d ] O
12 (However, 0.1 ≦ a ≦ 2.9, 0.0 ≦ b ≦ 0.5,
The same effect was obtained for all magnetic garnets represented by 0.1 ≦ c ≦ 1.5 and 0.0 ≦ d ≦ 0.8).

【0024】[0024]

【発明の効果】以上の説明で明らかなように、本発明の
カルシウム−バナジウム系フェリ磁性ガーネットの製造
方法によれば、カルシウムーバナジウム系フェリ磁性ガ
ーネットのY,In,Al置換系である{Ya
3-a }[Fe5-b-c-d Inb c Ald ]O12 0.
1≦a≦2.9,0.0≦b≦0.5,0.1≦c≦
1.5,0.0≦d≦0.8で表される組成に関して、
少なくともCaCO3 およびV25 を乾式で混合した
後、仮焼して水に難溶性の化合物とすることにより、製
造過程でCaCO3 あるいはV2 5 が水に溶解して組
成ずれを生じることはない。
As is apparent from the above description, the method for producing a calcium-vanadium ferrimagnetic garnet according to the present invention is a Y-, In-, Al-substituted system of calcium-vanadium ferrimagnetic garnet {Y a C
a 3-a} [Fe 5 -bcd In b V c Al d] O 12 0.
1 ≦ a ≦ 2.9, 0.0 ≦ b ≦ 0.5, 0.1 ≦ c ≦
Regarding the composition represented by 1.5 and 0.0 ≦ d ≦ 0.8,
At least CaCO 3 and V 2 O 5 are dry-mixed, and then calcined to form a poorly water-soluble compound, whereby CaCO 3 or V 2 O 5 is dissolved in water during the production process to cause a composition shift. There is no such thing.

【0025】したがって、従来のイットリウム−鉄系ガ
ーネットより低い磁気的損失を有し、適切な飽和磁化
(4πMs)と適切な温度係数(β)を示すカルシウム
ーバナジウム系フェリ磁性ガーネットを再現性よく安定
して製造することができる。
Therefore, a calcium-vanadium-based ferrimagnetic garnet having a magnetic loss lower than that of the conventional yttrium-iron-based garnet and exhibiting an appropriate saturation magnetization (4πMs) and an appropriate temperature coefficient (β) can be reproducibly stabilized. Can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 原料粉末の混合物を成形して焼成するカ
ルシウム−バナジウム系フェリ磁性ガーネットの製造に
おいて、あらかじめカルシウム−バナジウム系フェリ磁
性ガーネットの原料のうちの少なくともCaCO3 およ
びV2 5 を乾式で混合し仮焼して、水に難溶性の化合
物を得ることを特徴とするカルシウム−バナジウム系フ
ェリ磁性ガーネットの製造方法。
1. In the production of a calcium-vanadium ferrimagnetic garnet in which a mixture of raw material powders is molded and fired, at least CaCO 3 and V 2 O 5 among the raw materials of the calcium-vanadium ferrimagnetic garnet are previously dry-processed. A method for producing a calcium-vanadium-based ferrimagnetic garnet, which comprises mixing and calcining to obtain a compound that is sparingly soluble in water.
【請求項2】 原料粉末の混合物を成形して焼成する、
一般式{Ya Ca3-a }[Fe5-b-c-d Inb c Al
d ]O12(但し、0.1≦a≦2.9,0.0≦b≦
0.5,0.1≦c≦1.5,0.0≦d≦0.8)で
表されるカルシウム−バナジウム系フェリ磁性ガーネッ
トの製造において、カルシウム−バナジウム系フェリ磁
性ガーネットの原料であるY2 3 ,CaCO3 ,Fe
2 3 ,In2 3 ,V2 5 およびAl2 3 の粉末
を乾式で混合し950℃以上で仮焼して、水に難溶性の
ガーネット相を生成させた後、湿式で混合して仮焼した
後、焼成することを特徴とするカルシウム−バナジウム
系フェリ磁性ガーネットの製造方法。
2. A mixture of raw material powders is molded and fired,
Formula {Y a Ca 3-a} [Fe 5-bcd In b V c Al
d ] O 12 (provided that 0.1 ≦ a ≦ 2.9, 0.0 ≦ b ≦
0.5, 0.1 ≦ c ≦ 1.5, 0.0 ≦ d ≦ 0.8), which is a raw material of the calcium-vanadium ferrimagnetic garnet in the production of the calcium-vanadium ferrimagnetic garnet. Y 2 O 3 , CaCO 3 , Fe
Powders of 2 O 3 , In 2 O 3 , V 2 O 5 and Al 2 O 3 are dry-mixed and calcined at 950 ° C. or higher to form a sparingly soluble garnet phase in water, and then wet-mixed. A method for producing a calcium-vanadium-based ferrimagnetic garnet, which comprises firing after calcination.
JP31055793A 1993-12-10 1993-12-10 Production of calcium-vanadium based ferrimagnetic garnet Pending JPH07157313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31055793A JPH07157313A (en) 1993-12-10 1993-12-10 Production of calcium-vanadium based ferrimagnetic garnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31055793A JPH07157313A (en) 1993-12-10 1993-12-10 Production of calcium-vanadium based ferrimagnetic garnet

Publications (1)

Publication Number Publication Date
JPH07157313A true JPH07157313A (en) 1995-06-20

Family

ID=18006677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31055793A Pending JPH07157313A (en) 1993-12-10 1993-12-10 Production of calcium-vanadium based ferrimagnetic garnet

Country Status (1)

Country Link
JP (1) JPH07157313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054255A1 (en) * 1998-04-14 1999-10-28 Tdk Corporation Method for controlling intermodulation product of non-reciprocal circuit element
US6933799B1 (en) 1998-04-14 2005-08-23 Tdk Corporation Method of controlling intermodulation distortion of non-reciprocal device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054255A1 (en) * 1998-04-14 1999-10-28 Tdk Corporation Method for controlling intermodulation product of non-reciprocal circuit element
JP2000001317A (en) * 1998-04-14 2000-01-07 Tdk Corp Controlling method of intermodulation product of irreversible circuit elements
US6933799B1 (en) 1998-04-14 2005-08-23 Tdk Corporation Method of controlling intermodulation distortion of non-reciprocal device

Similar Documents

Publication Publication Date Title
EP3473606A1 (en) Ferrite magnetic material and ferrite sintered magnet
KR100236155B1 (en) Ferrite magnet, and powder for ferrite magnet and production process thereof
CN113896521B (en) Low-saturation narrow-linewidth gyromagnetic material and preparation method thereof
US3855374A (en) Method of making magnetically-anisotropic permanent magnets
CN113470912A (en) Ferrite sintered magnet and rotating electrical machine
MXPA02005324A (en) Method for making ferrite magnets.
JPH07157313A (en) Production of calcium-vanadium based ferrimagnetic garnet
JP4753054B2 (en) Manufacturing method of sintered ferrite magnet
JPH0927430A (en) Manufacture of ferrite magnet
CN113436822A (en) Ferrite sintered magnet
JP2004532524A (en) Manufacturing method of ferrite type magnet
KR20030025229A (en) Magnetic oxide material
JP2021150620A (en) Ferrite sintered magnet
CN114436635B (en) Microwave ferrite material with Gao Zixuan wave line width and preparation method thereof
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JP2743009B2 (en) Ferrite particle powder for bond core and method for producing the same
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material
JP2824603B2 (en) Ferrite particle powder for bonded magnetic material and method for producing the same
JPH0536518A (en) Manufacture of garnet-type ferrite unit
CN117831877A (en) Calcined ferrite and sintered ferrite magnet and method for producing the same
JP2760052B2 (en) Microwave / millimeter wave magnetic composition
CN116120049A (en) Preparation method of calcium lanthanum cobalt ferrite magnet, calcium lanthanum cobalt ferrite magnet and application
JPH11273928A (en) Magnetic material
JPH07320923A (en) Manufacturing method of mn-zn ferrite
JPS6217365B2 (en)