JPH07156172A - Fiber reinforced plastic head insulating material - Google Patents
Fiber reinforced plastic head insulating materialInfo
- Publication number
- JPH07156172A JPH07156172A JP5304727A JP30472793A JPH07156172A JP H07156172 A JPH07156172 A JP H07156172A JP 5304727 A JP5304727 A JP 5304727A JP 30472793 A JP30472793 A JP 30472793A JP H07156172 A JPH07156172 A JP H07156172A
- Authority
- JP
- Japan
- Prior art keywords
- matrix resin
- fiber
- woven fabric
- prepreg
- insulating material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Moulding By Coating Moulds (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化プラスチック
断熱材に係るもので、例えば、熱プレス本体と熱盤の間
に装着され、熱盤からの熱伝導を防止する断熱板や自動
車用ディスクブレーキのバックプレートとピストンの間
に装着され、制動時に発生する熱を遮断して、ブレーキ
オイルの沸騰を防止するブレーキシム材等に使用される
繊維強化プラスチック断熱材の改良およびその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced plastic heat insulating material, for example, a heat insulating plate or a disk for an automobile, which is mounted between a hot press body and a hot plate to prevent heat conduction from the hot plate. The present invention relates to an improvement of a fiber reinforced plastic heat insulating material used as a brake shim material or the like which is mounted between a back plate of a brake and a piston, blocks heat generated during braking, and prevents boiling of brake oil, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来の繊維強化プラスチック断熱材は、
ガラス織布やガラス不織布等にフェノール樹脂,ポリエ
ステル樹脂,エポキシ樹脂等の高分子材料マトリックス
として含浸させて得た薄層シートを積層し、所定形状に
一体化成形して製造される。これらの断熱材は、熱伝導
率が0.2〜0.4kcal/mh℃、また、圧縮強度
が1000Kgf/cm2以上の物性を有する高強度の断熱材
料である。2. Description of the Related Art Conventional fiber reinforced plastic insulation materials are
It is manufactured by stacking thin layer sheets obtained by impregnating glass woven cloth or glass non-woven cloth with a polymer material matrix such as phenol resin, polyester resin, epoxy resin, etc., and integrally molding them into a predetermined shape. These heat insulating materials are high-strength heat insulating materials having physical properties of thermal conductivity of 0.2 to 0.4 kcal / mh ° C. and compressive strength of 1000 Kgf / cm 2 or more.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上述し
た繊維強化プラスチック断熱材は、発泡ウレタン、無機
質繊維フェルト等の一般的な断熱材料に比較して、熱伝
導率が大きく、断熱性能が劣るという問題がある。一般
的な断熱材は、その内部に微細な空隙を多量に含むため
に、0.1kcal/mh℃以下の非常に小さい熱伝導
率を示すが、圧縮強度が10Kgf/cm2以下と小さいため
に、前記熱プレスやブレーキシムのような高圧縮荷重が
負荷される場所に使用することはできない。よって、従
来の断熱材は、高圧縮強度のものは断熱性能が劣り、断
熱性能に優れたものは圧縮強度が小さいという相反する
性質があり、両特性を兼ね備えたものがない。However, the above-mentioned fiber-reinforced plastic heat insulating material has a problem that the heat conductivity is large and the heat insulating performance is inferior as compared with general heat insulating materials such as urethane foam and inorganic fiber felt. There is. A general heat insulating material has a very small thermal conductivity of 0.1 kcal / mh ° C or less because it contains a large amount of fine voids inside, but the compressive strength is as small as 10 Kgf / cm 2 or less. However, it cannot be used in a place where a high compression load is applied, such as the heat press or the brake shim. Therefore, the conventional heat insulating materials have the contradictory properties that the one having high compressive strength is inferior in heat insulating performance and the one having excellent heat insulating performance has small compressive strength, and there is no material having both properties.
【0004】[0004]
【発明の目的】本発明は、上述した問題点を解消するた
めになされたものであって、小さい熱伝導率と高圧縮強
度の両特性を具備した、高性能の繊維強化プラスチック
断熱材およびその製造方法を提供することを主たる目的
とする。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a high-performance fiber-reinforced plastic heat insulating material having both low thermal conductivity and high compressive strength. The main purpose is to provide a manufacturing method.
【0005】[0005]
【課題を解決するための手段】本発明による繊維強化プ
ラスチック断熱材は、織布および/または不織布と、マ
トリックス樹脂とからなる組成物であって、内部に空隙
部分が含まれていることを要旨としている。更に本発明
による繊維強化プラスチック断熱材の製造方法は、織布
および/または不織布にマトリックス樹脂を含浸させて
なるプリプレグと、マトリックス樹脂を含まない織布お
よび/または不織布の繊維層を交互に積層し、その積層
体をプレス成形することにより、プリプレグ中のマトリ
ックス樹脂を前記繊維層に部分的に移行させ、マトリッ
クス樹脂の硬化により、前記繊維層を繊維と空隙部分か
らなる層に形成することを要旨としている。The fiber-reinforced plastic heat insulating material according to the present invention is a composition comprising a woven fabric and / or a non-woven fabric and a matrix resin, and contains voids inside. I am trying. Further, the method for producing a fiber-reinforced plastic heat insulating material according to the present invention comprises a prepreg obtained by impregnating a woven fabric and / or a non-woven fabric with a matrix resin and a fiber layer of the woven fabric and / or the non-woven fabric containing no matrix resin, which are alternately laminated. , The matrix resin in the prepreg is partially transferred to the fiber layer by press-molding the laminate, and the fiber layer is formed into a layer composed of fibers and voids by curing the matrix resin. I am trying.
【0006】[0006]
【作用】上記構成の繊維強化プラスチック断熱材は、そ
の内部に空隙部分が含まれているため、熱伝導率は小さ
く、かつ硬化したマトリックス樹脂と繊維により圧縮荷
重を支えるため、前記空隙部分を押し潰すことがなく、
大きな圧縮強度を有する。また、上記製造方法によれ
ば、圧縮強度と断熱性能の両特性を兼ね備えた高性能の
繊維強化プラスチック断熱材が容易に得られる。The fiber-reinforced plastic heat insulating material having the above-mentioned structure has a void portion inside, so that the thermal conductivity is small, and the hardened matrix resin and fibers support the compressive load. Without crushing
It has a large compressive strength. Further, according to the above-mentioned manufacturing method, a high-performance fiber-reinforced plastic heat insulating material having both compressive strength and heat insulating properties can be easily obtained.
【0007】[0007]
【実施例】図1は、本発明の一実施例を示す繊維強化プ
ラスチック断熱材の模式的断面図である。図中、1はプ
リプレグ層、2は織布または不織布からなる繊維層、3
は繊維、4はマトリックス樹脂、5は空隙部分である。
プリプレグ1は、織布または不織布を、溶剤に溶解した
マトリックス樹脂液に含浸し、乾燥して得られる。マト
リックス樹脂微粉末を織布または不織布に担持させても
よい。プリプレグ1と繊維層2を交互に積層し、その積
層体を熱プレス成形すると、プリプレグ1に含まれるマ
トリックス樹脂4が織布または不織布からなる繊維層2
中に部分的に浸透し、積層体を部分的に結合するととも
にマトリックス樹脂が浸透しない部分には空隙部分5が
形成される。EXAMPLE FIG. 1 is a schematic sectional view of a fiber reinforced plastic heat insulating material showing an example of the present invention. In the figure, 1 is a prepreg layer, 2 is a woven or non-woven fiber layer, 3
Is a fiber, 4 is a matrix resin, and 5 is a void portion.
The prepreg 1 is obtained by impregnating a woven or non-woven fabric with a matrix resin liquid dissolved in a solvent and drying. The matrix resin fine powder may be supported on a woven or non-woven fabric. When the prepreg 1 and the fiber layer 2 are alternately laminated and the laminated body is subjected to hot press molding, the matrix resin 4 contained in the prepreg 1 is a fiber layer 2 made of woven or non-woven fabric.
A void portion 5 is formed in a portion that partially penetrates the inside and partially bonds the laminated body, and does not penetrate the matrix resin.
【0008】前記織布または不織布としては、ガラス,
アルミナ,シリカ,カーボン,ジルコニア,セラミック
等の無機質繊維織布、または不織布、芳香族ポリアミ
ド,フェノール,ポリエステル等の合成高分子系および
セルロース,タンパク質等の天然高分子系からなる有機
質繊維織布または不織布等が挙げられる。前記織布の織
り方は、平織、朱子織、綾織等のものを選択使用するこ
とができる。織布または不織布の厚さは、0.03〜5
mm、望ましくは0.1〜2mmのものが使用され、要求さ
れる製品厚さにより使い分けられる。プリプレグ1に用
いられる織布または不織布の厚さが薄すぎる場合、およ
び、織布または不織布からなる繊維層2の厚さが厚すぎ
る場合には、織布または不織布からなる繊維層2へのマ
トリックス樹脂液の浸透量が不足して、層間剥離や圧縮
強度の低下が生じる。As the woven or non-woven fabric, glass,
Inorganic fiber woven cloth or non-woven cloth made of alumina, silica, carbon, zirconia, ceramics, etc. or non-woven cloth, synthetic polymer system such as aromatic polyamide, phenol, polyester, etc. and natural polymer system such as cellulose, protein etc. Etc. A plain weave, a satin weave, a twill weave, or the like can be selected and used as the weave of the woven fabric. The thickness of woven or non-woven fabric is 0.03-5
mm, preferably 0.1 to 2 mm is used, and it is properly used depending on the required product thickness. When the thickness of the woven or non-woven fabric used for the prepreg 1 is too thin, and when the thickness of the fiber layer 2 made of the woven or non-woven fabric is too thick, the matrix to the fiber layer 2 made of the woven or non-woven fabric The penetration amount of the resin liquid is insufficient, resulting in delamination and reduction in compressive strength.
【0009】前記マトリックス樹脂4は、シリコーン樹
脂,フェノール樹脂,ポリエステル樹脂,エポキシ樹
脂,ポリイミド樹脂,ウレタン樹脂,ユリア樹脂,メラ
ミン樹脂等の高分子材料が用いられるが、3次元架橋
(熱硬化型)するものが望ましい。The matrix resin 4 is made of a polymer material such as a silicone resin, a phenol resin, a polyester resin, an epoxy resin, a polyimide resin, a urethane resin, a urea resin and a melamine resin, but is three-dimensionally crosslinked (thermosetting type). Those that do are desirable.
【0010】プリプレグ1のマトリックス樹脂含有率
は、使用する織布または不織布の種類やマトリックス樹
脂の種類等により異なり、それぞれの最適値が選択され
る。織布または不織布の密度が小さい場合およびマトリ
ックス樹脂の密度が大きい場合は、最適マトリックス樹
脂含有率が大きめとなり、逆の場合は、小さめとなる。
一例として織布または不織布としてガラス繊維を用い、
マトリックス樹脂としてフェノール樹脂を用いた場合
は、最適フェノール樹脂含有率は、10〜25重量%の
範囲が良い。マトリックス樹脂含有率が少なすぎると、
層間剥離、強度低下が生じ、多すぎると空隙部分5の量
が減って、断熱性能が低下する。The matrix resin content of the prepreg 1 varies depending on the type of woven or non-woven fabric used, the type of matrix resin, etc., and an optimum value for each is selected. When the density of the woven or non-woven fabric is low and the density of the matrix resin is high, the optimum matrix resin content is large, and in the opposite case, it is small.
As an example, using glass fiber as a woven or non-woven fabric,
When a phenol resin is used as the matrix resin, the optimum phenol resin content is preferably in the range of 10 to 25% by weight. If the matrix resin content is too low,
Delamination and strength reduction occur, and if the amount is too large, the amount of void portions 5 decreases, and the heat insulating performance deteriorates.
【0011】プリプレグ1と織布または不織布層2の積
層数は、要求される製品厚さ、断熱性能により任意に選
択される。同じ厚さの製品を得る場合、薄いものを多数
積層した方が均一な熱伝導率の製品が得られ、物性上は
好ましいが、価格が高くなる欠点があり、要求される価
格と物性のバランスにより、積層数は適宜に選択され
る。前記積層体の繊維層2に含まれる空隙部分5による
空隙率の範囲は、5容積%〜25容積%、望ましくは1
0容積%〜20容積%である。これ以下だと熱伝導率が
大きくなり、これ以上だと圧縮強度が低下する。The number of laminated layers of the prepreg 1 and the woven or non-woven fabric layer 2 is arbitrarily selected depending on the required product thickness and heat insulation performance. When obtaining products with the same thickness, it is preferable to stack a number of thin products to obtain a product with uniform thermal conductivity, which is preferable from the viewpoint of physical properties, but it has the drawback of increasing the price. Therefore, the number of stacked layers is appropriately selected. The range of the porosity due to the void portion 5 included in the fiber layer 2 of the laminate is 5% by volume to 25% by volume, preferably 1%.
It is 0% to 20% by volume. If it is less than this, the thermal conductivity becomes large, and if it is more than this, the compressive strength decreases.
【0012】次に、前記繊維強化プラスチック断熱材の
組成、厚さ、熱伝導率測定結果等を示す具体的実施例を
比較例と共に下記に述べる。Next, specific examples showing the composition, thickness, and thermal conductivity measurement results of the fiber-reinforced plastic heat insulating material will be described below together with comparative examples.
【0013】実施例(1) 厚さ0.18mmのガラス繊維織布を、メチルエチルケト
ンに溶解したフェノール樹脂溶液(固形分21重量%)
に浸漬した後、風乾してプリプレグを作製した。このプ
リプレグ2枚の間に、厚さ0.12mmのガラス繊維織布
を挾んだ3層の積層体を150℃の熱プレスで1時間プ
レス成形し、厚さ0.34mm、フェノール樹脂含有率1
6重量%で空隙率17容積%の空隙部分を有する板状の
組成物を得た。Example (1) A phenol resin solution (solid content 21% by weight) prepared by dissolving a glass fiber woven cloth having a thickness of 0.18 mm in methyl ethyl ketone.
After immersing in, it was air dried to prepare a prepreg. A three-layer laminate in which a glass fiber woven fabric having a thickness of 0.12 mm was sandwiched between two prepregs was press-formed for 1 hour by hot pressing at 150 ° C. to obtain a thickness of 0.34 mm and a phenol resin content rate. 1
A plate-shaped composition having a void portion with a porosity of 17% by volume at 6% by weight was obtained.
【0014】実施例(2) 厚さ0.28mmの芳香族ポリアミド繊維織布を用い、実
施例1と同様の方法でフェノール樹脂含有プリプレグを
作製し、このプリプレグと厚さ0.2mmの芳香族ポリア
ミド繊維織布を交互に挾んだ5層の積層体を150℃の
熱プレスで1時間プレス成形し、厚さ0.84mm、フェ
ノール樹脂含有率25重量%で空隙率15容積%の空隙
部分を有する板状の組成物を得た。Example (2) A prepreg containing a phenol resin was prepared in the same manner as in Example 1 using a 0.28 mm-thick aromatic polyamide fiber woven fabric. The prepreg and the 0.2-mm-thick aromatic prepreg were prepared. A laminated body of 5 layers in which a polyamide fiber woven fabric is alternately sandwiched is press-molded for 1 hour by a hot press at 150 ° C., and a void portion having a thickness of 0.84 mm, a phenol resin content of 25% by weight, and a porosity of 15% by volume. A plate-shaped composition having
【0015】実施例(3) 厚さ2mmのガラス繊維不織布にフェノール樹脂粉末を分
散させたプリプレグ2枚の間に、厚さ0.3mmのガラス
繊維織布を挾んだ3層の積層体を150℃の熱プレスで
1時間プレス成形し、厚さ1.1mm、フェノール樹脂含
有率15重量%で空隙率12容積%の空隙部分を有する
板状の組成物を得た。Example (3) A three-layer laminated body in which a glass fiber woven fabric having a thickness of 0.3 mm is sandwiched between two prepregs in which a phenol resin powder is dispersed in a glass fiber nonwoven fabric having a thickness of 2 mm. It was press-molded for 1 hour at 150 ° C. to obtain a plate-shaped composition having a thickness of 1.1 mm, a phenol resin content of 15% by weight and a void portion of 12% by volume.
【0016】実施例(4) 厚さ0.35mmのガラス繊維織布を、メチルエチルケト
ンに溶解したエポキシ樹脂溶液(固形分25重量%、硬
化剤添加済み)に浸漬後、風乾してプリプレグを作製し
た。このプリプレグ2枚の間に厚さ0.2mmのガラス繊
維織布を挾んだ3層の積層体を100℃の熱プレスで1
時間プレス成形し、厚さ0.65mm、エポキシ樹脂含有
率13重量%で空隙率14容積%の空隙部分を有する板
状の組成物を得た。Example (4) A woven glass fiber cloth having a thickness of 0.35 mm was dipped in an epoxy resin solution (solid content: 25% by weight, with a curing agent added) dissolved in methyl ethyl ketone, and then air dried to prepare a prepreg. . A two-layered prepreg was sandwiched with a glass fiber woven fabric having a thickness of 0.2 mm to form a three-layer laminate, which was hot-pressed at 100 ° C.
Press molding was carried out for a time to obtain a plate-like composition having a thickness of 0.65 mm, an epoxy resin content of 13% by weight, and a void portion having a voidage of 14% by volume.
【0017】実施例(5) 厚さ1mmのガラス繊維織布を、メチルエチルケトンに溶
解した固形分25重量%のフェノール樹脂溶液に浸漬
後、風乾してプリプレグを作製した。このプリプレグと
厚さ1mmのガラス繊維織布を交互に積層した7層の積層
体を150℃の熱プレスで1時間プレス成形し、厚さ5
mm、フェノール樹脂含有率15重量%で空隙率15容積
%の空隙部分を有する板状の組成物を得た。Example (5) A glass fiber woven fabric having a thickness of 1 mm was dipped in a phenol resin solution having a solid content of 25% by weight dissolved in methyl ethyl ketone and then air dried to prepare a prepreg. This prepreg and a glass fiber woven fabric having a thickness of 1 mm were alternately laminated to each other, and a seven-layer laminate was press-molded with a hot press at 150 ° C for 1 hour to give a thickness of 5
A plate-like composition having a void portion with a void content of 15% by volume and a phenol resin content of 15% by weight was obtained.
【0018】実施例(6) 厚さ0.4mmのカーボン繊維織布を用い、実施例1と同
様の方法でフェノール樹脂含有プリプレグを作製し、こ
のプリプレグ2枚の間に厚さ0.35mmのガラス繊維織
布を挾んだ3層の積層体を150℃の熱プレスで1時間
プレス成形し、厚さ0.85mm、フェノール樹脂含有率
23重量%で空隙率13容積%の空隙部分を有する板状
の組成物を得た。Example (6) A prepreg containing a phenol resin was prepared in the same manner as in Example 1 using a carbon fiber woven cloth having a thickness of 0.4 mm, and a prepreg having a thickness of 0.35 mm was provided between two prepregs. A three-layer laminate sandwiching a glass fiber woven fabric is press-molded by a hot press at 150 ° C. for 1 hour to have a void portion having a thickness of 0.85 mm, a phenol resin content of 23% by weight, and a porosity of 13% by volume. A plate-shaped composition was obtained.
【0019】比較例(1) 厚さ0.18mmのガラス繊維織布を、メチルエチルケト
ンに溶解した固形分42重量%のフェノール樹脂溶液に
浸漬し、風乾してプリプレグを作製した。このプリプレ
グを3枚重ねた積層体を150℃の熱プレスで1時間プ
レス成形し、厚さ0.39mm、フェノール樹脂含有率2
9重量%の板状の組成物を得た。Comparative Example (1) A glass fiber woven cloth having a thickness of 0.18 mm was immersed in a phenol resin solution having a solid content of 42% by weight dissolved in methyl ethyl ketone and air-dried to prepare a prepreg. A laminate obtained by stacking 3 sheets of this prepreg was press-formed with a hot press at 150 ° C. for 1 hour to give a thickness of 0.39 mm and a phenol resin content of 2
A 9% by weight plate-like composition was obtained.
【0020】比較例(2) 厚さ1mmのガラス繊維織布を、メチルエチルケトンに溶
解した固形分42重量%のフェノール樹脂溶液に浸漬
し、風乾してプリプレグを作製した。このプリプレグを
7層に積層し、その積層体を150℃の熱プレスで1時
間プレス成形し、厚さ5mm、フェノール樹脂含有率30
重量%の板状の組成物を得た。Comparative Example (2) A glass fiber woven fabric having a thickness of 1 mm was immersed in a phenol resin solution having a solid content of 42% by weight dissolved in methyl ethyl ketone and air-dried to prepare a prepreg. This prepreg was laminated in 7 layers, and the laminated body was press-molded by hot pressing at 150 ° C. for 1 hour to give a thickness of 5 mm and a phenol resin content of 30.
A plate-shaped composition of weight% was obtained.
【0021】比較例(3) 厚さ0.3mmのガラス繊維織布を、メチルエチルケトン
に溶解したエポキシ樹脂溶液(固形分30重量%、硬化
剤添加済み)に浸漬後、風乾してプリプレグを作製し
た。このプリプレグを3層に積層し、その積層体を10
0℃の熱プレスで1時間プレス成形し、厚さ0.65m
m、エポキシ樹脂含有率24重量%の板状の組成物を得
た。熱伝導率の測定は、レーザーフラッシュ法熱定数測
定装置を、圧縮強度の測定は、インストロン型万能試験
機を用いてそれぞれ行った。測定結果を表1に示す。Comparative Example (3) A woven glass fiber cloth having a thickness of 0.3 mm was dipped in an epoxy resin solution (solid content: 30% by weight, with a curing agent added) dissolved in methyl ethyl ketone and then air-dried to prepare a prepreg. . This prepreg was laminated in three layers,
Press molded for 1 hour at 0 ° C hot press, thickness 0.65m
A plate-shaped composition having m and an epoxy resin content of 24% by weight was obtained. The thermal conductivity was measured using a laser flash method thermal constant measuring device, and the compressive strength was measured using an Instron universal testing machine. The measurement results are shown in Table 1.
【0022】[0022]
【表1】 [Table 1]
【0023】上記測定結果に示すように、本発明の繊維
強化プラスチック断熱材は、熱伝導率が0.1kcal
/mh℃以下、圧縮強度が2000kgf/cm2以上の高性
能の断熱材である。これに対し、比較例(1)〜(3)
に示した、繊維強化プラスチック断熱材は、本発明に比
較して熱伝導率が大きく、断熱性能が劣ることが認めら
れた。As shown in the above measurement results, the fiber reinforced plastic heat insulating material of the present invention has a thermal conductivity of 0.1 kcal.
/ Mh ° C or less, high-performance heat insulating material with compressive strength of 2000 kgf / cm 2 or more. On the other hand, Comparative Examples (1) to (3)
It was confirmed that the fiber-reinforced plastic heat insulating material shown in 1) had a large thermal conductivity and was inferior in heat insulating performance as compared with the present invention.
【0024】[0024]
【発明の効果】以上、説明したように、本発明によれ
ば、内部に空隙部分を含有するため熱伝導率が小さく、
かつ、繊維と硬化したマトリックス樹脂が圧縮荷重を支
えるため、低熱伝導率、高圧縮強度という相反する特性
を満足する優れた繊維強化プラスチック断熱材が得られ
る。As described above, according to the present invention, since the void portion is contained inside, the thermal conductivity is small,
Moreover, since the fiber and the cured matrix resin support the compressive load, an excellent fiber-reinforced plastic heat insulating material satisfying the contradictory characteristics of low thermal conductivity and high compressive strength can be obtained.
【図1】本発明の一実施例を示す繊維強化プラスチック
断熱材の模式的断面図である。FIG. 1 is a schematic cross-sectional view of a fiber-reinforced plastic heat insulating material showing an embodiment of the present invention.
1 プリプレグ層 2 織布または不織布からなる繊維層 3 繊維 4 マトリックス樹脂 5 空隙部分 1 prepreg layer 2 fiber layer made of woven or non-woven fabric 3 fiber 4 matrix resin 5 voids
Claims (3)
クス樹脂とからなる組成物であって、内部に空隙部分が
含まれていることを特徴とする繊維強化プラスチック断
熱材。1. A fiber-reinforced plastic heat insulating material, which is a composition composed of a woven fabric and / or a non-woven fabric and a matrix resin, and contains voids inside.
積%〜25容積%とされている請求項1に記載の繊維強
化プラスチック断熱材。2. The fiber reinforced plastic heat insulating material according to claim 1, wherein the range of the porosity by the void portion is 5% by volume to 25% by volume.
クス樹脂を含浸させてなるプリプレグと、マトリックス
樹脂を含まない織布および/または不織布の繊維層を交
互に積層し、その積層体をプレス成形することにより、
プリプレグ中のマトリックス樹脂を前記繊維層に部分的
に移行させ、マトリックス樹脂の硬化により、前記繊維
層を繊維と空隙部分からなる層に形成することを特徴と
する繊維強化プラスチック断熱材。3. A prepreg obtained by impregnating a woven fabric and / or a non-woven fabric with a matrix resin and a fiber layer of the woven fabric and / or the non-woven fabric containing no matrix resin are alternately laminated, and the laminate is press-molded. By
A fiber reinforced plastic heat insulating material, characterized in that the matrix resin in a prepreg is partially transferred to the fiber layer and the matrix resin is cured to form the fiber layer into a layer composed of fibers and voids.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5304727A JP2709371B2 (en) | 1993-11-10 | 1993-11-10 | Manufacturing method of fiber reinforced plastic insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5304727A JP2709371B2 (en) | 1993-11-10 | 1993-11-10 | Manufacturing method of fiber reinforced plastic insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07156172A true JPH07156172A (en) | 1995-06-20 |
JP2709371B2 JP2709371B2 (en) | 1998-02-04 |
Family
ID=17936491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5304727A Expired - Fee Related JP2709371B2 (en) | 1993-11-10 | 1993-11-10 | Manufacturing method of fiber reinforced plastic insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2709371B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001260154A (en) * | 2000-03-16 | 2001-09-25 | Meiki Co Ltd | Vacuum lamination apparatus |
FR2831095A1 (en) * | 2001-10-19 | 2003-04-25 | Daniel Andre Gastel | Laminated product of variable thickness has alternating layers of woven fibres and adhesive that allows layer separation |
US8182729B2 (en) | 2008-03-12 | 2012-05-22 | Denso Corporation | Wiring board and method of making the same |
EP2990185A1 (en) | 2014-08-28 | 2016-03-02 | Teijin Limited | Composite material including unidirectional continuous fibers thermoplastic resin |
JP5915780B2 (en) * | 2013-12-06 | 2016-05-11 | 三菱レイヨン株式会社 | Laminated substrate using fiber reinforced thermoplastics |
JP2016186228A (en) * | 2015-03-27 | 2016-10-27 | 日本ガスケット株式会社 | Heat insulation material and its manufacturing method |
JP6123965B1 (en) * | 2015-12-25 | 2017-05-10 | 東レ株式会社 | Structure |
WO2017110532A1 (en) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | Structure |
WO2017110528A1 (en) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | Structural body |
WO2019131125A1 (en) * | 2017-12-26 | 2019-07-04 | 東レ株式会社 | Fiber-reinforced thermoplastic resin molding material |
JP2019127901A (en) * | 2018-01-25 | 2019-08-01 | 日本ガスケット株式会社 | Oil pan of engine |
US10786952B2 (en) | 2015-11-26 | 2020-09-29 | Vestas Wind Systems A/S | Manufacture of wind turbine blades |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4842294B2 (en) | 2008-04-30 | 2011-12-21 | 日東電工株式会社 | Porous sheet, method for producing the same, and heat insulating sheet |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264512A (en) * | 1985-09-17 | 1987-03-23 | Honda Motor Co Ltd | Molding of formed sound absorption material |
JPH01242210A (en) * | 1988-03-24 | 1989-09-27 | Takiron Co Ltd | Glass fiber reinforced polyester resin molded product |
JPH04232047A (en) * | 1990-12-28 | 1992-08-20 | Nippon Steel Corp | Method of improving appearance of fiber reinforced thermoplastic resin |
-
1993
- 1993-11-10 JP JP5304727A patent/JP2709371B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6264512A (en) * | 1985-09-17 | 1987-03-23 | Honda Motor Co Ltd | Molding of formed sound absorption material |
JPH01242210A (en) * | 1988-03-24 | 1989-09-27 | Takiron Co Ltd | Glass fiber reinforced polyester resin molded product |
JPH04232047A (en) * | 1990-12-28 | 1992-08-20 | Nippon Steel Corp | Method of improving appearance of fiber reinforced thermoplastic resin |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001260154A (en) * | 2000-03-16 | 2001-09-25 | Meiki Co Ltd | Vacuum lamination apparatus |
FR2831095A1 (en) * | 2001-10-19 | 2003-04-25 | Daniel Andre Gastel | Laminated product of variable thickness has alternating layers of woven fibres and adhesive that allows layer separation |
WO2003039854A1 (en) * | 2001-10-19 | 2003-05-15 | Gastel Daniel Andre | Rolled product having a thickness that can be adjusted by means of peeling, the production method thereof and the application of same in the production of shims for mechanical assemblies |
US8518839B2 (en) | 2001-10-19 | 2013-08-27 | Daniel André Gastel | Peelable shim having a thickness that can be adjusted by exfoliating |
US8182729B2 (en) | 2008-03-12 | 2012-05-22 | Denso Corporation | Wiring board and method of making the same |
JP5915780B2 (en) * | 2013-12-06 | 2016-05-11 | 三菱レイヨン株式会社 | Laminated substrate using fiber reinforced thermoplastics |
JPWO2015083820A1 (en) * | 2013-12-06 | 2017-03-16 | 三菱レイヨン株式会社 | Laminated substrate using fiber reinforced thermoplastics |
US11752728B2 (en) | 2013-12-06 | 2023-09-12 | Mitsubishi Chemical Corporation | Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same |
US10919259B2 (en) | 2013-12-06 | 2021-02-16 | Mitsubishi Chemical Corporation | Laminated substrate using fiber-reinforced thermoplastic plastic, and molded product manufacturing method using same |
EP2990185A1 (en) | 2014-08-28 | 2016-03-02 | Teijin Limited | Composite material including unidirectional continuous fibers thermoplastic resin |
JP2016186228A (en) * | 2015-03-27 | 2016-10-27 | 日本ガスケット株式会社 | Heat insulation material and its manufacturing method |
US10786952B2 (en) | 2015-11-26 | 2020-09-29 | Vestas Wind Systems A/S | Manufacture of wind turbine blades |
KR20180084915A (en) * | 2015-12-25 | 2018-07-25 | 도레이 카부시키가이샤 | Structure |
JPWO2017110528A1 (en) * | 2015-12-25 | 2018-10-11 | 東レ株式会社 | Structure |
TWI698476B (en) * | 2015-12-25 | 2020-07-11 | 日商東麗股份有限公司 | Structure |
WO2017110528A1 (en) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | Structural body |
US10787548B2 (en) | 2015-12-25 | 2020-09-29 | Toray Industries, Inc. | Structure material |
US10787549B2 (en) | 2015-12-25 | 2020-09-29 | Toray Industries, Inc. | Structure material |
WO2017110532A1 (en) * | 2015-12-25 | 2017-06-29 | 東レ株式会社 | Structure |
JP6123965B1 (en) * | 2015-12-25 | 2017-05-10 | 東レ株式会社 | Structure |
WO2019131125A1 (en) * | 2017-12-26 | 2019-07-04 | 東レ株式会社 | Fiber-reinforced thermoplastic resin molding material |
CN111263696A (en) * | 2017-12-26 | 2020-06-09 | 东丽株式会社 | Fiber-reinforced thermoplastic resin molding material |
CN111263696B (en) * | 2017-12-26 | 2022-06-07 | 东丽株式会社 | Fiber-reinforced thermoplastic resin molding material |
JP2019127901A (en) * | 2018-01-25 | 2019-08-01 | 日本ガスケット株式会社 | Oil pan of engine |
Also Published As
Publication number | Publication date |
---|---|
JP2709371B2 (en) | 1998-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4558091B1 (en) | Fiber-reinforced molded body and method for producing the same | |
JPH07156172A (en) | Fiber reinforced plastic head insulating material | |
JPH0249220B2 (en) | ||
JPS6248538A (en) | Light-weight laminated structure and manufacture thereof | |
JP2016002723A (en) | Carbon fiber composite material and method for producing the same | |
JP7227684B2 (en) | Damping material | |
JP4164572B2 (en) | Composite material and manufacturing method thereof | |
JPS63303732A (en) | Extremely thin sheet | |
JPS63294610A (en) | Conductive molding plate and its manufacture | |
JP6752612B2 (en) | Fiber reinforced molded product and its manufacturing method | |
JP6823738B2 (en) | Fiber reinforced molded product and its manufacturing method | |
JPS6258285B2 (en) | ||
JPH0832417B2 (en) | FRP mold | |
JPH09283266A (en) | Manufacture of surface heater | |
JPH03368Y2 (en) | ||
JPS5921774B2 (en) | Manufacturing method of cyanate resin laminate | |
JPH05138790A (en) | Manufacture of friction material | |
JP4080095B2 (en) | Manufacturing method of thick porous carbon material | |
JPH03109266A (en) | Carbon fiber reinforced carbon composite material | |
JP4367994B2 (en) | Method for producing composite material of pulp fiber panel and fiber reinforced plastic | |
JPS6123385Y2 (en) | ||
JP2005104779A (en) | Method of manufacturing porous carbon board | |
JPH052625B2 (en) | ||
JPH04118208A (en) | Prepreg | |
JPS62189795A (en) | Manufacture of heat conductive wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |