JPH07154959A - Gear engine - Google Patents

Gear engine

Info

Publication number
JPH07154959A
JPH07154959A JP34931291A JP34931291A JPH07154959A JP H07154959 A JPH07154959 A JP H07154959A JP 34931291 A JP34931291 A JP 34931291A JP 34931291 A JP34931291 A JP 34931291A JP H07154959 A JPH07154959 A JP H07154959A
Authority
JP
Japan
Prior art keywords
gear
force
fixed
output
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34931291A
Other languages
Japanese (ja)
Inventor
Yoshiro Sato
吉朗 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34931291A priority Critical patent/JPH07154959A/en
Publication of JPH07154959A publication Critical patent/JPH07154959A/en
Pending legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)

Abstract

PURPOSE:To obtain a new driving force by which a gear device itself generates a rotating motive force by a method wherein an impact is applied to the specifically constituted gear device from a vibration generation device which has combined a permanent magnet with an electromagnet. CONSTITUTION:Fixed magnets 31a, 31b are arranged on the upper outside and the lower outside of both bar magnets 27a, 27b which constitute a vibrator bar magnet. Then, they are fixed and bonded to a casing 24, and a magnetic field is constituted. Magnetic axes of the individual magnets 27a, 27b, 31a, 31b and longitudinal axes of arms 10a, 10b, 37a, 37b are constituted in such a way that they are arranged in series at the upper part and the lower part in a standstill. In addition, an output internal gear 4 is attached to a fixed internal gear 1 in an output gear device. Then, an output gear part is constituted of planetrary differential gears which are automatically tightened so as to be a weak restraint and whose diameter is different. Then, a vibrating acceleration force by the vibrator bar magnet due to the self-induction of an electromagnet is applied, and an impact is continued. An impulsive force is generated on an engaged gear face by the blow force, and a rotating power is generated by a dynamic load.

Description

【発明の詳細な説明】 この発明は原動機に係り、永久磁石と電磁石を組合わせ
た振動発生装置により、特殊に構成した歯車装置に打撃
力を加えて、歯車装置自体が回転動力を発生する新たな
原動機に関する。従来の歯車装置は、他の原動機に装着
して動力を変速伝達する装置として古くから使用されて
いるが、歯車装置自体が回転動力を発生する原動機とし
て取上げられた事はこれまでになかった。しかるに本発
明は、本発明者が先に発明した「出力歯車装置」(特公
昭47−48130)の原理を発展させた、その後の研
究により特殊に構成した「新たな出力歯車装置」がクリ
ーンな回転動力を発生する原動機になる事に着目しなさ
れたものである。現在、環境汚染、大気の温暖化防止の
為のクリーンなエネルギーが強く求められており、本発
明はこの要望に応える為になされたものである。本発明
は、弱拘束に自動締まりする複数の遊星差動歯車装置
を、固定メンバーの歯車同志を固定軸により直結してギ
ヤボックスに弾性的に回り止めするとともに、出力メン
バーの歯車同志を直結して「新たな出力歯車装置」を構
成し、永久磁石と電磁石により構成した振動発生装置に
より、固定軸に円周方向の打撃力を加え回転動力を発生
する原動機である。磁針に永久磁石を急に近づけると、
針が円周方向の左右に振幅し暫時振動する。この現象
は、磁針を太くて大きな棒磁石に変え、固定した永久磁
石(以下固定磁石とする)の磁場の中で、先端を円周方
向に弾くと暫時振動し、その際発生する偶力モーメント
が棒磁石の慣性モーメントに蓄勢して打撃力が発生す
る。従って本発明は、「新たな出力歯車装置」のギヤボ
ックスの側面に固着した非磁性体のケーシングに、クラ
ンク軸の一端に打撃部のクランクアームを固着し、他端
のボス部に棒磁石を磁軸直角に固着し、ボス部の端面に
鉄心アームを固着して振動子棒磁石を構成し、その外側
に固定磁石をケーシングに固着して強力な磁場を構成
し、鉄心アーム先端の左右に突出させて固着した鉄心が
出入りするソレノイドの電路に、コンデンサーを直列に
組入れた塞流線輪型の電磁石により磁気起動装置(振動
発生打撃装置)を構成し、電磁石の自己誘導により振動
子棒磁石の振動に加速力を加えて打撃作用を持続させ、
この打撃力により噛合い歯面に発生する撃力と動荷重に
より回転動力を発生するギヤエンジンである。次に、本
発明の構成を実施例について説明すると、磁気起動装置
は、ギヤボックス6の右側面に固着した非磁性体のケー
シング24の中壁24′に、固定軸7に平行させて上下
に等配置し軸受けした、非磁性体のクランク軸17ab
の右側ボス部17ab′に縦軸の貫通孔を設けて棒磁石
27abを挿入固着し、ボス部17ab′の右端面に非
磁性体の鉄心アーム37abを上下対向させて固着し、
クランク軸17abの左端にクランクアーム10abを
外方に向けて固着し、振動子棒磁石を構成する。その両
棒磁石27abの上下外側に、固定磁石31abを等配
置しケーシング24に固着して磁界を構成し、各磁石2
7ab、31abの磁軸および両アーム10ab、37
abの縦軸が、静止時に上下に直列するよう構成する。
その両クランクアーム10abの外側端に、ハンマーピ
ン30abを左右に突出させて固着し、回り止め円板8
の右方向の打撃面8ab′と打撃部を構成する。そし
て、両鉄心アーム37abの隣接先端に、左右に突出さ
せて固着した半月型の鉄心22abを、重ね合わせて左
右のソレノイド23abに挿入し、電路にコンデンサー
39abを直列に結線して塞流線輪型の電磁石を構成す
る。又、固定軸7の右端にスプライン対偶した回り止め
円板8は、等配置した貫通孔に圧入したショックアブソ
ーバー20を、固定ピン20′によりギヤボックス6の
右側面に固着し、弾性回り止め装置を構成する。そして
回り止め円板8の上下部に、ハンマーピン30abが円
周方向に揺動可能な円弧状の長穴を設けて打撃部を構成
し、振動子棒磁石の振幅運動により、ハンマーピン30
abが長穴の右打撃面8ab′のみを打撃するよう位置
決めして回り止めし、弾性回り止め装置を構成する。
又、新たな出力歯車装置は、ギヤボックス6に横軸受け
した固定軸7の左端にスプライン対偶して回り止めした
固定内歯歯車1に、ギヤボックス6の左側面に片持軸受
けした出力軸9の円筒軸部9′右端に固着した出力内歯
歯車4を並設し、両内歯歯車1、4に同時噛合いした異
径の出力遊星歯車2.3を、固定軸7上に遊転する出力
遊星キャリヤ5に等配置して軸架し、弱拘束に自動締ま
りする異径の遊星差動歯車装置により出力歯車部を構成
する。そして、固定軸7の中央部に固着した固定太陽歯
車11に並設した出力太陽歯車14は、出力内歯歯車4
のフランジ部4′と単体構成して固定軸7上に遊転し、
両太陽歯車11、14に同時噛合いした異径の連動遊星
歯車12・13を、両太陽歯車11、14のボス部に遊
転した連動遊星キャリヤ15に等配置して軸架し、弱拘
束に自動締まりする異径の遊星差動歯車装置により連動
歯車部を構成する。そして、両歯車部を円錐歯車により
構成し、出力歯車部1、2・3、4の並設側を大端に歯
車構成し、連動歯車部11、12・13、14は両太陽
歯車11、14の並設側を小端面にし、連動遊星歯車1
2・13の並設側を大端面に歯車構成する。そして回り
止め円板8のボス部とVシェイプドクラッチ40間に挿
入したコイルばね19により左方向に押圧し、各円錐歯
面が無背隙に圧着噛合いして拘束力を調節する弱拘束に
自動締まり遊星差動歯車装置を構成する。そのVシェイ
プドクラッチ40abは、両接触端面にV形の歯溝を設
けて噛合わせ、それぞれの外面に突出させたアーム40
ab′をワイヤロープ54により引き寄せてV歯面が軸
方向に押し合い、固定軸7を、右側軸受7′内輪を介
し、中壁24′を反力にして、左方向に押圧する加圧装
置を構成する。次に、実施例の歯車構成を詳しく説明す
ると、両歯車部の歯数を、固定内歯歯車1をZ、以
下、4をZ、2・3をZ・Z、そして固定太陽歯
車11をN11、14をN14、12・13をN12
13にすると、出力歯車部の歯数比すなわち速度比i
zは になり、Z>Zの異径に構成し、出力内歯歯車4の
一出力回転に対し、出力遊星歯車2・3がizに従い同
じ方向に増速して公転運動する異径の遊星差動歯車装置
を構成する。そして連動歯車部の歯数比すなわち速度比
iNは になり、N12<N13の異径に構成するとiNはマイ
ナス(−)の値になり、出力太陽歯車14の一出力回転
に対し連動遊星歯車12・13がiNに従い、反対方向
に増速して公転運動する異径の遊星差動歯車装置を構成
する。又、各歯車の噛合い半径を、固定内歯歯車1をR
、4をR、2・3をR・R、そして固定太陽歯
車11をr11、14をr14、2・3をr・r
すると、出力歯車部の噛合い半径比Rzは になり、Rzの値が1に近づく歯車構成するに従い拘束
力が増加し、Rzの値を小さくすると拘束力が減少して
正逆方向に回転する。試験機によるとRz≒0.85〜
0.9前後に構成すると、減速方向に回転するが増速方
向には弱拘束に自動締まり作用しながら回転する異径の
遊星差動歯車装置を構成する事が出来る。そして連動歯
車部の増速方向の噛合い半径比rNは、 になり,rNの値を上記同様に構成して弱拘束に自動締
まりする異径の遊星差動歯車装置を構成する事が出来
る。しかしこの歯車部は外歯噛合いのため連動遊星歯車
12・13の歯数を両太陽歯車11・14より多く構成
する事が出来、それにならって慣性モーメントの差が大
きくなる。従って噛合い半径比rNを上記Rzと同じ値
に構成した場合でも、後述する遅速運動により、出力歯
車部より大きな拘束力が生ずる。したがって、新たな出
力歯車装置全体の拘束力は、両歯車部の弱拘束により自
動締まりする合成力になる。しかし拘束力は、後述す
る、歯車系の振動発生および負荷逆転力の増減により変
化する。そして噛合い半径比をRz=1=rNにすると
自縛遊星差動歯車装置になり、増速方向に回転する事が
出来なくなり、ギヤエンジンの新たな出力歯車装置に構
成する事が出来ない。又、円錐歯車は、歯切盤のテーブ
ルを軸直角の方向に移動しながらホブにより歯切りする
と、大端面がプラス(+)転位に、小端面がマイナス
(−)転位になり、両歯面の捩れ角が反対方向をなし、
歯筋が楔状の特殊なはすば歯車になる。そして歯切り傾
き角をγ度にすると、ピッチ円筒上の捩れ角β度は β=±tam−1(tamβg・secα) になり、無背隙時の噛合い圧力角αが軸直角圧力角α
と等しくなり α=tam−1(tamαh・cosγ)=α 圧着噛合いした場合でも、平歯車と同様の噛合い運動す
る。その捩れ角βを噛合い歯面の摩擦角以上になるよ
う、傾き角γと工具圧力角αhを設定して歯切りする
と、固定軸7の回り止め円板8に打撃力を加えた場合で
も、歯筋の方向に食い込む事がなく、両遊星歯車2・
3、12・13が円滑に自転して公転運動し出力作用す
る。そしてβは基円筒捩れ角βg βg=tam−1(tamγ・sinα) から求める事が出来る。しかし、両内歯歯車1、4は、
ギヤブランクをγ度傾けてピニオンカッターにより歯切
りすると歯形誤差が生じ、噛合い運動が不円滑になり出
力効率が極度に悪化する場合がある。従って歯切り後理
論歯形の外歯のダイローラーにより仕上げ転造すると、
正しい歯形に修正するとともに歯面が平滑になり、出力
遊星歯車2・3が円滑に自転し公転運動して高効率に出
力作用する。又、スカイビング歯切り用の特殊なピニオ
ンカッターにより、軸直角方向に移動しながら、シェー
ビングする様に内歯歯切りすると理論歯形になるが、カ
ッターに軸直角の大きな力が作用するため、大型エンジ
ン用の大きな円錐内歯歯車1、4に適す。又、両歯車部
の歯数比すなわち速度比iz、iNを小さく構成した方
が、ハンマーピン30の一回の打撃力wによる両出力歯
車4、14の出力回転角が大きくなる。しかし異径の左
右歯車列を同じ大きさの歯形にして、歯数比を小さく構
成すると、噛合い半径比Rz、rNの値が小さくなり過
ぎ、適切な拘束力が得られない場合がある。その際は、
異径歯車列の左右のモジュールを変え、適切な噛合い半
径差にすると、弱拘束に自動締まりする異径の遊星差動
歯車装置を構成する事が出来る。次に、実施例につい
て、両固定歯車1、11の噛合い歯面に発生する撃力F
とPの比を説明すると、固定内歯歯車1の噛合い半径R
の撃力をF、固定太陽歯車11の噛合い半径r11
撃力をPとすると、両歯車部全体の質量m、回転半径K
の慣性モーメントが回り止め円板8に作用し、同打撃面
8′の固定軸心7からの距離hを相当単振子の長さに構
成すると、固定軸心7に発生する撃力がゼロになり、打
撃面8′が撃心になる。従ってハンマーピン30の打撃
力wにより打撃面8′に発生した撃力Wにより両固定歯
車1、11の噛合い歯面に撃力F、Pが力積して発生す
る。従って、回り止め円板8を含む両歯車部全体を複振
子と見なした重心Gの、固定軸心7からの距 になり、噛合い半径R、r11と撃力F、Pの比は になる。実施例はR>r11に構成し、噛合い半径の
大きいRの噛合い歯面に大きな撃力Fが発生する。従
って出力歯車部と名称した所以である。そしてr11
小さい噛合い歯面に小さい撃力Pが発生し、これは従来
の増減速歯車装置の噛合い歯面に生ずる接線力と逆作用
する。すなわち、従来の歯車装置は、軸心に、噛合い歯
面の作用力と同じ大きさの転換力が同じ方向に作用する
ものであるが、撃力の場合は、軸心7に生ずる撃力をゼ
ロにも構成する事が出来る。また撃力の力積は、撃力で
ない作用力に比べて増大して発生し、そして撃力W、
F、Pを取扱う時は、他の作用力を無視する事が出来
る。この様に、本発明の新たな出力歯車装置は、撃力
F、Pの力積により出力作用する為、従来の歯車伝達理
論と異なるものである。次に、実施例について弱拘束に
自動締まりする構成について説明すると、両歯車部の遊
星歯車2・3、12・13は両内歯歯車1、4および両
太陽歯車11、14と左右歯車列の反対歯面で噛合い、
交差した作用線のまたぎ歯厚上で噛合う。従って噛合い
歯面の接線力は、異径差の歯筋上で反対方向に作用、反
作用し合い、拘束力が生じて増速方向に自動締まりす
る。従って両遊星歯車2・3、12・13は、噛合い歯
面の滑りと転がりにより生ずる極めて小さい噛合い抵抗
が、またぎ歯厚長さの両端に作用する為、大きな自転力
を小さな拘束力により自動締まりする。そして前述した
通り、噛合い半径比Rz、rNの構成の仕方により拘束
力を増減させる事が出来る。しかし後述する通り打撃の
一瞬発生する撃力F、Pと歯車系の振動により変化する
ものであるが、円錐歯面の圧着力を増減する事により拘
束力を調節する事が出来る。従って、本発明の、新たな
出力歯車装置は、有背隙噛合いした場合に、増速方向に
弱拘束に自動締まりしながら回転する様に歯車構成する
事が出来る。次に、実施例の磁気起動装置の構成と作用
を説明すると、上部の棒磁石27abの上端の磁極をN
にし、下端のS極に隣接する下部の棒磁石27bの上端
をN極にし、上部の固定磁石31aの下端をS極にし、
下部の固定磁石31bの上端をN極にすると、各磁石が
磁軸の方向に磁気的に吸引し合い、振動子棒磁石は上下
に直列して静止する。その静止状態に、一方の棒磁石2
7aの一端を片側に引いてθ度傾けると、他方の棒磁石
27aの隣接磁極が吸引されてθ度反対方向に傾き、急
に離すと暫時振幅運動し、急速に振幅角θを減少して停
止する。その際、磁気モーメントMの棒磁石27abは
磁界の強さHの中で、それぞれの偶力モーメントM
MHsinθが作用し、傾き角θが45度の位置で最大
になり、θゼロの直列点でM=ゼロになり、直列点を
超えた反対方向で−Mが作用し、振動子棒磁石の慣性
モーメントImに偶力モーメント±Mが正逆に作用し
て暫時振動する。従って、電磁石23abに通電する
と、半円柱の両鉄心22abが一緒になってソレノイド
23abの吸引力と反発力を受けて出入し、棒磁石27
abの偶力モーメントMに電磁加速力を加えて高速に
振動する。その際、容量Cのコンデンサー39abに振
幅の間に充電した電気量QによりQ/Cの起電力が逆に
生じたと同じになり、一往復の振幅中に左右のソレノイ
ド23abの吸引力と反発力が交互に作用し、振動子棒
磁石に電磁加速力を加えて振動を持続する事が出来る。
そして塞流線輪コイルの自己誘導により発生する起電力
は、鉄心22abの出入速度、すなわち振動子棒磁石の
振幅速度が速くなるに従い増加して、ハンマーピン30
abに生ずる打撃力wを増加し、反面消費電力が減少す
る。そして、慣性モーメントIの棒磁石27は、振幅角
θが一定範囲の場合、周期T′秒 に従い高速に振動し、電磁石の自己誘導の周期ω′が振
動子棒磁石の周期Tに同期して強制振動する。しかしI
m>Iの為、同振動子の振動速度すなわち打撃速度 v
=1/Tはv′=1/T′よりわずか減少するが、本
来高速の為と、偶力モーメントMと電磁加速力が慣性
モーメントImに蓄勢して打撃作用する為、打撃面8′
に撃力Wが発生する。すなわち、偶力モーメントM
は、振幅角θの刻刻の変化にともない増減するもので
あるが、打撃の右方向に始動を始める死点で大きなM
が慣性モーメントImに蓄勢し、これに電磁加速力が加
わり、ハンマーピン30に打撃力wが作用して速度vで
打撃面8′を打撃する。そして固定軸7が弾性的に回り
止めしてある為、衝突後、打撃部8′、30は打撃の方
向にt秒の瞬時一緒になって運動し、衝突後の速度uが
反発係数に従い一瞬減少して反発力を受ける。同時に、
反対方向の偶力モーメントMと電磁加速力が加わり左
方向に戻り振幅し、左側の死点に達して再び偶力モーメ
ント(+M)と電磁加速力が右方向に作用して加速振
幅し、打撃作用する。その際、速度vのハンマーピン3
0が、速度ゼロの打撃面8′に衝突して、速度差(v−
u)に従い運動のエネルギーを失うが、弾性回り止め装
置の反発力に左方向の電磁加速力と偶力モーメント(−
)が加わり連続して戻り振幅し、加束振幅して打撃
作用する。そして、上部の振動子棒磁石が右方向に加速
振幅して打撃作用する時、下部の振動子棒磁石が左方向
に戻り振幅し、その反対方向に振幅運動する時に下部の
ハンマーピン30bが打撃作用する為、一往復する間に
二回撃力Wが発生する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a prime mover, which uses a vibration generator combining permanent magnets and electromagnets to apply a striking force to a specially configured gear device so that the gear device itself generates rotational power. About prime mover. The conventional gear device has been used for a long time as a device that is mounted on another prime mover to transmit power in a variable speed, but the gear device itself has never been taken up as a prime mover that generates rotational power. However, the present invention has developed the principle of the "output gear device" (Japanese Patent Publication No. 47-48130) previously invented by the present inventor, and the "new output gear device" specially constructed by the subsequent research is clean. The focus was on becoming a prime mover that generates rotational power. At the present time, there is a strong demand for clean energy for preventing environmental pollution and global warming, and the present invention has been made to meet this demand. According to the present invention, a plurality of planetary differential gears that are automatically tightened under weak restraint are directly connected to each other by a fixed shaft so as to elastically prevent rotation of the gear members of a fixed member to a gear box, and directly connected to the gear members of an output member. This is a prime mover that constitutes a "new output gear device", and applies a striking force in the circumferential direction to a fixed shaft to generate rotational power by means of a vibration generator composed of a permanent magnet and an electromagnet. When a permanent magnet is suddenly brought close to the magnetic needle,
The needle oscillates left and right in the circumferential direction and vibrates for a while. This phenomenon is caused by changing the magnetic needle to a thick and large bar magnet, and vibrating for a moment when the tip is flipped in the circumferential direction in the magnetic field of a fixed permanent magnet (hereinafter, fixed magnet), and the couple moment generated at that time. Accumulates in the moment of inertia of the bar magnet to generate a striking force. Therefore, according to the present invention, the crank arm of the striking portion is fixed to one end of the crankshaft, and the bar magnet is attached to the boss portion of the other end, in the non-magnetic casing fixed to the side surface of the gear box of the "new output gear device". It is fixed at right angles to the magnetic axis, the iron core arm is fixed to the end surface of the boss portion to form a vibrator bar magnet, and the fixed magnet is fixed to the outside of it to form a strong magnetic field, and to the left and right of the iron core arm tip. A magnetic starting device (vibration generating striking device) is configured by a closed-flow-ring type electromagnet in which a condenser is installed in series in the electric circuit of a solenoid where a protruding and fixed iron core goes in and out, and a vibrator bar magnet is provided by self-induction of the electromagnet. The acceleration force is added to the vibration of the
This is a gear engine that generates rotational power by the impact force and dynamic load generated on the meshing tooth surface by this impact force. Next, the configuration of the present invention will be described with reference to an embodiment. The magnetic actuating device comprises a non-magnetic casing 24, which is fixed to the right side surface of the gear box 6, and a vertical wall which is parallel to the fixed shaft 7 on the inner wall 24 '. Non-magnetic crankshaft 17ab that is evenly arranged and bearing
A bar magnet 27ab is inserted and fixed to the right boss portion 17ab 'of which a vertical axis through hole is provided, and a non-magnetic iron core arm 37ab is fixed to the right end surface of the boss portion 17ab' so as to face each other.
The crank arm 10ab is fixed to the left end of the crankshaft 17ab so as to face outward to form a vibrator bar magnet. Fixed magnets 31ab are equally arranged on the upper and lower outer sides of the two bar magnets 27ab and fixed to the casing 24 to form a magnetic field.
7ab, 31ab magnetic axes and both arms 10ab, 37
The vertical axis of ab is configured to be vertically connected in a stationary state.
Hammer pins 30ab are laterally projected and fixed to the outer ends of the crank arms 10ab to prevent the rotation disc 8 from rotating.
And the striking surface 8ab 'in the right direction of the striking face. Then, half-moon-shaped iron cores 22ab, which are laterally projected and fixed to the adjacent ends of the two iron core arms 37ab, are overlapped and inserted into the left and right solenoids 23ab, and a condenser 39ab is connected in series to the electric path to connect the closed-flow coil. Form an electromagnet. The detent disc 8 having a spline pair on the right end of the fixed shaft 7 has a shock absorber 20 press-fitted into through holes arranged equidistantly and fixed to the right side surface of the gear box 6 by a fixing pin 20 '. Make up. The hammer pin 30ab is provided with a circular arc-shaped long hole in the upper and lower portions of the rotation-stopping disc 8 so that the hammer pin 30ab can swing in the circumferential direction to form a striking portion.
The ab is positioned so as to hit only the right striking surface 8ab 'of the elongated hole to stop the rotation, thereby forming an elastic rotation stopping device.
Further, the new output gear device includes a fixed internal gear 1 which is spline-paired with the left end of a fixed shaft 7 laterally supported by the gear box 6 and is prevented from rotating, and an output shaft 9 cantilevered on the left side surface of the gear box 6. The output internal gears 4 fixed to the right end of the cylindrical shaft portion 9'of the above are arranged in parallel, and the output planetary gears 2.3 having different diameters simultaneously meshed with both internal gears 1 and 4 are idled on the fixed shaft 7. The output gear unit is constituted by a planetary differential gear device of different diameters which are equally arranged on the output planetary carrier 5 and are mounted on the output planetary carrier 5 and are automatically tightened under weak constraint. The output sun gear 14 provided in parallel with the fixed sun gear 11 fixed to the central portion of the fixed shaft 7 is the output internal gear 4
The flange part 4'of the
The interlocking planetary gears 12 and 13 of different diameters that simultaneously mesh with both sun gears 11 and 14 are equally placed on the interlocking planet carrier 15 that is idled on the boss portion of both sun gears 11 and 14, and are axially mounted to weakly restrain them. The interlocking gear part is composed of a planetary differential gear device of different diameter that automatically tightens. Then, both gear parts are constituted by conical gears, and the side in which the output gear parts 1, 2, 3, 4 are arranged in parallel are geared at the large end, and the interlocking gear parts 11, 12, 13, 14 are both sun gears 11, The parallel side of 14 has a small end face, and the interlocking planetary gear 1
The side of the 2 and 13 side by side is geared to the large end face. Then, the coil spring 19 inserted between the boss portion of the rotation stopping disk 8 and the V-shaped clutch 40 presses it in the left direction, and each conical tooth surface is press-fitted in a backless gap to weakly restrain the restraining force. Configure an auto-tight planetary differential gear system. The V-shaped clutch 40ab is provided with V-shaped tooth grooves on both contact end faces and meshes with each other, and the arms 40 project to the outer surfaces of the respective arms 40.
The ab ′ is pulled by the wire rope 54 so that the V tooth surfaces push in the axial direction, and the fixed shaft 7 presses the fixed shaft 7 to the left through the inner ring of the right bearing 7 ′ with the inner wall 24 ′ as a reaction force. Constitute. Next, the gear configuration of the embodiment will be described in detail. As for the number of teeth of both gear portions, the fixed internal gear 1 is Z 1 , hereinafter, 4 is Z 4 , 2.3 is Z 2 · Z 3 , and the fixed sun. The gear 11 is N 11 , 14 is N 14 , 12 and 13 is N 12.
With N 13 , the gear ratio of the output gear, that is, the speed ratio i
z is To become, Z 2> constructed in different diameters of Z 3, output in respect first output rotation of the gear 4, planet having different diameters which the output planetary gear 2 and 3 revolve in accelerated in the same direction in accordance with iz Configure a differential gear unit. Then, the gear ratio of the interlocking gear, that is, the speed ratio iN is When N 12 <N 13 , the iN has a negative (-) value, and the output planetary gears 12 and 13 follow the iN for one output rotation of the output sun gear 14 and accelerate in the opposite direction. Then, a planetary differential gear device having a different diameter that revolves is constructed. In addition, the meshing radius of each gear is R for the fixed internal gear 1.
When 1 , 4 is R 4 , 2.3 is R 2 · R 3 , and the fixed sun gear 11 is r 11 , 14 is r 14 , and 2.3 is r 2 · r 3 , the meshing radius of the output gear part is The ratio Rz is The binding force increases as the gear configuration is such that the value of Rz approaches 1, and when the value of Rz is reduced, the binding force decreases and the motor rotates in the forward and reverse directions. According to the tester, Rz≈0.85
By configuring around 0.9, it is possible to configure a planetary differential gear device of different diameters that rotates in the deceleration direction but rotates while weakly restraining and automatically tightening in the acceleration direction. Then, the meshing radius ratio rN of the interlocking gear portion in the speed increasing direction is Therefore, it is possible to configure a planetary differential gear device having different diameters that automatically tightens a weak constraint by configuring the rN value in the same manner as described above. However, this gear portion can be configured so that the number of teeth of the interlocking planetary gears 12 and 13 is larger than that of the sun gears 11 and 14 due to the meshing of the external teeth, and accordingly the difference in the moment of inertia becomes large. Therefore, even when the meshing radius ratio rN is set to the same value as Rz, a restraining force larger than that of the output gear portion is generated due to the slow motion described later. Therefore, the binding force of the new output gear device as a whole becomes a combined force that is automatically tightened by the weak binding of both gear parts. However, the restraint force changes due to the generation of vibration of the gear system and the increase / decrease in the load reversal force, which will be described later. When the meshing radius ratio is set to Rz = 1 = rN, a self-locking planetary differential gear device is obtained, which cannot rotate in the speed increasing direction and cannot be configured as a new output gear device of the gear engine. In the conical gear, when the table of the gear cutting machine is moved in the direction perpendicular to the axis by gear cutting with a hob, the large end face becomes a plus (+) dislocation and the small end face becomes a minus (-) dislocation, and both tooth faces The twist angle of is in the opposite direction,
The tooth trace becomes a special helical gear with a wedge shape. When the gear cutting inclination angle is set to γ degrees, the twist angle β degree on the pitch cylinder becomes β = ± tam −1 (tamβg · secα), and the meshing pressure angle α when there is no back gap is the axis-perpendicular pressure angle α. o
And equal α = tam -1 (tamαh · cosγ ) = α o crimp claw was even to the same meshing movement and spur gear. If the inclination angle γ and the tool pressure angle αh are set so that the twist angle β becomes equal to or larger than the friction angle of the meshing tooth surface, the gear cutting is performed even when a hitting force is applied to the rotation stopping disc 8 of the fixed shaft 7. , Planetary gears 2 that do not bite in the direction of the tooth traces
3, 12, and 13 smoothly rotate and revolve to perform an output action. And β can be obtained from the base cylinder twist angle βg βg = tam −1 (tamγ · sin α). However, both internal gears 1, 4 are
When the gear blank is tilted by γ degrees and gear cutting is performed by a pinion cutter, a tooth profile error occurs, meshing motion becomes unsmooth, and output efficiency may be extremely deteriorated. Therefore, after finishing cutting, when finish rolling with a die roller of the external tooth of the theoretical tooth profile,
Correcting the tooth profile and making the tooth surface smooth, the output planetary gears 2 and 3 smoothly rotate and revolve to perform output operation with high efficiency. Also, with a special pinion cutter for skiving gear cutting, while moving in the direction perpendicular to the axis, the internal tooth cutting becomes the theoretical tooth profile as if shaving, but since a large force perpendicular to the axis acts on the cutter, it is large. Suitable for large conical internal gears 1 and 4 for engines. Further, if the gear ratios of both gears, that is, the speed ratios iz and iN are made smaller, the output rotation angles of both output gears 4 and 14 due to one impact force w of the hammer pin 30 become larger. However, if the left and right gear trains of different diameters are made to have the tooth profile of the same size and the tooth number ratio is made small, the values of the meshing radius ratios Rz and rN become too small, and an appropriate restraining force may not be obtained. In that case,
By changing the right and left modules of the different diameter gear train to make an appropriate meshing radius difference, it is possible to construct a planetary differential gear device of different diameters that automatically tightens under weak constraint. Next, regarding the embodiment, the impact force F generated on the meshing tooth surface of both fixed gears 1 and 11
To explain the ratio of P and P, the meshing radius R of the fixed internal gear 1
When the impact force of 1 is F and the impact force of the meshing radius r 11 of the fixed sun gear 11 is P, the mass m of both gear parts and the turning radius K are shown.
When the moment of inertia of is applied to the rotation stopping disk 8 and the distance h of the striking face 8'from the fixed axis 7 is set to a length of a simple pendulum, the impact force generated on the fixed axis 7 becomes zero. Then, the striking surface 8'becomes a hit. Therefore, the striking force W generated on the striking surface 8 ′ by the striking force w of the hammer pin 30 produces striking forces F and P on the meshing tooth surfaces of the fixed gears 1 and 11. Therefore, the distance from the fixed axis 7 of the center of gravity G, which considers the entire gears including the rotation stopping disk 8 as a double pendulum. And the ratio of the engagement radii R 1 and r 11 to the impact forces F and P is become. In the embodiment, R 1 > r 11 is set, and a large impact force F is generated on the meshing tooth surface of R 1 having a large meshing radius. Therefore, it is the reason why it is called the output gear unit. Then, a small impact force P is generated on the meshing tooth surface with a small r 11 , which acts in reverse to the tangential force generated on the meshing tooth surface of the conventional speed increasing / decreasing gear device. That is, in the conventional gear device, the conversion force having the same magnitude as the acting force of the meshing tooth surface acts on the shaft center in the same direction, but in the case of the impact force, the impact force generated on the shaft center 7 is generated. Can be configured to zero. In addition, the impulse of the impulse is increased in comparison with the acting force that is not the impulse, and the impulse W,
Other forces can be ignored when dealing with F and P. As described above, the new output gear device of the present invention is different from the conventional gear transmission theory because it operates by the impulse of the impact forces F and P. Next, the structure of automatic tightening with a weak constraint will be described for the embodiment. The planetary gears 2, 3, 12, and 13 of both gears are composed of both internal gears 1 and 4, both sun gears 11 and 14, and left and right gear trains. Mesh on the opposite tooth surface,
Engage on the stride thickness of the intersecting lines of action. Therefore, the tangential force of the meshing tooth surface acts and reacts in the opposite direction on the tooth trace of different diameter difference, and the binding force is generated to automatically tighten in the acceleration direction. Therefore, in both planetary gears 2, 3, 12, and 13, the extremely small meshing resistance caused by the sliding and rolling of the meshing tooth surfaces acts on both ends of the bristle tooth thickness length, so that a large rotation force is generated by a small restraining force. Automatically tighten. Then, as described above, the restraining force can be increased or decreased depending on the configuration of the meshing radius ratios Rz and rN. However, as will be described later, the impact force F, P generated for a moment of impact and the vibration of the gear system change, but the restraining force can be adjusted by increasing or decreasing the crimping force of the conical tooth surface. Therefore, the new output gear device of the present invention can be configured as a gear so as to rotate in the speed-up direction while automatically tightening with a weak constraint when the back gap is engaged. Next, the structure and operation of the magnetic activator of the embodiment will be described. The magnetic pole at the upper end of the upper bar magnet 27ab is set to N.
The upper end of the lower bar magnet 27b adjacent to the lower S pole is the N pole, and the lower end of the upper fixed magnet 31a is the S pole.
When the upper end of the lower fixed magnet 31b is made to be the N pole, the magnets magnetically attract each other in the direction of the magnetic axis, and the oscillator bar magnets stand still in series in the vertical direction. In that stationary state, one bar magnet 2
When one end of 7a is pulled to one side and tilted by θ degrees, the adjacent magnetic pole of the other bar magnet 27a is attracted and tilted in the opposite direction by θ degrees, and when it is suddenly released, it makes a temporary amplitude motion and rapidly decreases the amplitude angle θ. Stop. At this time, bar magnet 27ab of the magnetic moment M is in the magnetic field strength H, each couple moment M o =
MHsin θ acts, the tilt angle θ becomes maximum at a position of 45 degrees, M o = zero at the series point of θ zero, and −M o acts in the opposite direction beyond the series point. couple moment ± M o to the moment of inertia Im of the interim vibration acts on the forward and reverse. Therefore, when the electromagnet 23ab is energized, the two semi-cylindrical iron cores 22ab together come and go under the attraction and repulsive force of the solenoid 23ab, and the bar magnet 27
In addition to the electromagnetic acceleration force to ab of the couple moment M o vibrate at high speed. At that time, it becomes the same as the electromotive force of Q / C is reversed due to the quantity of electricity Q charged in the capacitor 39ab having the capacity C during the amplitude, and the attraction force and the repulsive force of the left and right solenoids 23ab during one reciprocating amplitude. Act alternately, and the vibration can be sustained by applying an electromagnetic acceleration force to the oscillator bar magnet.
The electromotive force generated by the self-induction of the obstruction coil is increased as the moving speed of the iron core 22ab, that is, the amplitude speed of the oscillator bar magnet is increased, and the hammer pin 30
The striking force w generated in ab is increased, but the power consumption is reduced. When the amplitude angle θ is in a certain range, the bar magnet 27 having the moment of inertia I has a period of T ′ seconds. Accordingly, the self-induction period ω ′ of the electromagnet is forcibly vibrated in synchronization with the period T of the oscillator bar magnet. But I
Since m> I, the vibration velocity of the oscillator, that is, the impact velocity v
= 1 / T is slightly smaller than v '= 1 / T', but because of the originally high speed, the couple moment Mo and the electromagnetic acceleration force are accumulated in the inertia moment Im to exert a striking action. ′
A strike force W is generated at. That is, the couple moment M
o increases and decreases as the amplitude angle θ changes with time, but a large M o at the dead point at which the engine starts to the right of the impact.
Accumulates in the moment of inertia Im, an electromagnetic acceleration force is applied to this, and a striking force w acts on the hammer pin 30 to strike the striking surface 8'at a velocity v. Since the fixed shaft 7 is elastically prevented from rotating, the striking parts 8'and 30 move together in the striking direction for t seconds after the collision, and the velocity u after the collision momentarily follows the restitution coefficient. Decreases and receives repulsive force. at the same time,
Amplitude returns to the left couple moment M o and the electromagnetic accelerating force in the opposite direction is exerted, again couple moments reach the left side of the dead center (+ M o) and electromagnetic accelerating force accelerates amplitude acts rightward , Hitting action. At that time, hammer pin 3 of speed v
0 collides with the striking surface 8'of zero speed, and the speed difference (v-
u) loses kinetic energy, but to the repulsive force of the elastic detent device, the electromagnetic acceleration force to the left and the couple moment (-
Mo ) is added and the amplitude of the return is continuously increased. When the oscillator bar magnet on the upper portion accelerates to the right and strikes, the oscillator rod magnet on the lower part returns to the left and swings, and when the oscillator rod magnet moves in the opposite direction, the hammer pin 30b on the lower portion strikes. Since it works, a double strike force W is generated during one round trip.

同じ棒磁石27の場合でも、固定磁石31abの磁気モ
ーメントを大きなものにすると撃力Wが増加する。しか
し打撃面8′の打撃位置を右方向の死点近くにすると、
Wの発生が低下し、直列位置に近づけ過ぎると戻り振幅
力が減少する。従って両点の中間位置にすると大きな撃
力Wを発生する事が出来る。次に、本発明ギヤエンジン
の作用を実施例について説明すると、磁気起動装置の打
撃力wにより、新たな出力歯車装置の噛合い歯面に、撃
力F、Pと歯車系の振動により変動荷重が、同時に、一
瞬発生し、両遊星歯車2・3、12・13がそれぞれの
歯数比の方向に、一瞬加速して自転、公転運動し、両出
力歯車4、14を打撃力wの方向に減速回転して出力回
転する。その際、両遊星歯車2・3、12・13は打撃
の一瞬、両出力歯車4、14の噛合い歯面を反力にして
自転すると同時に、公転運動により両固定歯車1、11
の噛合い歯面を反力にして両出力歯車4、14を打撃力
wの方向に減速回転し出力回転する。従って、速度比i
zおよびiNが同時に作用して、連動遊星歯車12・1
3は左方向に公転運動し、出力遊星歯車2・3が右方向
に公転運動して出力作用する。従って、打撃の一瞬、一
瞬ごとに両固定歯車1、11は、回り止め装置7・8、
20の振動周期τに従い円周方向に微少振幅し、τを振
動子棒磁石の周期Tより小さく構成すると、ハンマーピ
ン30が両固定歯車1、11と一緒に反発されて左方向
に戻り振幅する。そして出力遊星歯車2・3は、打撃の
一瞬、一瞬加速して左回りに自転しながら、右方向に増
速比izに従い加速して公転運動し、出力内歯歯車4を
減速比1/izに従い右方向に減速回転し、撃力Fが消
滅した瞬間、拘束力により逆転が防止されて、一方向に
出力回転する。同時に連動遊星歯車12・13は、正逆
に微少振幅するごとに連続して左回りに自転しながら、
同左方向に増速比iNに従い公転運動し、出力太陽歯車
14を減速比1/iNに従い右方向に減速回転して出力
する。従って同一回転体の両出力歯車4、14は、連動
遊星歯車12・13の方の慣性モーメントが大きい為
と、自転力と拘束力が同じ噛合い歯面で生ずる為に微少
振幅の一往復中に連続して左方向に公転運動し、右の一
方向に出力回転する。厳密には撃力Pが消滅した瞬間は
連動歯車部の歯車列11、12、13、14が拘束力に
より糊付状態に一体となり、左方向に回転する公転運動
も生ずるものであるが、連動遊星歯車12・13の連続
した左方向の自転中に歯車系の振動が発生する為、撃力
Pによらない慣性モーメントによる自転力が生じ、右方
向に力のモーメント(=慣性モーメント×角加速度)が
作用して出力回転する。この作用は次の事で明らかであ
る。すなわち、Vシェイプドクラッチ40abのアーム
4O′abを引き操作して円錐歯面圧を増加すると、拘
束力が増加して負荷による逆転を防止する。同時に両遊
星歯車2・3、12・13の公転トルクが増加して両出
力歯車4、14の出力トルクを増し、反面、出力回転速
度がわずか減少する。また電磁石の供給電力を増加する
と、撃力F、Pが大きくなり、出力トルクと出力回転速
度が増加して出力する。次に、新たな出力歯車装置の原
理について説明すると、総ての歯車装置は、静止中に機
体を強く打撃すると、一瞬、運転中と同じ歯車系の固有
振動数で振動を起こし、噛合い歯面に静荷重の上に変動
荷重(以下、動荷重とする)が加わって発生し、固有振
動数域の共振点で最大になる。そして歯車部を直接打撃
すると、小さな打撃により共振して大きな動荷重が発生
する。特に遊星差動歯車装置は、一次に高減速するため
共振し易く、遊星歯車2・3、12・13に作用する自
転トルクと拘束トルクの比が打撃の一瞬、変化する特性
がある。その際、噛合っている大小の歯車は、それぞれ
の慣性モーメントに逆比して互に円周方向に相対運動し
合い、噛合い歯面が過渡的に応答し合って動荷重が発生
し、理論的最大値が2になる。その際、大小の歯車は互
に遅速運動し合い、歯数が少なく慣性モーメントの小さ
い方の歯車が進み側になり、歯数が多く慣性モーメント
の大きい方の歯車が遅れ側になって噛合い運動し、弱拘
束に自動締まりする複数の遊星差動歯車装置により前述
の通り構成した新たな出力歯車装置は、撃力F、Pと動
荷重により自転力が発生して出力回転する。と同時に、
拘束力により逆転が防止され、両作用力が同じ噛合い歯
面で瞬時に発生して、一方向に出力回転する。その際、
両歯車部の遊星歯車2・3、12・13は、自由に自転
している様に考えられ易いが、実際には、遊星差動歯車
装置特有の自転トルクと拘束トルクにより自己制御し
て、拘束しながら自転・公転運動する。そして両トルク
が同じ噛合い歯面で発生して、打撃の一瞬、自転拘束ト
ルク比(自転トルクと拘束トルクの比)が変化し、撃力
F、Pにより発生した自転力により、それぞれの歯数比
の方向に回転し、撃力F、Pが減衰した瞬間、拘束して
逆転を防止し、自己制御して自転し公転運動するもので
ある。すなわち、総ての遊星運動装置は、原動車の回転
角θdにより遊星車がθp角自転したとした場合、遊星
車が自転角θpより公転角θ引き戻された(θp−θ
) だけ自転して遊星運動する。それを歯車装置に構
成した場合は、歯車の噛合い運動 ともなわない公転角速度ω=θによる伝達成分があ
り、原動力τd ωdにより遊星歯車に生ずる公 速度ω が発生する。そして公転角加速度のω
は、単式の遊星歯車装置の場合は定数になるが、遊
星差動歯車装置では変数になり、動荷重の発生によりω
による力のモーメントが増加して作用し、外力に逆
い出力回転する。従って本発明の新たな出力歯車装置は
打撃力wにより各噛合い歯面に動荷重が共振して発生す
ると、両遊星歯車2・3、12・13の自転拘束トルク
比が一瞬変化し、同時に発生する撃力F、Pにより公転
角加速度ω が作用して公転運動に力のモーメントが
生じ、両歯車部のそれぞれの速度比Rz・iNの方向に
生じて作用・反作用し、両出力歯車4・14を撃力F、
Pの方向に減速回転して外力に逆らい出力回転する。し
かし、遊星差動歯車装置が一組だけの場合は、打撃の一
瞬、各歯車がそれぞれの円周方向に相対運動するが、反
力がないため中立を保ちながら振幅し、出力回転する事
が出来ない。但し、「出力歯車装置」の様に弾性蓄力装
置を組入れると、打撃の一瞬、公転角加速度ω によ
りトルク比が拡大 回転する。この場合の打撃力には方向性がなく、機体を
前後左右いかなる方向に打撃しても、また取付け台を同
様に打撃した場合でも出力回転する。しかし本発明のギ
ヤエンジンの「新たな出力歯車装置」は、弾性蓄力装置
なしに回転動力を発生するものであり、打撃力wには方
向性があり、弾性的に回り止めした固定軸7に歯車列の
噛合い運動方向に打撃力wを加えなければ回転動力を発
生する事が出来ない。例えば、両歯車部の一方を取外し
て、打撃面8′に打撃力wを加えた場合には回転動力を
発生する事が出来ない。また出力歯車部だけの場合は、
出力遊星歯車2・3が進み側になり、弾性回り止め装置
により微少振幅するが中立を保ち出力回転する事がな
い。そして連動歯車部だけの場合は、連動遊星歯車12
・13が遅れ側になって微少振幅し、遅い速度で円周方
向の左右に自転振幅するが中立を保ち、出力回転する事
がない。その際、噛合い歯面の反発により連動遊星歯車
12・13が公転方向に行きつ戻りつ相対運動する様子
を視る事が出来る。又、歯車系の振動は、歯のこわさが
変化して発生する係数励振型の振動体の為、打撃力wが
定格より半分以下になった場合でも、共振して出力回転
する。しかし動荷重の発生率(動荷重率)は一定値に達
すると収れんして、それ以上大きくならないので、その
際は変動荷重による出力増加がなくなり、主に撃力F、
Pの増加に従って増力する。従って許容歯面圧以下の状
態で出力作用するよう構成すると敏感に出力回転する。
しかし、新たな出力歯車装置だけで回転エネルギーを発
生する事が出来ないものである。従って本発明は、磁気
起動装置に前もって与えておいた大きな磁気エネルギー
により、棒磁石が磁場の中で高速に振幅運動する現象
に、塞流線輪型の電磁石の自己誘導により電磁加速力を
加えて生ずる打撃力wにより、噛合い歯面に撃力F、P
と動荷重が発生し、出力・連動両歯車部に生ずる力のモ
ーメントが相互作用して回転動力を発生するものであ
る。例えば、太く大きな棒磁石の中央部を把握し、円周
方向に振幅運動すると、大きな慣性抵抗を感ずる。そし
て振幅速度を大きくするに従い抵抗が増加する。しか
し、この運動を固定磁石の磁場で行なうと抵抗感が無く
なり、高速に軽く振幅する事が出来る。その際、棒磁石
の先端で非磁性体を打撃すると大きな撃力が発生する。
この軽くなった角運動量が棒磁石の慣性モーメントに蓄
勢して打撃作用し、大きな撃力が生じて回転動力を発生
するものである。又、実施例の棒磁石を鉄棒に替えて振
動子を構成した場合、強力な固定磁石により鉄棒が磁化
され、前述同様に振幅運動して打撃作用し、回転動力を
発生する。しかし永久磁石の棒磁石の場合より打撃力w
の発生が小さくなる。又、永久磁石は放置する間に減磁
するばかりでなく、振動を加えると早く減磁するもので
ある。したがって着磁し直して回転動力の発生を長く保
持する事が出来る。しかし着磁の為に大きな電気エネル
ギーを必要とし、この、前もって与えておいた磁気エネ
ルギーと電磁加速力の為の電力がエネルギー源になって
クリーンな回転動力を発生する。しかも塞流線輪型の電
磁石は、鉄心の出入速度が速くなればなる程起電力が大
きくなり、太陽電池、乾電池、またはバッテリー等によ
り供給する電磁石加速力の為の消費電力が少なくてすむ
事になる。又、本発明のギヤエンジンは、複数の磁気起
動装置を異相させ打撃位置をずらせて装着し、多連化し
て単位時間当りの打撃回数を増加し、出力回転速度を増
加して出力を大きくする事が出来る。そして本発明のギ
ヤエンジンは、他の機械を直接駆動するばかりでなく、
発電機を装置してクリーンな発電をする事が出来る。
Even in the case of the same bar magnet 27, if the magnetic moment of the fixed magnet 31ab is increased, the impact force W increases. However, if the striking position of the striking surface 8'is near the dead point to the right,
The generation of W is reduced, and the return amplitude force is reduced when it is brought too close to the series position. Therefore, a large striking force W can be generated at an intermediate position between both points. Next, the operation of the gear engine of the present invention will be described with reference to an embodiment. The impact force w of the magnetic starter causes a fluctuating load on the meshing tooth surface of the new output gear device due to impact forces F and P and vibration of the gear system. However, at the same time, both planetary gears 2, 3, 12 and 13 are momentarily accelerated in the direction of the respective gear ratios for a moment to rotate and revolve, and both output gears 4 and 14 are driven in the direction of striking force w. The output rotates after decelerating to. At that time, the two planetary gears 2, 3, 12, and 13 rotate at the moment of impact by using the meshing tooth surfaces of the two output gears 4 and 14 as a reaction force to rotate at the same time, and at the same time, due to the revolving motion, the two fixed gears 1 and 11 rotate.
The output gears 4 and 14 are decelerated and rotated in the direction of the striking force w by using the meshing tooth surface of as a reaction force for output rotation. Therefore, the speed ratio i
z and iN act at the same time, and the interlocking planetary gear 12.1
3 revolves to the left, and the output planetary gears 2 and 3 revolve to the right to act as outputs. Therefore, at each moment of impact, the fixed gears 1 and 11 are locked by the detent devices 7 and 8,
When the vibration amplitude τ slightly oscillates in the circumferential direction in accordance with the vibration cycle τ of 20, and τ is configured to be smaller than the cycle T of the oscillator bar magnet, the hammer pin 30 is repulsed together with both the fixed gears 1 and 11 and oscillates back to the left. . Then, the output planetary gears 2 and 3 accelerate for a moment and then rotate counterclockwise, while accelerating to the right in accordance with the speed increasing ratio iz and revolving, thereby moving the output internal gear 4 to the reduction ratio 1 / iz. Accordingly, the rotation is decelerated in the right direction, and at the moment when the strike force F disappears, the restraining force prevents the reverse rotation, and the output rotates in one direction. At the same time, the interlocking planetary gears 12 and 13 continuously rotate counterclockwise every time a slight amplitude is applied to the forward and reverse directions,
It revolves in the leftward direction according to the speed increasing ratio iN, and outputs the output sun gear 14 after decelerating and rotating in the rightward direction according to the speed reducing ratio 1 / iN. Therefore, since both output gears 4 and 14 of the same rotating body have a large moment of inertia of the interlocking planetary gears 12 and 13, and a rotation force and a restraining force are generated on the same meshing tooth surface, one reciprocation of a small amplitude occurs. It continuously revolves in the left direction and rotates in the right direction. Strictly speaking, at the moment when the hammering force P disappears, the gear trains 11, 12, 13, 14 of the interlocking gear unit are integrated into a glued state due to the restraining force, and a revolving motion of rotating to the left also occurs. Since the vibration of the gear system is generated during the continuous leftward rotation of the planetary gears 12 and 13, a rotation force due to a moment of inertia that does not depend on the impact force P is generated, and a moment of force to the right (= inertia moment × angular acceleration). ) Acts to rotate the output. This effect is clear in the following. That is, when the arm 4O'ab of the V-shaped clutch 40ab is pulled and the conical tooth surface pressure is increased, the restraining force is increased and the reverse rotation due to the load is prevented. At the same time, the revolution torques of both planetary gears 2.3, 12 and 13 increase and the output torques of both output gears 4 and 14 increase, while the output rotation speed slightly decreases. When the electric power supplied to the electromagnet is increased, the striking forces F and P are increased, and the output torque and the output rotation speed are increased and output is performed. Next, the principle of the new output gear device will be explained.All gear devices, when hitting the airframe strongly at rest, momentarily vibrate at the same natural frequency of the gear system as in operation, causing the meshing teeth. A static load is applied to the surface and a fluctuating load (hereinafter referred to as a dynamic load) is applied to the surface, and the maximum occurs at the resonance point in the natural frequency range. When the gear portion is directly hit, a small impact causes resonance and a large dynamic load is generated. In particular, the planetary differential gear device is apt to resonate due to the primary deceleration, and has a characteristic that the ratio of the rotation torque and the constraint torque acting on the planetary gears 2, 3, 12, and 13 changes for a moment of impact. At that time, the large and small gears meshing with each other move relative to each other in the circumferential direction in reverse proportion to their respective inertia moments, and the meshing tooth surfaces transiently respond to each other to generate a dynamic load, The theoretical maximum is 2. At that time, the large and small gears move slowly with respect to each other, the gear with the smaller number of teeth and the smaller moment of inertia is on the lead side, and the gear with the larger number of teeth and the larger moment of inertia is on the lag side and meshes. The new output gear device configured as described above by a plurality of planetary differential gear devices that move and are automatically tightened in a weakly constrained state is rotated by the rotation force generated by the impact forces F and P and the dynamic load. At the same time
Reverse rotation is prevented by the restraint force, both acting forces are instantaneously generated on the same meshing tooth surface, and output rotation is performed in one direction. that time,
It is easy to think that the planetary gears 2, 3, 12, and 13 of both gears are free to rotate, but in reality, they are self-controlled by the rotation torque and the constraint torque peculiar to the planetary differential gear device, Rotate and revolve while restraining. Then, both torques are generated on the same meshing tooth surface, the rotation restraint torque ratio (ratio of rotation torque and restraint torque) changes for a moment of impact, and each tooth is changed by the rotation force generated by the impact forces F and P. It rotates in the direction of a number ratio, and at the moment when the impact forces F and P are attenuated, it is restrained to prevent reverse rotation, and self-controlled to rotate and revolve. That is, in all the planetary motion devices, when the planet wheel rotates by the angle θp due to the rotation angle θd of the motor, the planet wheel is pulled back from the rotation angle θp by the revolution angle θ o (θp−θ).
o ) Only spins and makes a planetary motion. If it is configured as a gear device, the gear meshing motion There is a transfer component due to the revolution angular velocity ω o = θ o , which is not accompanied, and the revolution component generated in the planetary gear by the motive force τd ωd. A velocity ω o 2 occurs. And the revolution angular acceleration ω
o 2 becomes a constant in the case of a single planetary gear device, but becomes a variable in a planetary differential gear device, and due to the generation of dynamic load, ω
The moment of force due to o 2 increases and acts, and the output rotates against the external force. Therefore, in the new output gear device of the present invention, when the dynamic load resonates on each meshing tooth surface due to the striking force w, the rotation restraint torque ratio of both planetary gears 2, 3, 12, and 13 changes for a moment, and at the same time, The repulsive angular acceleration ω o 2 acts due to the generated striking forces F and P to generate a moment of force in the revolving motion, which acts and reacts in the direction of the respective speed ratios Rz · iN of both gear parts, resulting in both outputs. The gears 4 and 14 strike the force F,
The output rotates against the external force by decelerating in the direction of P. However, when there is only one set of planetary differential gears, each gear makes relative movement in the circumferential direction for a moment of impact, but since there is no reaction force, it may oscillate while maintaining neutrality, and output rotation may occur. Can not. However, if an elastic force storage device is incorporated like the “output gear device”, the torque ratio will increase due to the revolution angular acceleration ω o 2 for a moment of impact. Rotate. The striking force in this case has no directivity, and the output rotates even when the machine body is striked in any direction in the front, rear, left, and right directions, or when the mounting base is similarly striking. However, the "new output gear device" of the gear engine of the present invention generates rotational power without an elastic force storage device, and the striking force w has directionality, and the fixed shaft 7 that is elastically stopped. The rotational power cannot be generated unless the striking force w is applied in the meshing direction of the gear train. For example, if one of both gears is removed and a striking force w is applied to the striking surface 8 ', it is impossible to generate rotational power. Also, in the case of only the output gear part,
The output planetary gears 2 and 3 are on the advancing side, and the elastic detent device causes a slight amplitude, but the output planetary gears 2 and 3 are kept neutral and the output does not rotate. And in the case of only the interlocking gear part, the interlocking planetary gear 12
・ 13 becomes a delay side and slightly oscillates, and at the slow speed, it oscillates to the left and right in the circumferential direction, but keeps neutral and does not rotate the output. At this time, it is possible to see how the interlocking planetary gears 12 and 13 move relative to each other in the revolving direction due to the repulsion of the meshing tooth surfaces. Further, the vibration of the gear system is a vibrating body of the coefficient excitation type which is generated by the change in tooth stiffness, and therefore, even when the striking force w becomes half or less than the rated value, the output resonates and rotates. However, the dynamic load generation rate (dynamic load rate) converges when it reaches a certain value, and does not increase any further. At that time, the output increase due to the fluctuating load disappears, and the impact force F,
Increases as P increases. Therefore, if it is configured so that the output acts under the allowable tooth surface pressure, the output rotates sensitively.
However, rotation energy cannot be generated only by the new output gear device. Therefore, the present invention applies an electromagnetic acceleration force by the self-induction of a closed-flow-ring type electromagnet to a phenomenon in which a bar magnet rapidly swings in a magnetic field due to a large magnetic energy previously given to a magnetic activator. The striking force w generated by
And a dynamic load is generated, and the moments of the forces generated in both the output and interlocking gear parts interact to generate rotational power. For example, when grasping the central portion of a thick and large bar magnet and performing amplitude movement in the circumferential direction, a large inertial resistance is felt. The resistance increases as the amplitude velocity increases. However, if this movement is performed with the magnetic field of the fixed magnet, the resistance is lost and the vibration can be swung lightly at high speed. At that time, when the non-magnetic body is hit with the tip of the bar magnet, a large impact force is generated.
This reduced angular momentum stores the moment of inertia of the bar magnet and strikes it to generate a large striking force to generate rotational power. Further, when the bar magnet of the embodiment is replaced with an iron bar to form a vibrator, the iron bar is magnetized by the strong fixed magnet, and the iron bar is oscillated and impacted in the same manner as described above to generate rotational power. However, the striking force w is higher than that of the permanent magnet bar magnet.
Is less likely to occur. Further, the permanent magnet not only demagnetizes while being left unattended, but also quickly demagnetizes when vibration is applied. Therefore, it is possible to re-magnetize and maintain the generation of the rotational power for a long time. However, a large amount of electric energy is required for the magnetization, and the magnetic energy and the electric power for the electromagnetic accelerating force given in advance serve as an energy source to generate clean rotational power. Moreover, in the case of a closed-flow ring type electromagnet, the electromotive force increases as the iron core moves in and out faster, and it consumes less power for the electromagnet accelerating force supplied by a solar cell, dry cell, or battery. become. Further, in the gear engine of the present invention, a plurality of magnetic actuation devices are mounted in different phases so that the striking position is shifted, and the gear engine is multi-connected to increase the number of striking per unit time and increase the output rotation speed to increase the output. I can do things. And the gear engine of the present invention not only directly drives other machines,
A generator can be installed to generate clean power.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の全体を示す正断面図。第2図は、カ
バーを取外し、磁気起動装置の内部を示す右側面図。第
3図は、磁気起動装置を示す斜視図。第4図は、Vシェ
イプドクラッチの斜視図。 1.固定内歯歯車 11.固定太陽歯車 24.ケ
ーシング 2.出力遊星歯車 11.′ボス部 24.′
中 壁 3. 〃 12.連動遊星歯車 24c
カバー 4.出力内歯歯車 13. 〃 27.棒
磁石 4.′フランジ部 14.出力太陽歯車 30.ハ
ンマーピン 5.出力遊星キャリヤ15.連動遊星キャリヤ31.固
定磁石 6.ギヤボックス 17.クランク軸 37.鉄
心アーム 7.固 定 軸 17′ボス部 39.コ
ンデンサー 7.′軸 受 19.コイルバネ 40.Vシェ
イプドクラッチ 8.回り止め円板 20.ショクアブソーバー 8.′打撃面 20.′固定ピン 40.′
アーム 9.出力軸 22.鉄 心 54.ワ
イヤロープ 9.′円筒軸部 23.ソレノイド 10.クランクアーム
FIG. 1 is a front sectional view showing the whole of the present invention. FIG. 2 is a right side view showing the inside of the magnetic starting device with the cover removed. FIG. 3 is a perspective view showing a magnetic starting device. FIG. 4 is a perspective view of a V-shaped clutch. 1. Fixed internal gear 11. Fixed sun gear 24. Casing 2. Output planetary gear 11. ′ Boss part 24. ′
Middle wall 3. 〃 12. Interlocking planetary gear 24c
Cover 4. Output internal gear 13. 〃 27. Bar magnet 4. ′ Flange section 14. Output sun gear 30. Hammer pin 5. Output planet carrier 15. Interlocking planet carrier 31. Fixed magnet 6. Gear box 17. Crankshaft 37. Iron core arm 7. Fixed shaft 17 'Boss 39. Condenser 7. ′ Shaft receiving 19. Coil spring 40. V-shaped clutch 8. Non-rotating disc 20. Shock absorber 8. 'Striking surface 20. 'Fixing pin 40. ′
Arm 9. Output shaft 22. Iron core 54. Wire rope 9. ′ Cylindrical shaft 23. Solenoid 10. Crank arm

Claims (1)

【特許請求の範囲】[Claims] 一端にクランクアームを固着した非磁性体のクランク軸
の他端に、棒磁石を磁軸に直角に固着し、他端側面に鉄
心アームを固着して振動子棒磁石を構成し、その一組ま
たは複数を非磁性体のケーシングに固定軸に平行させて
軸受けし、棒磁石の磁極の外側に固定磁石をケーシング
に固着して磁界を構成し、鉄心アーム先端の左右に突出
させ固着した鉄心が出入するソレノイドの電路にコンデ
ンサーを直列に組入れた塞流線輪電磁石とにより磁気起
動装置を構成して固定軸の回り止め部に装着し、弱拘束
に自動締まりする複数の遊星差動歯車装置の固定メンバ
ーの歯車同志を固定軸により直結してギヤボックスに弾
性的に回り止めするとともに出力メンバーの歯車同志を
直結して新たな出力歯車装置を構成し、電磁石の自己誘
導により振動子棒磁石の振幅運動に電磁加速力を加えて
生ずる打撃力により、噛合い歯面に撃力と動荷重が同時
に発生して出力回転し、同歯面に生ずる拘束力により逆
転を防止して一方向に回転動力を発生するギヤエンジ
ン。
A bar magnet is fixed to the other end of the crankshaft of a non-magnetic material with a crank arm fixed to one end at a right angle to the magnetic axis, and an iron core arm is fixed to the side surface of the other end to form a vibrator bar magnet. Alternatively, a plurality of non-magnetic casings are supported parallel to the fixed shaft, and the fixed magnets are fixed to the casing outside the magnetic poles of the bar magnets to form a magnetic field. A magnetic starter is composed of a closed-flow wheel electromagnet with a condenser installed in series in the electric path of a solenoid that moves in and out, and it is attached to the detent part of the fixed shaft, and a plurality of planetary differential gears are automatically tightened with weak constraints. The gear members of the fixed member are directly connected by a fixed shaft to elastically prevent rotation in the gear box, and the gear members of the output member are directly connected to form a new output gear device, and the vibrator rod is self-induced by the electromagnet. The impact force generated by adding electromagnetic acceleration force to the stone's amplitude motion simultaneously generates an impact force and a dynamic load on the meshing tooth surface, and the output rotates. A gear engine that produces rotational power.
JP34931291A 1991-10-30 1991-10-30 Gear engine Pending JPH07154959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34931291A JPH07154959A (en) 1991-10-30 1991-10-30 Gear engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34931291A JPH07154959A (en) 1991-10-30 1991-10-30 Gear engine

Publications (1)

Publication Number Publication Date
JPH07154959A true JPH07154959A (en) 1995-06-16

Family

ID=18402922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34931291A Pending JPH07154959A (en) 1991-10-30 1991-10-30 Gear engine

Country Status (1)

Country Link
JP (1) JPH07154959A (en)

Similar Documents

Publication Publication Date Title
RU2377458C2 (en) Operation method of power rotation drive and power plant for its implementation
US20080223636A1 (en) Method and device for self-contained inertial
US20110074318A1 (en) Dual drive electric regenerator
JP2008527967A (en) Electromagnetic engine
KR100287576B1 (en) Rotating device and rotating method
JPH02259285A (en) Driving gear utilizing swinging motion
WO2008084195A2 (en) Gyroscopic torque converter
US20100242672A1 (en) Method and device for self-contained inertial vehicular propulsion
JPH07154959A (en) Gear engine
CN111181344B (en) Swing type surface micro cold forging device
US20040251757A1 (en) High efficiency torque converter
JP5847777B2 (en) Power rotating device and generator
US20070137420A1 (en) Method and device for self-contained inertial vehicular propulsion
WO2022024786A1 (en) Rotational motion mechanism
JP5342080B1 (en) Output stable power generator suitable for reciprocating motion
JPH0735776B2 (en) Gear prime mover
WO2023226803A1 (en) Circumferential engine
JP2005002960A (en) Power generation device
WO2019208038A1 (en) Electric tool
JP2024002976A (en) Versatile system equipped with pair of mechanisms with eccentric elements capable of moving in rotation
US20080257079A1 (en) Inertial propulsion device
RU31150U1 (en) Device for generating energy when changing the type of energy (options)
RU89129U1 (en) VIBRATOR
JP3455594B2 (en) Rotary ornament drive
JPS605767A (en) Rolling motor