JPH07153987A - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JPH07153987A
JPH07153987A JP5301382A JP30138293A JPH07153987A JP H07153987 A JPH07153987 A JP H07153987A JP 5301382 A JP5301382 A JP 5301382A JP 30138293 A JP30138293 A JP 30138293A JP H07153987 A JPH07153987 A JP H07153987A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
buffer layer
light receiving
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5301382A
Other languages
Japanese (ja)
Other versions
JP2646978B2 (en
Inventor
Atsuhiko Kusakabe
敦彦 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5301382A priority Critical patent/JP2646978B2/en
Publication of JPH07153987A publication Critical patent/JPH07153987A/en
Application granted granted Critical
Publication of JP2646978B2 publication Critical patent/JP2646978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To shorten running time of a carrier by electrically connecting a P element in which a first conductive buffer layer, light absorbing layer, and window layer are formed in order on a semiconductor substrate and an N element in which a second conductive buffer layer, light absorbing layer, and window layer are formed in order by the side of the P element thereon. CONSTITUTION:After an n-InP buffer layer 2 is grown on a semiconductor substrate 1 a selective mask 12 made of SiO2 film is formed thereon and a p-InP buffer layer 3 is selectively formed by a thermal diffusion method. Next, after removing the mask 12, an n-InGaAS light absorbing layer 4 is grown to form an n-InP window layer 5 thereon. Then a p-InP window layer 6 is selectively formed through thermal diffusion. Further, after growing an etching mask 12, a wafer is divided into two elements, P element and N element, and they are connected with each other in siries by a common electrode 7. Finally, a P-side electrode 8 is formed on the P element, and an N-side electrode 9 on the N element, respectively. Thus the running time of a carrier can be shortened, resulting in high-speed response.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体受光素子に関
し、特にコヒーレント光通信用バランスト型受光素子に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element, and more particularly to a balanced type light receiving element for coherent optical communication.

【0002】[0002]

【従来の技術】光通信に於いて、光の強度変調により情
報を伝える光通信に替わり、光の周波数や位相を変調し
て情報を伝えるコヒーレント光通信技術が検討されてい
る。この様に光波の特徴を利用することで従来の強度変
調方式と比べ、伝送距離の拡大(超スパン化),光周波
数の分割多重による光密度化が可能なため、今後の超長
距離・大容量光通信技術として検討されている。
2. Description of the Related Art In optical communication, coherent optical communication technology for transmitting information by modulating the frequency and phase of light has been studied instead of optical communication for transmitting information by intensity modulation of light. In this way, by utilizing the characteristics of light waves, compared to the conventional intensity modulation method, it is possible to increase the transmission distance (super span) and increase the optical density by dividing and multiplexing the optical frequency. Considered as a capacity optical communication technology.

【0003】コヒーレント光通信システムの一例を図5
に示す。図5はヘテロダイン検波方式の例で、信号を取
り出す送信部及びヘテロダイン検波・偏波ダイバーシテ
ィ受信を行う受信部に分かれている。受信部は伝送路で
ある単一モード光ファイバケーブルの偏波状態を補償す
るため、直交する2つの偏波に分離させる偏波ビームス
プリッタ(PBS)、ヘテロダイン検波用の局部発振光
レーザーダイオード(局部発振光LD)、それぞれの偏
波状態に分離された信号光と局部発振光を混合しπだけ
位相のずれた2つの光に分割する3dB光カプラ、混合
された光を電気に変えビート信号を取り出すために2つ
のPINホトダイオードを直列に接続したバランスト型
受光素子(Dual−PIN−PD又はDual−PI
N−PDを2個集積したQuad−PIN−PD)、そ
して低雑音のプリアンプと検波回路で構成されている。
An example of a coherent optical communication system is shown in FIG.
Shown in. FIG. 5 shows an example of a heterodyne detection system, which is divided into a transmission section for extracting a signal and a reception section for performing heterodyne detection / polarization diversity reception. In order to compensate the polarization state of the single-mode optical fiber cable, which is the transmission line, the receiving unit splits the polarization beam splitter (PBS) into two orthogonal polarizations, and the local oscillation optical laser diode for heterodyne detection (local Oscillating light LD), a 3 dB optical coupler that mixes the signal light separated into the respective polarization states and the local oscillating light and splits the light into two lights that are out of phase by π, converts the mixed light into electricity, and generates a beat signal. A balanced type light receiving element (Dual-PIN-PD or Dual-PI) in which two PIN photodiodes are connected in series for extraction.
It is composed of a Quad-PIN-PD) in which two N-PDs are integrated, and a low-noise preamplifier and a detection circuit.

【0004】この様な受信部の構成に於いて、局部発振
光の出力を大きくすること、バランスト型受光素子によ
り局部発振光の出力を大きくすること、バランスト型受
光素子により局部発振光LDからの強度雑音を相殺する
ことで最小受信感度が量子雑音限界に達し、高感度化が
はかれる。従って、高感度化のためのバランスト型受光
素子に求められる特性は、直列に接続された2つのPI
N−PDが光学的・電気的に等価であること、両素子の
特性(量子効率、暗電流、接合容量、応答速度、S/
N)がそろっていることが必要であり、これらの要求を
満たすためにモノリシックに集積化したDual−PI
N−PDが検討されている。
In such a structure of the receiving section, the output of the local oscillation light is increased, the output of the local oscillation light is increased by the balanced type light receiving element, and the local oscillation light LD is increased by the balanced type light receiving element. By canceling out the intensity noise from, the minimum receiving sensitivity reaches the quantum noise limit, and high sensitivity is achieved. Therefore, the characteristics required for the balanced type light receiving element for high sensitivity are two PIs connected in series.
N-PD is optically and electrically equivalent, characteristics of both devices (quantum efficiency, dark current, junction capacitance, response speed, S /
N) are required, and the dual-PI monolithically integrated to meet these requirements.
N-PD is under consideration.

【0005】図6にバランスト型受光素子の一例である
Dual−PIN−PDの従来例を示す。半絶縁性In
P基板1上に間隔を置いて設けられた2つの受光素子を
集積した構成となっている。それぞれの受光素子は、半
絶縁性基板1上にキャリア濃度1×1015cm-3、層厚
2μmのn−InP緩衝層2、キャリア濃度3×1015
cm-3、層厚2μmのn−InGaAS光吸収層4、最
後にキャリア濃度5×1015cm-3、層厚1.4μmの
n−InP窓層5と、窓層内に形成された1×1018
-3のp−InP領域6から構成されている。この2つ
の受光素子のうち、一方のp−InP受光領域から引き
だしたp側電極8を、もう一方の受光素子のn−InP
窓層5上に設けたn側電極9につなげることでDual
−PIN−PDの出力側となる共通電極7を形成してい
る。ここでn側電極9と共通電極7から構成される受光
素子をN素子、共通電極7とp側電極8から構成される
受光素子をP素子と呼ぶ。
FIG. 6 shows a conventional example of a Dual-PIN-PD which is an example of a balanced type light receiving element. Semi-insulating In
It has a configuration in which two light receiving elements provided at intervals on the P substrate 1 are integrated. Each light receiving element has a carrier concentration of 1 × 10 15 cm −3 , an n-InP buffer layer 2 having a layer thickness of 2 μm, and a carrier concentration of 3 × 10 15 on the semi-insulating substrate 1.
cm −3 , layer thickness 2 μm of n-InGaAS light absorption layer 4, finally carrier concentration 5 × 10 15 cm −3 , layer thickness 1.4 μm of n-InP window layer 5, and 1 formed in the window layer. × 10 18 c
It is composed of m −3 p-InP region 6. Of these two light receiving elements, the p-side electrode 8 drawn out from one p-InP light receiving region is used as the n-InP of the other light receiving element.
Dual by connecting to the n-side electrode 9 provided on the window layer 5
The common electrode 7 that is the output side of the -PIN-PD is formed. Here, the light receiving element composed of the n-side electrode 9 and the common electrode 7 is called an N element, and the light receiving element composed of the common electrode 7 and the p-side electrode 8 is called a P element.

【0006】この様な構成のバランスト型受光素子に、
πだけ位相のずれた信号光と局部発振光との混合光をP
素子、N素子に同時に入射した場合、それぞれの素子に
て光電変換されたキャリアは共通電極7へ流れ、結果と
してバランスト型受光素子の出力側には両者の差分信号
が出力される。このため局部発振光LDからの光の強度
雑音成分を相殺することができ、受信感度の量子雑音限
界を達成することができる。ここで局部発振光LDの強
度雑音を相殺するためには前記したようにP素子、N素
子の出力が等価であることが重要である。ここで2つの
PIN−PDをモノリシック集積化したこと、またP素
子のn側電極とN素子のp側電極を兼ねる共通電極を中
心にP素子・N素子を対称に配置したことで、エピタキ
シャル厚ばらつきによる量子効率のばらつきと容量のば
らつきは2%以下に抑えられ良好なバランス特性が得ら
れている。
In the balanced type light receiving element having such a structure,
The mixed light of the signal light and the local oscillation light whose phase is shifted by π is P
When incident on the element and the N element at the same time, the carriers photoelectrically converted by the respective elements flow to the common electrode 7, and as a result, a difference signal between the two is output to the output side of the balanced type light receiving element. Therefore, the intensity noise component of the light from the local oscillation light LD can be canceled out, and the quantum noise limit of the receiving sensitivity can be achieved. Here, in order to cancel the intensity noise of the local oscillation light LD, it is important that the outputs of the P element and the N element are equivalent as described above. Here, the two PIN-PDs are monolithically integrated, and the P element and the N element are symmetrically arranged around the common electrode that also serves as the n-side electrode of the P element and the p-side electrode of the N element. The variation in quantum efficiency and the variation in capacity due to variation are suppressed to 2% or less, and good balance characteristics are obtained.

【0007】但し、ここで問題となるのはこの従来例の
Dual−PIN−PDでは充分な受光感度と良好なバ
ランス特性を得るためには、n−InGaAs光吸収層
4を3〜4μmと厚くする必要があり、逆にこれが受光
素子の応答速度を制限する要因となっている。
However, the problem here is that in this conventional Dual-PIN-PD, the n-InGaAs light absorption layer 4 has a large thickness of 3 to 4 μm in order to obtain sufficient light receiving sensitivity and good balance characteristics. However, this is a factor that limits the response speed of the light receiving element.

【0008】次に図7に第2の従来例(特開平4−20
7078号公報)を示す。第2の従来例は光の吸収とキ
ャリアの走行方向を分けた導波路型PIN−PDを二つ
直列に接続した導波路型Dual−PIN−PD構造と
なっている。n−InGaAs光吸収層4の端面から入
射した光は、n−InGaAs光吸収層4の長手方向で
光を吸収するため高い受光感度を得ることができ、生成
されたキャリアは光吸収層の両端に設けられたp−In
P領域6とn−InP領域に印加された電界によって横
方向に走行することとなる。
Next, FIG. 7 shows a second conventional example (JP-A-4-20).
No. 7078). The second conventional example has a waveguide type Dual-PIN-PD structure in which two waveguide type PIN-PDs for dividing light absorption and carrier traveling directions are connected in series. The light incident from the end face of the n-InGaAs light absorption layer 4 absorbs the light in the longitudinal direction of the n-InGaAs light absorption layer 4, so that high photosensitivity can be obtained, and the generated carriers are at both ends of the light absorption layer. P-In
The electric field applied to the P region 6 and the n-InP region causes lateral travel.

【0009】[0009]

【発明が解決しようとする課題】上記した従来例の導波
路型バランスト型受光素子において、生成されたキャリ
アは光吸収層の両側に設けられたp−InP領域とn−
InP領域に印加された電界によって横方向に走行する
こととなる。但し応答速度は、キャリアがn−InGa
As光吸収層に対し横方向に走行するためキャリアの走
行時間制限により応答が劣化するという問題が生じる。
In the waveguide type balanced type light receiving device of the above-mentioned conventional example, the generated carriers are p-InP regions and n-type regions provided on both sides of the light absorption layer.
The electric field applied to the InP region causes lateral travel. However, the response speed is that the carrier is n-InGa.
Since the carrier travels laterally with respect to the As light absorption layer, there arises a problem that the response is deteriorated due to the carrier travel time limitation.

【0010】[0010]

【課題を解決するための手段】本発明の半導体受光素子
は、半絶縁性基板(Eg1)上に第一導電型緩衝層(E
g1)と第一導電型光吸収層(Eg2)と第二導電型窓
層(Eg1)がEg1〉Eg2の条件にて順次構成され
たヘテロエピタキシャル層から成る第一素子と、前記半
絶縁性基板上かつ前記第一素子の横に第二導電型緩衝層
(Eg1)と第一導電型光吸収層(Eg2)と第一導電
型窓層(Eg1)がEg1〉Eg2の条件にて順次構成
されたヘテロエピタキシャル層から成る第二素子と、前
記第一素子の第一導電型緩衝層(Eg1)と前記第二素
子の第二導電型緩衝層(Eg1)とを電気的に接続した
構造を有している。
A semiconductor light receiving element of the present invention comprises a first conductivity type buffer layer (E) on a semi-insulating substrate (Eg1).
g1), a first-conductivity-type light absorption layer (Eg2), and a second-conductivity-type window layer (Eg1), which are sequentially formed under the condition of Eg1> Eg2, and are composed of a heteroepitaxial layer, and the semi-insulating substrate. A second conductivity type buffer layer (Eg1), a first conductivity type light absorbing layer (Eg2), and a first conductivity type window layer (Eg1) are sequentially formed above and next to the first element under the condition of Eg1> Eg2. And a second element formed of a heteroepitaxial layer, a structure in which the first conductivity type buffer layer (Eg1) of the first element and the second conductivity type buffer layer (Eg1) of the second element are electrically connected. is doing.

【0011】また、本発明の他の半導体受光素子は、半
絶縁性基板(Eg1)上に第一導電型緩衝層(Eg1)
と第一導電型クラッド層(Eg3)と第一導電型光吸収
層(Eg2)と第二導電型クラッド層(Eg3)と第二
導電型窓層(Eg1)がEg1〉Eg3〉Eg2の条件
ににて順次構成されたヘテロエピタキシャル層から成る
第一素子と、前記半絶縁性基板上かつ前記第一素子の横
に第二導電型緩衝層(Eg1)と第二導電型クラッド層
(Eg3)と第一導電型光吸収層(Eg2)と第一導電
型クラッド層(Eg3)と第一導電型窓層(Eg1)が
Eg1〉Eg3〉Eg2の条件にて順次構成されたヘテ
ロエピタキシャル層から成る第二素子と、前記第一素子
の第一導電型緩衝層(Eg1)と前記第二素子の第二導
電型緩衝層(Eg1)とを電気的に接続した構造を有す
る。
Further, another semiconductor light receiving element of the present invention is a buffer layer (Eg1) of the first conductivity type on a semi-insulating substrate (Eg1).
And the first conductivity type cladding layer (Eg3), the first conductivity type light absorbing layer (Eg2), the second conductivity type cladding layer (Eg3), and the second conductivity type window layer (Eg1) satisfy the condition of Eg1>Eg3> Eg2. A first element composed of a heteroepitaxial layer sequentially formed by the above, a second conductivity type buffer layer (Eg1) and a second conductivity type clad layer (Eg3) on the semi-insulating substrate and beside the first element. A first-conductivity-type light absorption layer (Eg2), a first-conductivity-type cladding layer (Eg3), and a first-conductivity-type window layer (Eg1), which are heteroepitaxial layers sequentially formed under the condition of Eg1>Eg3>Eg2; It has a structure in which two elements are electrically connected to the first conductivity type buffer layer (Eg1) of the first element and the second conductivity type buffer layer (Eg1) of the second element.

【0012】[0012]

【実施例】以下、本発明について図面を参照して説明す
る。図1は本発明の第一の実施例を示す半導体受光素子
を示す。また、図2(a)〜(f)は本発明の半導体受
光素子の製造工程を示す断面図である。半絶縁性InP
基板1上に気相成長法によりキャリア濃度1×1015
2×1016cm-3、層厚1〜3μmが好ましく、この例
ではキャリア濃度1×1015cm-3、層厚2μmのn−
InP緩衝層2を成長したエピタキシャルウエハに例え
ばSiO2 膜の選択マスク12を形成し、例えばZnの
熱拡散法により選択的にp−InP緩衝層3を形成する
(図2(a))。次にマスク12を除去したエピタキシ
ャルウエハ上に、キャリア濃度1×1015〜5×1015
cm-3、層厚3〜4μmが好ましく、この例ではキャリ
ア濃度3×1015cm-3、層厚2μmのn−InGaA
S光吸収層4を成長した後、最後に窓層としてキャリア
濃度2×1015〜6×1015cm-3、層厚1〜2μmが
好ましく、この例ではキャリア濃度5×1015cm-3
層厚1.4μmのn−InP窓層5を成長する(図2
(b))。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 shows a semiconductor light receiving element showing a first embodiment of the present invention. 2A to 2F are cross-sectional views showing the manufacturing process of the semiconductor light receiving element of the present invention. Semi-insulating InP
Carrier concentration on the substrate 1 by vapor phase growth method 1 × 10 15
2 × 10 16 cm −3 and a layer thickness of 1 to 3 μm are preferable, and in this example, a carrier concentration of 1 × 10 15 cm −3 and a layer thickness of 2 μm are n−.
A selective mask 12 of, for example, a SiO 2 film is formed on the epitaxial wafer on which the InP buffer layer 2 is grown, and the p-InP buffer layer 3 is selectively formed by, for example, a thermal diffusion method of Zn (FIG. 2A). Next, on the epitaxial wafer from which the mask 12 has been removed, the carrier concentration is 1 × 10 15 to 5 × 10 15.
cm −3 , layer thickness 3 to 4 μm is preferable, and in this example, n-InGaA having carrier concentration 3 × 10 15 cm −3 and layer thickness 2 μm.
After the S light absorption layer 4 is grown, the carrier concentration is preferably 2 × 10 15 to 6 × 10 15 cm −3 and the layer thickness is 1 to 2 μm as the window layer. In this example, the carrier concentration is 5 × 10 15 cm −3. ,
The n-InP window layer 5 having a layer thickness of 1.4 μm is grown (FIG. 2).
(B)).

【0013】上記エピタキシャルウエハに拡散マスクと
してSiO2 膜12を例えばCVD法により形成した
後、n−InP緩衝層2の上に相当するSiO2 膜に穴
開けを行い、例えばZnの熱拡散によりp−InP窓層
6を選択的に形成する(図2(c))。
After forming the SiO 2 film 12 as a diffusion mask on the above epitaxial wafer by, for example, the CVD method, the SiO 2 film corresponding to the n-InP buffer layer 2 is perforated, and the p is formed by thermal diffusion of Zn, for example. -InP window layer 6 is selectively formed (FIG. 2C).

【0014】前記拡散マスクを除去した後、導波路型受
光素子形成及びP素子、N素子間の素子分離のため、エ
ピタキシャルウエハを2分割する様にエッチング用マス
ク12をCVD法により成長(図2(d))した後、窓
層5側から半絶縁性InP基板1までを例えばRIE
(Reactive Ion Etching)法によ
り除去する(図2(e))。
After the diffusion mask is removed, an etching mask 12 is grown by a CVD method so as to divide the epitaxial wafer into two parts for forming a waveguide type light receiving element and separating elements between the P element and the N element (see FIG. 2). After (d)), the window layer 5 side to the semi-insulating InP substrate 1 are subjected to, for example, RIE.
It is removed by the (Reactive Ion Etching) method (FIG. 2E).

【0015】P素子とN素子に素子分離された導波路型
受光素子のn−InP緩衝層2とp−InP緩衝層3間
に例えば電子線法によりAuの蒸着を行い共通電極7を
形成し2つの導波路型受光素子を直列に接続する。
Au is deposited by, for example, an electron beam method between the n-InP buffer layer 2 and the p-InP buffer layer 3 of the waveguide type light receiving element separated into the P element and the N element to form the common electrode 7. Two waveguide type light receiving elements are connected in series.

【0016】次にp−InP窓層6上にp側電極として
例えばAuZnを、またn−InP窓層5上にn側電極
として例えばAuGeを蒸着法により形成した後、熱処
理により合金化を行い、最後にボンディング用の電極と
して例えば電子線蒸着法によりAuを蒸着し、n側電極
9及びp側電極8を形成する(図2(f))。
Next, AuZn, for example, is formed as a p-side electrode on the p-InP window layer 6 and AuGe, for example, as an n-side electrode on the n-InP window layer 5 by a vapor deposition method, and then alloyed by heat treatment. Finally, Au is vapor-deposited by, for example, an electron beam vapor deposition method as an electrode for bonding to form an n-side electrode 9 and a p-side electrode 8 (FIG. 2 (f)).

【0017】この様にして作成した導波路型Dual−
PIN−PDにおいて、n側電極9に順バイアスをp側
電極8に逆バイアスをかけ、信号出力を共通電極7から
取る構成にし、この直列に接続されている2つの受光素
子のn−InGaAS光吸収層4の端面側からそれぞれ
光を入射させる。端面から入射した光は導波路の長さ方
向で吸収されるため95%以上の高い量子効率が得られ
ると共に、吸収された光により生成されたホトキャリア
は導波路の厚さ方向に印加された電界によってそれぞれ
導波路の厚さ方向に走行するため走行時間を短くする事
ができ、20GHZ 以上の高速応答が可能となる。ま
た、Dual−PIN−PD構造を簡単なエピタキシャ
ル構成及びプロセスで実現することができるため、上記
要因による2素子の特性ばらつきを1%以内に抑えるこ
とができ、良好なバランス特性が得られる。
The waveguide type Dual-
In the PIN-PD, a forward bias is applied to the n-side electrode 9 and a reverse bias is applied to the p-side electrode 8, and a signal output is taken from the common electrode 7, and the n-InGaAS light of the two light-receiving elements connected in series is used. Light is made incident from the end face side of the absorption layer 4. Since the light incident from the end face is absorbed in the length direction of the waveguide, a high quantum efficiency of 95% or more is obtained, and the photocarriers generated by the absorbed light are applied in the thickness direction of the waveguide. It can shorten the travel time for traveling in the thickness direction of the respective waveguides by an electric field, thereby enabling high-speed response of more than 20GH Z. Further, since the Dual-PIN-PD structure can be realized with a simple epitaxial structure and process, the characteristic variation of the two elements due to the above factors can be suppressed within 1%, and a good balance characteristic can be obtained.

【0018】上記実施例は気相成長法によるエピタキシ
ャルウエハーについて説明したが、液相成長法、CVD
法、MOCVD法、MBE法、ALE法によるエピタキ
シャルウエハーにおいても同じ効果が得られる。
In the above embodiment, the epitaxial wafer prepared by the vapor phase epitaxy method is explained.
Method, MOCVD method, MBE method, and ALE method, the same effect can be obtained.

【0019】図3は本発明の第2の実施例の半導体受光
素子を示す斜視図である。図4(a)〜(f)は、その
半導体受光素子の製造方法を示す断面図である。半絶縁
性InP基板1上に気相成長法によりキャリア濃度1×
1015〜2×1016cm-3、層厚1〜3μmが好まし
く、この例ではキャリア濃度1×1015cm-3、層厚2
μmのn−InP緩衝層2とキャリア濃度1×1015
5×1015cm-3、層厚0.3〜0.6μmが好まし
く、この例ではキャリア濃度3×1015cm-3、層厚
0.4μmのn−InGaAsPクラッド層10を成長
したエピタキシャルウエハに例えばSiO2 膜の選択マ
スク12を形成し、例えばZnの熱拡散法により選択的
にp−InP緩衝層3及びp−InGaAsPクラッド
層11を形成する(図4(a))。次にエピタキシャル
ウエハ上に、キャリア濃度1×1015〜5×1015cm
-3、層厚3〜4μmが好ましく、この例ではキャリア濃
度3×1015cm-3、層厚2μmのn−InGaAs光
吸収層4を成長した後、再びキャリア濃度1×1015
-3、層厚0.3〜0.6μmが好ましく、この例では
キャリア濃度3×1015cm-3、層厚0.4μmのn−
InGaAsPクラッド層10を成長し、最後に窓層と
してキャリア濃度2×1015〜6×1015cm-3、層厚
1〜2μmが好ましく、この例ではキャリア濃度5×1
15cm-3、層厚1.4μmのn−InP窓層5を成長
する(図4(b))。
FIG. 3 is a perspective view showing a semiconductor light receiving element according to the second embodiment of the present invention. 4A to 4F are cross-sectional views showing a method for manufacturing the semiconductor light receiving element. Carrier concentration of 1 × on the semi-insulating InP substrate 1 by vapor phase epitaxy
10 15 to 2 × 10 16 cm −3 and a layer thickness of 1 to 3 μm are preferable, and in this example, carrier concentration is 1 × 10 15 cm −3 and layer thickness 2
μm n-InP buffer layer 2 and carrier concentration 1 × 10 15
It is preferably 5 × 10 15 cm −3 and a layer thickness of 0.3 to 0.6 μm. In this example, an epitaxial wafer on which an n-InGaAsP cladding layer 10 having a carrier concentration of 3 × 10 15 cm −3 and a layer thickness of 0.4 μm is grown. Then, a selective mask 12 of, for example, a SiO 2 film is formed, and a p-InP buffer layer 3 and a p-InGaAsP cladding layer 11 are selectively formed by, for example, a thermal diffusion method of Zn (FIG. 4A). Then, on the epitaxial wafer, the carrier concentration is 1 × 10 15 to 5 × 10 15 cm.
-3 , a layer thickness of 3 to 4 μm is preferable. In this example, after the n-InGaAs light absorption layer 4 having a carrier concentration of 3 × 10 15 cm −3 and a layer thickness of 2 μm is grown, the carrier concentration is 1 × 10 15 c again.
m −3 , layer thickness 0.3 to 0.6 μm is preferable, and in this example, carrier concentration 3 × 10 15 cm −3 , layer thickness 0.4 μm n −
The InGaAsP clad layer 10 is grown, and finally, the window layer preferably has a carrier concentration of 2 × 10 15 to 6 × 10 15 cm −3 and a layer thickness of 1 to 2 μm. In this example, the carrier concentration is 5 × 1.
An n-InP window layer 5 having a thickness of 0 15 cm -3 and a thickness of 1.4 μm is grown (FIG. 4B).

【0020】上記エピタキシャルウエハに拡散マスク1
2としてSiO2 膜を例えばCVD法により形成した
後、n−InP緩衝層2の上に相当するSiO2 膜に穴
開けを行い、例えばZnの熱拡散によりp−InP窓層
6及びp−InGaAsPクラッド層11を選択的に形
成する(図4(c))> 前記拡散マスクを除去した後、導波路型受光素子形成及
びP素子、N素子間の素子分離のため、エピタキシャル
を2分割する様にエッチング用マスク12をCVD法に
より成長(図4(d))した後、窓層5側から半絶縁性
InP基板1までを例えばRIE(Reactive
Ion Etching)法により除去する(図4
(e))。
A diffusion mask 1 is formed on the epitaxial wafer.
2, a SiO 2 film is formed by, for example, the CVD method, and then the SiO 2 film corresponding to the n-InP buffer layer 2 is perforated, and the p-InP window layer 6 and the p-InGaAsP layer are formed by, for example, thermal diffusion of Zn. Selectively forming the clad layer 11 (FIG. 4C)> After removing the diffusion mask, the epitaxial layer is divided into two parts for forming a waveguide type light receiving element and separating elements between the P element and the N element. After the etching mask 12 is grown on the substrate by the CVD method (FIG. 4D), the window layer 5 side to the semi-insulating InP substrate 1 are subjected to, for example, RIE (Reactive).
Ion Etching) method (FIG. 4)
(E)).

【0021】P素子とN素子に素子分離された導波路型
受光素子のn−InP緩衝層2とp−InP緩衝層3間
に例えば電子線法によりAuの蒸着を行い共通電極7を
形成し2つの導波路型受光素子を直列に接続する。
Au is vapor-deposited between the n-InP buffer layer 2 and the p-InP buffer layer 3 of the waveguide type light receiving element separated into P element and N element by, for example, an electron beam method to form the common electrode 7. Two waveguide type light receiving elements are connected in series.

【0022】次にp−InP窓層6上にp側電極として
例えばAuZnを、またn−InP窓層5上にn側電極
として例えばAuGeを蒸着法により形成した後、熱処
理により合金化を行い、最後にボンディング用の電極と
して例えば電子線蒸着法によりAuを蒸着し、n側電極
9及びp側電極8を形成する(図4(f))。
Next, AuZn, for example, is formed as a p-side electrode on the p-InP window layer 6, and AuGe, for example, is formed as an n-side electrode on the n-InP window layer 5 by a vapor deposition method, and then alloying is performed by heat treatment. Finally, Au is vapor-deposited by, for example, an electron beam vapor deposition method as an electrode for bonding to form the n-side electrode 9 and the p-side electrode 8 (FIG. 4 (f)).

【0023】この様にして作成した導波路型Dual−
PIN−PDにおいて、n側電極9に順バイアスをp側
電極8に逆バイアスをかけ、信号出力を共通電極7から
取る構成にし、この直列に接続されている2つの受光素
子のn−InGaAs光吸収層4の端面側からそれぞれ
光を入射させる。端面から入射した光は上下に設けられ
たn−InGaAsPクラッド層10及びp−InGa
AsPクラッド層11によりInGaAs光吸収層4内
に閉じ込められながら導波路の長さ方向で吸収されるた
め95%以上の高い量子効率が得られると共に、吸収さ
れた光により生成されたホトキャリアは導波路の厚さ方
向に印加された電界によってそれぞれ導波路の厚さ方向
に走行する。この時n−InGaAs光吸収層4とp−
InP窓層6間に生じるヘテロ界面の障壁はp−InG
aAsPクラッド層11が、またn−InGaAs光吸
収層4とp−InP緩衝層3間に生じるヘテロ界面の障
壁はp−InGaAsPクラッド層11があるため、障
壁を越えるためのパイルアップ時間を短くすることがで
きる。結果として走行時間を短くする事ができ40GH
Z 以上の高速応答が可能となる。また、Dual−PI
N−PD構造を簡単なエピタキシャル構成及びプロセス
をで実現させることができるため、上記要因による2素
子の特性ばらつきを1%以内に抑えることができ、良好
なバランス特性が得られる。
The waveguide type Dual-
In the PIN-PD, a forward bias is applied to the n-side electrode 9 and a reverse bias is applied to the p-side electrode 8, and a signal output is taken from the common electrode 7, and the n-InGaAs light of the two light receiving elements connected in series is used. Light is made incident from the end face side of the absorption layer 4. The light incident from the end surface receives the n-InGaAsP cladding layer 10 and the p-InGa provided above and below.
While being confined in the InGaAs light absorption layer 4 by the AsP clad layer 11 and absorbed in the length direction of the waveguide, a high quantum efficiency of 95% or more is obtained, and the photocarriers generated by the absorbed light are guided. The electric field is applied in the thickness direction of the waveguide to travel in the thickness direction of the waveguide. At this time, the n-InGaAs light absorption layer 4 and the p-
The barrier of the hetero interface generated between the InP window layers 6 is p-InG.
Since the barrier of the hetero interface generated by the aAsP clad layer 11 and between the n-InGaAs light absorption layer 4 and the p-InP buffer layer 3 is the p-InGaAsP clad layer 11, the pile-up time for crossing the barrier is shortened. be able to. As a result, the running time can be shortened to 40 GH.
High-speed response of Z or higher is possible. Also, Dual-PI
Since the N-PD structure can be realized by a simple epitaxial structure and process, the characteristic variation of the two elements due to the above factors can be suppressed within 1%, and a good balance characteristic can be obtained.

【0024】上記実施例は気相成長法によるエピタキシ
ャルウエハーについて説明したが、液相成長法、CVD
法、MOCVD法、MBE法、ALE法によるエピタキ
シャルウエハーにおいても同じ効果が得られる。
In the above embodiment, the epitaxial wafer prepared by the vapor phase growth method was explained.
Method, MOCVD method, MBE method, and ALE method, the same effect can be obtained.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
n−InGaAs光吸収層に対し上下方向にp−n接合
を形成し、キャリアの走行をエピタキシャル層の厚さ方
向にする事で、走行時間を短縮できるためPN両素子共
に40GHZ 以上の高速応答が得られる。また、光の吸
収はn−InGaAs光吸収層の長手方向となるため、
両素子共に95%以上の高い量子効率が得られる。結果
として両素子間の特性ばらつきが1%以内の良好なバラ
ンスを有する高速バランスト型受光素子が得られる。
As described above, according to the present invention,
forming a p-n junction to n-InGaAs light absorbing layer in the vertical direction, by which the travel of the carrier in the thickness direction of the epitaxial layer, high-speed response of more than 40GH Z to PN both elements co for can shorten the travel time Is obtained. Further, since light is absorbed in the longitudinal direction of the n-InGaAs light absorbing layer,
A high quantum efficiency of 95% or more is obtained in both devices. As a result, it is possible to obtain a high-speed balanced type light receiving element having a good balance in which the characteristic variation between both elements is within 1%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の半導体受光素子の斜視
図である。
FIG. 1 is a perspective view of a semiconductor light receiving element according to a first embodiment of the present invention.

【図2】(a)〜(f)は本発明の第1の実施例の半導
体受光素子の製造工程を示す断面図である。
2A to 2F are cross-sectional views showing a manufacturing process of the semiconductor light receiving element of the first embodiment of the present invention.

【図3】本発明の第2の実施例の半導体受光素子の斜視
図である。
FIG. 3 is a perspective view of a semiconductor light receiving element according to a second embodiment of the present invention.

【図4】(a)〜(f)は本発明の第2の実施例の半導
体受光素子の製造工程を示す断面図である。
FIGS. 4A to 4F are cross-sectional views showing a manufacturing process of a semiconductor light receiving element according to a second embodiment of the present invention.

【図5】従来の応用例を示す回路図である。FIG. 5 is a circuit diagram showing a conventional application example.

【図6】従来例の半導体受光素子の断面図である。FIG. 6 is a sectional view of a conventional semiconductor light receiving element.

【図7】第2の従来例の半導体受光素子の斜視図であ
る。
FIG. 7 is a perspective view of a semiconductor light receiving element of a second conventional example.

【符号の説明】 1 半絶縁性InP基板 2 n−InP緩衝層 3 p−InP緩衝層 4 n−InGaAs光吸収層 5 n−InP窓層 6 p−InP領域 7 共通電極 8 p側電極 9 n側電極 10 n−InGaAsPクラッド層 11 p−InGaAspクラッド層 12 マスク 13 保護膜[Description of Reference Signs] 1 semi-insulating InP substrate 2 n-InP buffer layer 3 p-InP buffer layer 4 n-InGaAs light absorption layer 5 n-InP window layer 6 p-InP region 7 common electrode 8 p-side electrode 9 n Side electrode 10 n-InGaAsP clad layer 11 p-InGaAsp clad layer 12 Mask 13 Protective film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半絶縁性基板(エネルギーギャップEg
1)上に第一導電型緩衝層(Eg1)と第一導電型光吸
収層(エネルギーギャップEg2)と第二導電型窓層
(Eg1)がEg1〉Eg2の条件にて順次構成された
ヘテロエピタキシャル層から成る第一素子と、前記半絶
縁性基板上かつ前記第一素子の横に第二導電型緩衝層
(Eg1)と第一導電型光吸収層(Eg2)と第一導電
型窓層(Eg1)がEg1〉Eg2の条件にて順次構成
されたヘテロエピタキシャル層から成る第二素子と、前
記第一素子の第一導電型緩衝層(Eg1)と前記第二素
子の第二導電型緩衝層(Eg1)とを電気的に接続した
構造を有することを特徴とする半導体受光素子。
1. A semi-insulating substrate (energy gap Eg
1) A heteroepitaxial structure in which a first conductivity type buffer layer (Eg1), a first conductivity type light absorption layer (energy gap Eg2), and a second conductivity type window layer (Eg1) are sequentially formed under the condition of Eg1> Eg2. A first element comprising a layer, a second conductivity type buffer layer (Eg1), a first conductivity type light absorbing layer (Eg2), and a first conductivity type window layer (on the semi-insulating substrate and beside the first element). Eg1) a second element composed of a heteroepitaxial layer sequentially formed under the condition of Eg1> Eg2, a first conductivity type buffer layer (Eg1) of the first element, and a second conductivity type buffer layer of the second element. A semiconductor light receiving element having a structure in which (Eg1) is electrically connected.
【請求項2】 半絶縁性基板(エネルギーギャップEg
1)上に第一導電型緩衝層(Eg1)と第一導電型クラ
ッド層(エネルギーギャップEg3)と第一導電型光吸
収層(エネルギーギャップEg2)と第二導電型クラッ
ド層(Eg3)と第二導電型窓層(Eg1)がEg1〉
Eg3〉Eg2の条件にて順次構成されたヘテロエピタ
キシャル層から成る第一素子と、前記半絶縁性基板上か
つ前記第一素子の横に第二導電型緩衝層(Eg1)と第
二導電型クラッド層(Eg3)と第一導電型光吸収層
(Eg2)と、第一導電型クラッド層(Eg3)と第一
導電型窓層(Eg1)がEg1〉Eg3〉Eg2の条件
にて順次構成されたヘテロエピタキシャル層から成る第
二素子と、前記第一素子の第一導電型緩衝層(Eg1)
と前記第二素子の第二導電型緩衝層(Eg1)とを電気
的に接続した構造を有することを特徴とする半導体受光
素子。
2. A semi-insulating substrate (energy gap Eg
1) a first conductivity type buffer layer (Eg1), a first conductivity type cladding layer (energy gap Eg3), a first conductivity type light absorption layer (energy gap Eg2), a second conductivity type cladding layer (Eg3), and Two-conductivity type window layer (Eg1) is Eg1>
A first element composed of a heteroepitaxial layer sequentially formed under the condition of Eg3> Eg2, a second conductivity type buffer layer (Eg1) and a second conductivity type clad on the semi-insulating substrate and beside the first element. The layer (Eg3), the first conductivity type light absorption layer (Eg2), the first conductivity type cladding layer (Eg3) and the first conductivity type window layer (Eg1) were sequentially formed under the condition of Eg1>Eg3> Eg2. A second element comprising a heteroepitaxial layer and a first conductivity type buffer layer (Eg1) of the first element
2. A semiconductor light receiving element having a structure in which the second conductivity type buffer layer (Eg1) of the second element is electrically connected.
JP5301382A 1993-12-01 1993-12-01 Semiconductor light receiving element Expired - Fee Related JP2646978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301382A JP2646978B2 (en) 1993-12-01 1993-12-01 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301382A JP2646978B2 (en) 1993-12-01 1993-12-01 Semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH07153987A true JPH07153987A (en) 1995-06-16
JP2646978B2 JP2646978B2 (en) 1997-08-27

Family

ID=17896203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301382A Expired - Fee Related JP2646978B2 (en) 1993-12-01 1993-12-01 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP2646978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187508A (en) * 2010-03-04 2011-09-22 Sumitomo Electric Ind Ltd Optical receiver device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187508A (en) * 2010-03-04 2011-09-22 Sumitomo Electric Ind Ltd Optical receiver device
US9163982B2 (en) 2010-03-04 2015-10-20 Sumitomo Electric Industries, Ltd. Optical receiver device

Also Published As

Publication number Publication date
JP2646978B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US8994004B2 (en) Hybrid silicon optoelectronic device and method of formation
US5521994A (en) Semiconductor optical waveguide-integrated light-receiving device
JPH09205222A (en) Semiconductor device for detecting light
EP3447806B1 (en) Optical waveguide integrated light receiving element and method for manufacturing same
US7020375B2 (en) Waveguide light detecting element
Kato et al. High-efficiency waveguide InGaAs pin photodiode with bandwidth of over 40 GHz
JPH0964399A (en) Waveguide-type photodetector
JPH1022520A (en) Semiconductor photodetector and its manufacture
JPS5984589A (en) Semiconductor photodetector
JPH09283786A (en) Waveguide-type semiconductor light-receiving element and its manufacture method
US7031587B2 (en) Waveguide type photoreceptor device with particular thickness ratio
JP3285651B2 (en) Quantum well-based waveguide optical receivers of semiconductor materials, especially for coherent communication systems with variable polarization
JP2646978B2 (en) Semiconductor light receiving element
JP3111982B2 (en) Waveguide type semiconductor optical device
JPH08274366A (en) Semiconductor light receiving device
JPH051629B2 (en)
JPH04360585A (en) Semiconductor photodetector
Chandrasekhar et al. Integrated directional couplers with photodetectors by hydride vapour phase epitaxy
JP2833615B2 (en) Optical semiconductor integrated device
US11417783B2 (en) Semiconductor light receiver
US20220123159A1 (en) Integrated optical filter and photodetector and methods of fabricating the same
Kang et al. Optical coupling analysis of dual-waveguide structure for monolithic integration of photonic devices
JP2841876B2 (en) Semiconductor light receiving element
JPH09270527A (en) Semiconductor photodetector
JP2663842B2 (en) Semiconductor light receiving element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970408

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090509

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100509

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees