JP2663842B2 - Semiconductor light receiving element - Google Patents

Semiconductor light receiving element

Info

Publication number
JP2663842B2
JP2663842B2 JP5203653A JP20365393A JP2663842B2 JP 2663842 B2 JP2663842 B2 JP 2663842B2 JP 5203653 A JP5203653 A JP 5203653A JP 20365393 A JP20365393 A JP 20365393A JP 2663842 B2 JP2663842 B2 JP 2663842B2
Authority
JP
Japan
Prior art keywords
conductive
layer
light receiving
semiconductor light
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5203653A
Other languages
Japanese (ja)
Other versions
JPH0745855A (en
Inventor
敦彦 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5203653A priority Critical patent/JP2663842B2/en
Publication of JPH0745855A publication Critical patent/JPH0745855A/en
Application granted granted Critical
Publication of JP2663842B2 publication Critical patent/JP2663842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は光計測や光通信に用いら
れる半導体受光素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light receiving element used for optical measurement and optical communication.

【0002】[0002]

【従来の技術】光通信に於いて、光の強度変調により情
報を伝える光通信に替わり、光の周波数や位相を変調し
て情報を伝えるコヒーレント光通信技術が検討されてい
る。この様に光波の特徴を利用することで従来の強度変
調方式と比べ、伝送距離の拡大(超スパン化)、光周波
数の分割多重による高密度化が可能なため、今後の超長
距離・大容量光通信技術として検討されている。
2. Description of the Related Art In optical communication, coherent optical communication technology for transmitting information by modulating the frequency and phase of light has been studied instead of optical communication for transmitting information by intensity modulation of light. By utilizing the characteristics of light waves in this way, compared to the conventional intensity modulation method, the transmission distance can be extended (extreme spanning) and the density can be increased by division and multiplexing of the optical frequency. It is being studied as a capacity optical communication technology.

【0003】コヒーレント光通信システムの一例を図1
0に示す。図10はヘテロダイン検波方式の例で、信号
を取り出す送信部及びヘテロダイン検波・偏波ダイバー
シティ受信を行う受信部に分かれている。受信部は伝送
路である単一モード光ファイバケーブルの偏波状態を補
償するため直交する2つの偏波に分離させる偏波ビーム
スプリッタ(PBS)、ヘテロダイン検波用の局部発振
光レーザーダイオード(局発LD)、それぞれの偏波状
態に分離された信号光と局部発振光(以後局発光)を混
合しπだけ位相のずれた2つの光に分割する3dB光カ
プラ、混合された光を電気に変えビート信号を取り出す
ために2つのPINポトダイオードを直列に接続したバ
ランスト型受光素子(Dual−PIN又はDual−
PINを2個集積したQuad−PIN)、そして低雑
音のプリアンプと検波回路で構成されている。
FIG. 1 shows an example of a coherent optical communication system.
0 is shown. FIG. 10 shows an example of a heterodyne detection system, which is divided into a transmission section for extracting a signal and a reception section for performing heterodyne detection and polarization diversity reception. The receiving unit is a polarization beam splitter (PBS) that separates into two orthogonal polarizations to compensate for the polarization state of the single-mode optical fiber cable, which is a transmission path, and a local oscillation optical laser diode (heterodyne detection) for heterodyne detection. LD), a 3 dB optical coupler that mixes the signal light and the local oscillation light (hereinafter, local light) separated into their respective polarization states and splits them into two lights that are shifted in phase by π, and converts the mixed light into electricity A balanced photodetector (Dual-PIN or Dual-PIN) in which two PIN photodiodes are connected in series to extract a beat signal
A Quad-PIN in which two PINs are integrated, and a low-noise preamplifier and a detection circuit.

【0004】この様な受信部の構成に於いて、(1)局
発光の出力を大きくすること(2)バランスト型受光素
子により局発LDからの強度雑音を相殺することで最小
受信感度が量子雑音限界に達し、高感度化がはかれる。
従って高感度化のためのバランスト型受光素子に求めら
れる特性は、直列に接続された2つのPIN−PDが光
学的・電気的に等価であること、両素子の特性(量子効
率、暗電流、接合容量、応答速度、S/N)がそろって
いることが必要であり、これらの要求を満たすためにモ
ノリシックに集積化したDual−PINが検討されて
いる。図11にバランスト型受光素子の一例であるDu
al−PINの従来例を示す。 半絶縁性InP基板1
上に間隔を於いて設けられた2つの受光素子を集積した
構成となっている。それぞれの受光素子は、半絶縁性基
板1上にキャリア濃度1E15cm−3層厚2μmのn−
InP緩衝層3、キャリア濃度3E15cm−3層厚2μ
mのn- −InGaAs光吸収層4、最後にキャリア濃
度5E15cm−3層厚1.4μmのn- −InP窓層5
と、窓層内に形成された1E18cm−3のp−InP領
域6から構成されている。この2つの受光素子のうち、
一方のp−InP受光領域から引きだしたp側電極を、
もう一方の受光素子のn−InP窓層上に設けたn型電
極につなげることでDual−PINの出力側となる共
通電極8を形成している。ここでn側電極と共通電極か
ら構成される受光素子をN素子、共通電極とp側電極か
ら構成される受光素子をP素子と呼ぶ。
In such a configuration of the receiving section, the minimum receiving sensitivity can be reduced by (1) increasing the output of the local light and (2) canceling out the intensity noise from the local LD by the balanced light receiving element. The quantum noise limit is reached, and higher sensitivity can be achieved.
Therefore, the characteristics required for a balanced light-receiving element for high sensitivity are that two PIN-PDs connected in series are optically and electrically equivalent, and that the characteristics (quantum efficiency, dark current , Junction capacitance, response speed, and S / N), and a monolithically integrated Dual-PIN is being studied to meet these requirements. FIG. 11 shows Du, which is an example of a balanced light receiving element.
A conventional example of al-PIN is shown. Semi-insulating InP substrate 1
It has a configuration in which two light receiving elements provided at an interval above are integrated. Each light receiving element has a carrier concentration of 1E15 cm−3 and a layer thickness of 2 μm on the semi-insulating substrate 1.
InP buffer layer 3, carrier concentration 3E15cm-3 layer thickness 2μ
m n -InGaAs light absorbing layer 4 and finally n -InP window layer 5 having a carrier concentration of 5E15 cm −3 and a thickness of 1.4 μm
And a 1E18 cm-3 p-InP region 6 formed in the window layer. Of these two light receiving elements,
The p-side electrode pulled out from one p-InP light receiving region is
By connecting to the n-type electrode provided on the n-InP window layer of the other light receiving element, the common electrode 8 on the output side of the Dual-PIN is formed. Here, the light receiving element composed of the n-side electrode and the common electrode is called an N element, and the light receiving element composed of the common electrode and the p-side electrode is called a P element.

【0005】この様な構成のバランスト型受光素子に、
πだけ位相のずれた信号光と局発光との混合光をP素
子、N素子に同時に入射した場合、それぞれの素子にて
光電変換されたキャリアは共通電極へ流れ、結果として
バランスト型受光素子の出力側には両者の差分信号が出
力される。このため局発光LDからの光の強度雑音成分
を相殺することができ、受信感度の量子雑音限界を達成
することができる。ここで局発光LDの強度雑音を相殺
するためには前記したようにP素子、N素子の出力が等
価であることが重要である。ここで2つのPIN−PD
をモノリシック集積化したこと、またP素子のn側電極
とN素子のp側電極を兼ねる共通電極を中心にP素子・
N素子を対称に配置したことで、エピ厚ばらつきによる
量子効率のばらつきと容量のばらつきは1%以下に抑え
られ良好なバランス特性が得られている。
[0005] In a balanced light receiving element having such a structure,
When the mixed light of the signal light and the local light having the phase shifted by π is simultaneously incident on the P element and the N element, the carrier photoelectrically converted by each element flows to the common electrode, and as a result, the balanced light receiving element The difference signal between the two is output to the output side of. For this reason, the intensity noise component of the light from the local light emitting LD can be canceled, and the quantum noise limit of the receiving sensitivity can be achieved. Here, in order to cancel the intensity noise of the local light LD, it is important that the outputs of the P element and the N element are equivalent as described above. Here two PIN-PD
Are monolithically integrated, and the P element and the common electrode serving as the n side electrode of the P element and the p side electrode of the N element are centered.
By arranging the N elements symmetrically, variation in quantum efficiency and variation in capacitance due to variation in epi thickness are suppressed to 1% or less, and a good balance characteristic is obtained.

【0006】但し、ここで問題となるのは雑音特性と関
わる暗電流特性である。図12に従来例のP素子・N素
子それぞれの暗電流特性を示す。図12より明らかなよ
うにp側電極9−共通電極8で構成されるP素子の暗電
流がVr=5Vで0.1nAであるのに対し、共通電極
8−n側電極10で構成するN素子は0.5nAと大き
な差が生じている。この暗電流特性のアンバランスの原
因を図13を用いて説明する。P素子側の暗電流の流れ
る経路はp側電極9→p−InP領域6→n−InP窓
層5→共通電極8へと流れるp−n接合を介した経路
のみであり、通常のPIN−PDと同じである。一方、
N素子側はP素子と同様にn側電極10→n−InP窓
層5→p−InP層6→共通電極8を流れるp−n接合
を介した経路に加え、n側電極10→n−InP窓層
5→n−InGaAs光吸収層4→n−InP緩衝層3
→半絶縁性InP基板1→n−InP緩衝層3→n−I
nGaAs光吸収層4→n−InP窓層5→共通電極8
と流れる基板を介したリーク電流が生じる。これはD
ual−PINの構造上、N素子のp側電極がP素子の
n側電極と共通であるために、N素子のn側電極とP素
子のn側電極間に電界がかかり、結果として基板を介し
てn型層−n型層間にリーク電流が発生することにな
る。従って図→に示す様な暗電流特性の差が生じ、その
結果雑音特性にアンバランスが生じることになり、これ
が最小受信感度の劣化を招く原因となっている。
However, what matters here is the dark current characteristic related to the noise characteristic. FIG. 12 shows dark current characteristics of each of the conventional P element and N element. As is apparent from FIG. 12, the dark current of the P element composed of the p-side electrode 9 and the common electrode 8 is 0.1 nA at Vr = 5 V, whereas the N element composed of the common electrode 8-n-side electrode 10 The element has a large difference of 0.5 nA. The cause of the imbalance in the dark current characteristics will be described with reference to FIG. The path on which the dark current flows on the P element side is only a path via a pn junction flowing from the p-side electrode 9 → p-InP region 6 → n-InP window layer 5 → common electrode 8 and is a normal PIN− Same as PD. on the other hand,
On the N element side, similarly to the P element, an n-side electrode 10 → n-InP window layer 5 → p-InP layer 6 → n-side electrode 10 → n− InP window layer 5 → n-InGaAs light absorbing layer 4 → n-InP buffer layer 3
→ Semi-insulating InP substrate 1 → n-InP buffer layer 3 → nI
nGaAs light absorbing layer 4 → n-InP window layer 5 → common electrode 8
Leakage current flows through the flowing substrate. This is D
Since the p-side electrode of the N element is common to the n-side electrode of the P element due to the structure of the ual-PIN, an electric field is applied between the n-side electrode of the N element and the n-side electrode of the P element. As a result, a leak current is generated between the n-type layer and the n-type layer. Accordingly, a difference in the dark current characteristics as shown in FIG. 8 is generated, and as a result, imbalance occurs in the noise characteristics, which causes deterioration of the minimum receiving sensitivity.

【0007】[0007]

【発明が解決しようとする問題点】上記した従来例のバ
ランスト型受光素子において、従来例のP素子・N素子
それぞれの暗電流特性が、p側電極−共通電極で構成す
るP素子の暗電流が0.1nAに対し、共通電極−n側
電極で構成するN素子は0.5nAと大きな差が生じ
る。この暗電流特性のアンバランスの原因として、P素
子側の暗電流の流れる経路がp側電極→p−InP→n
−Inp cap層→共通電極へ流れるp−n接合を介
した経路のみであるのに対し、N素子側はP素子と同様
にn側電極→n−InP cap→p−InP層→共通
電極を流れるp−n接合を介した経路に加え、n側電極
→n−InP cap層→n−InGaAs光吸収層→
n−InP Buffer→S.I.基板→n−InP
Buffer→n−InGaAs光吸収層→n−In
P cap層→共通電極と流れる基板を介したリーク電
流が加わる。これはDual−PINの構造上、N素子
のp側電極がP素子のn側電極と共通であるために、N
素子のn側電極とP素子のn側電極間に電界がかかり、
結果として基板を介してn型層−n型層間にリーク電流
が発生することになる。従って、上記リーク電流成分の
分だけ暗電流特性の差が生じ、その結果雑音特性にアン
バランスが生じることになり、これが最小受信感度の劣
化を招く原因となるという問題点があった。
In the above-mentioned prior art balanced light receiving element, the dark current characteristic of each of the P element and the N element of the conventional example is different from that of the P element constituted by the p-side electrode and the common electrode. When the current is 0.1 nA, the N element formed of the common electrode and the n-side electrode has a large difference of 0.5 nA. As a cause of the imbalance of the dark current characteristics, the path through which the dark current flows on the P element side is p-side electrode → p-InP → n
−Inp cap layer → only the path via the pn junction flowing to the common electrode, whereas the N element side has the n-side electrode → n-InP cap → p-InP layer → common electrode like the P element. In addition to the path via the flowing pn junction, the n-side electrode → n-InP cap layer → n-InGaAs light absorption layer →
n-InP Buffer → S. I. Substrate → n-InP
Buffer → n-InGaAs light absorption layer → n-In
A leakage current is applied through the substrate flowing from the P cap layer to the common electrode. This is because the p-side electrode of the N element is common to the n-side electrode of the P element due to the structure of the Dual-PIN.
An electric field is applied between the n-side electrode of the element and the n-side electrode of the P element,
As a result, a leakage current occurs between the n-type layer and the n-type layer via the substrate. Therefore, there is a problem that a difference in dark current characteristic is generated by the amount of the leak current component, resulting in imbalance in noise characteristic, which causes deterioration of minimum receiving sensitivity.

【0008】[0008]

【課題を解決するための手段】本発明は、半絶縁性基板
(Eg1)上に第一導伝型キャリアブロック層(Eg
1)と第二導伝型緩衝層(Eg1)と第二導伝型光吸収
層(Eg2)と第二導伝型窓層(Eg1)がEg1>E
g2の条件にて順次構成されたヘテロエピタキシャル層
と、前記窓層内に部分的に第一導伝型領域(Eg1)を
設けた素子構造を、前記半絶縁性基板上に間隔を置いて
二つ以上形成した構造と、第二素子の第二導伝型光吸収
層と第一素子の第一導伝型領域とを導伝性金属にて接続
したことを特徴とする半導体受光素子である。また、本
発明は、半絶縁性基板(Eg1)上に第二導伝型緩衝層
(Eg1)と第二導伝型光吸収層(Eg2)と第二導伝
型窓層(Eg1)がEg1>Eg2の条件にて順次構成
されたヘテロエピタキシャル層と、前記窓層内に部分的
に第一導伝型領域(Eg1)を設けた素子構造を、前記
半絶縁性基板上に間隔を置いて二つ以上形成した構造
と、前記第一素子の第一導伝型領域と前記第二素子の第
二導伝型窓層が半絶縁性基板まで達する素子分離の溝を
持ち、空中配線の素子を直列に配置した構造で前記第一
素子及び第二素子の半絶縁性基板まで達する溝の部分に
第一導電型不純物を注入した構造と、前記第一素子の第
一導伝型領域と前記第二素子の第二導伝型窓層とを導伝
性金属にて接続したことを特徴とする半導体受光素子で
あり、また前記の半導体受光素子において第二素子の第
二導伝型窓層の替わりに第二導伝型緩衝層と第一素子の
第一導伝型領域とを導伝性金属にて接続したことを特徴
とするものであり、さらに前記の半導体受光素子におい
て第二素子の第二導伝型窓層の替わりに第二導伝型緩衝
層と第一素子の第一導伝型領域とを導伝性金属にて接続
したことを特徴とするものである。
According to the present invention, a first conductive type carrier block layer (Eg) is formed on a semi-insulating substrate (Eg1).
1), the second conductive buffer layer (Eg1), the second conductive light absorbing layer (Eg2), and the second conductive window layer (Eg1) are Eg1> E.
g2, and a device structure in which the first conductive region (Eg1) is partially provided in the window layer is formed on the semi-insulating substrate at an interval. A semiconductor light receiving element, characterized in that at least one formed structure and a second conductive light absorbing layer of the second element and a first conductive area of the first element are connected by a conductive metal. . In addition, the present invention provides a semiconductor device according to the present invention, wherein the second conductive buffer layer (Eg1), the second conductive light absorbing layer (Eg2), and the second conductive window layer (Eg1) are formed on the semi-insulating substrate (Eg1). A device structure in which a first conductive region (Eg1) is partially provided in the window layer and a heteroepitaxial layer sequentially formed under the condition of> Eg2, Two or more formed structures, and a first conductive region of the first element and a second conductive window layer of the second element have an element isolation groove reaching a semi-insulating substrate, and an element of aerial wiring A structure in which a first conductivity type impurity is implanted into a portion of a groove reaching the semi-insulating substrate of the first element and the second element in a structure in which the first element and the second element are arranged in series. A semiconductor light-receiving element, wherein the second conductive window layer of the second element is connected with a conductive metal, In the semiconductor light receiving element described above, the second conductive type buffer layer and the first conductive type region of the first element are connected by a conductive metal instead of the second conductive type window layer of the second element. The semiconductor light receiving device further includes a second conductive buffer layer and a first conductive region of the first device instead of the second conductive window layer of the second device. Characterized in that they are connected by a conductive metal.

【0009】[0009]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 [実施例1]図1は本発明の半導体受光素子の実施例を
示す。図2(a)〜(d)及び図3(e)〜(h)は本
発明の半導体受光素子の製法を示す。半絶縁性InP基
板1上に気相成長法によりキャリア濃度1E16〜2E
17cm−3層厚1〜5μmが好ましく、今回はキャリア
濃度1E15cm−3層厚2μmのp−InPキャリアブ
ロック層2、キャリア濃度1E15〜2E16cm−3層
厚1〜3μmが好ましく、今回はキャリア濃度1E15
cm−3層厚2μmのn−InP緩衝層3、キャリア濃度
1E15〜5E15cm−3層厚3〜4μmが好ましく、
今回はキャリア濃度3E15cm−3層厚2μmのn-
InGaAs光吸収層4を成長した後、最後に窓層とし
てキャリア濃度2E15〜6E15cm−3層厚1〜2μ
mが好ましく、今回はキャリア濃度5E15cm−3層厚
1.4μmのn- −InP窓層5を成長する(図2
(a))。上記エピタキシャルウエハに拡散マスクとし
てSiO2 膜14を例えばCVD法により形成した後、
受光領域に相当する部分に穴開けを行い、例えばZnの
封止拡散により受光部分に相当する1E17〜1E20
cm−3のp+領域6を選択的に形成する(図2
(b))。
Embodiments of the present invention will be described below with reference to the drawings. Embodiment 1 FIG. 1 shows an embodiment of a semiconductor light receiving element according to the present invention. 2 (a) to 2 (d) and 3 (e) to 3 (h) show a method for manufacturing a semiconductor light receiving element of the present invention. Carrier concentration of 1E16 to 2E on semi-insulating InP substrate 1 by vapor phase epitaxy.
A p-InP carrier block layer 2 having a carrier concentration of 1E15 cm-3 and a layer thickness of 2 μm, a carrier concentration of 1E15 to 2E16 cm-3 and a layer thickness of 1 to 3 μm are preferred, and a carrier concentration of 1E15
The n-InP buffer layer 3 having a cm-3 layer thickness of 2 μm and a carrier concentration of 1E15 to 5E15 cm-3 layer thickness of 3 to 4 μm are preferable.
This time, n --with carrier concentration of 3E15cm-3 layer thickness of 2μm
After growing the InGaAs light absorbing layer 4, the carrier concentration is finally 2E15 to 6E15 cm-3 and the layer thickness is 1 to 2 μm as a window layer.
m, and this time, an n -InP window layer 5 having a carrier concentration of 5E15 cm −3 and a layer thickness of 1.4 μm is grown (FIG. 2).
(A)). After forming an SiO 2 film 14 as a diffusion mask on the epitaxial wafer by, for example, a CVD method,
A hole is formed in a portion corresponding to the light receiving region, and for example, 1E17 to 1E20 corresponding to the light receiving portion by sealing diffusion of Zn.
The p + region 6 of cm-3 is selectively formed (FIG. 2).
(B)).

【0010】前記拡散マスクを除去した後、前記受光領
域を除くn−InP窓層5を3分割する様にエッチング
用マスク15をCVD法により成長(図2(c))した
後、前記窓層5側から半絶縁性InP基板1までを例え
ばRIE(Reactive Ion Ettching )法により除去する
(図2(d))。前記エッチング用マスクを除去した
後、露出している素子表面に反射防止膜を兼ねた表面保
護膜として例えばSiNx膜7をP−CVD法等により
形成する(図3(e))。次に前記受光領域上のSiN
x膜の一部をホトレジストをマスクにして穴開けを行い
p−InP領域を露出させた後、p型オーミック電極1
2として例えばAuZnを蒸着法等を用いて蒸着を行い
(図3(f))、蒸着後ホトレジストマスクを除去し、
蒸着したAuZnを合金化するため380℃の加熱処理
を施す。
After removing the diffusion mask, an etching mask 15 is grown by a CVD method so as to divide the n-InP window layer 5 excluding the light receiving region into three parts (FIG. 2C). The portion from the fifth side to the semi-insulating InP substrate 1 is removed by, for example, RIE (Reactive Ion Etching) (FIG. 2D). After removing the etching mask, for example, a SiNx film 7 is formed on the exposed element surface as a surface protective film also serving as an anti-reflection film by a P-CVD method or the like (FIG. 3E). Next, the SiN on the light receiving area
After a part of the x film is opened by using a photoresist as a mask to expose the p-InP region, the p-type ohmic electrode 1 is formed.
For example, AuZn is vapor-deposited using a vapor deposition method or the like (FIG. 3 (f)), and the photoresist mask is removed after vapor deposition.
A heat treatment at 380 ° C. is performed to alloy the deposited AuZn.

【0011】次に前記受光領域外にn側電極及び共通電
極を設けるためn−InP cap層上のSiNx膜の
一部をホトレジストをマスクにして穴開けを行いn−I
nP領域を露出させた後、n型オーミック電極11とし
て例えばAuGeを蒸着法等を用いて蒸着を行い(図3
(g))、蒸着後ホトレジストマスクを除去し、蒸着し
たAuZnを合金化するため360℃の加熱処理を施
す。最後にN素子のp型オーミック電極12と共通電極
8及び、P素子のp型オーミック電極12とp型電極を
つなぐように空中配線13を、例えばAuメッキを用い
て形成し、また配線用としてn型電極10、p型電極9
及び共通電極8部分をAuメッキを用いて形成する(図
3(h))。
Next, in order to provide an n-side electrode and a common electrode outside the light-receiving region, a part of the SiNx film on the n-InP cap layer is opened by using a photoresist as a mask to form an nI.
After exposing the nP region, for example, AuGe is deposited as the n-type ohmic electrode 11 using an evaporation method or the like (FIG. 3).
(G)) After the deposition, the photoresist mask is removed, and a heat treatment at 360 ° C. is performed to alloy the deposited AuZn. Finally, an aerial wiring 13 is formed using, for example, Au plating so as to connect the p-type ohmic electrode 12 of the N element and the common electrode 8 and the p-type ohmic electrode 12 of the P element and the p-type electrode. n-type electrode 10, p-type electrode 9
Then, the common electrode 8 is formed using Au plating (FIG. 3H).

【0012】このようにして作成したDual−PIN
において、N素子のn側電極10−共通電極8間にバイ
アスをかけた時、n側電極10→n−InP窓層5→n
−InGaAs光吸収層4→n−InP緩衝層3を通っ
た電流は、p−InPキャリアブロック層2により妨げ
られるため、基板1を介してn型層−n型層間を流れる
リーク電流とはならない。本実施例のDual−PIN
の暗電流特性を図4に示す。n型層−n型層の間にp−
InPキャリアブロック層2を入れてn−p−n構造と
することによりリーク電流が防げ、N素子に発生する暗
電流の経路はP素子と同じpn接合を介した経路のみと
なるため、P素子とN素子の暗電流の差は10pA以下
となり、結果としてS/Nが良好なバランス特性が得ら
れ受信感度を0.7dB改善することができる。上記効
果は気相成長法によるエピタキシャルウエハー以外に、
液相成長法、CVD法、MOCVD法、MBE法、AL
E法によるエピタキシャルウエハーにおいても同じ効果
が得られる。
The Dual-PIN created in this manner
When a bias is applied between the n-side electrode 10 and the common electrode 8 of the N element, the n-side electrode 10 → n-InP window layer 5 → n
The current passing through the -InGaAs light absorbing layer 4 → n-InP buffer layer 3 is blocked by the p-InP carrier block layer 2, and does not become a leak current flowing between the n-type layer and the n-type layer via the substrate 1. . Dual-PIN of the present embodiment
FIG. 4 shows the dark current characteristics of FIG. p- layer between the n-type layer and the n-type layer
A leak current can be prevented by forming the n-p-n structure by inserting the InP carrier block layer 2, and the path of the dark current generated in the N element is only the path through the same pn junction as the P element. The difference between the dark currents of the N element and the N element is 10 pA or less. As a result, a good S / N balance characteristic is obtained, and the reception sensitivity can be improved by 0.7 dB. The above effects are not only epitaxial wafers grown by vapor phase growth,
Liquid phase growth method, CVD method, MOCVD method, MBE method, AL
The same effect can be obtained in an epitaxial wafer by the E method.

【0013】[実施例2]図5に本発明の第2の実施例
の受光素子の断面図を示す。製法は実施例1と同じく、
共通電極8をn−InGaAs光吸収層4上に形成した
ことを特徴としている。実施例1と同様一方の素子のn
型層ともう一方の素子のn型層間の基板を介したリーク
電流の発生を防ぐことができるため、両素子間の暗電流
の発生経路は等しくなり、P素子とN素子の暗電流の差
は10pA以下となり、結果としてS/Nが良好なバラ
ンス特性が得られ受信感度を0.7dB改善することが
できる。
[Embodiment 2] FIG. 5 is a sectional view of a light receiving element according to a second embodiment of the present invention. The manufacturing method is the same as in Example 1,
It is characterized in that the common electrode 8 is formed on the n-InGaAs light absorption layer 4. N of one element as in Example 1
Since it is possible to prevent the occurrence of a leak current through the substrate between the mold layer and the n-type layer of the other element, the path of the dark current between the two elements becomes equal, and the difference between the dark currents of the P element and the N element is reduced. Is 10 pA or less, and as a result, a good S / N balance characteristic is obtained and the reception sensitivity can be improved by 0.7 dB.

【0014】[実施例3]図6に本発明の第3の実施例
の受光素子の断面図を示す。製法は実施例1と同じく、
共通電極8をn−InP緩衝層3上に形成したことを特
徴としている。実施例1と同様一方の素子のn型層とも
う一方の素子のn型層間の基板を介したリーク電流の発
生を防ぐことができるため、両素子間の暗電流の発生経
路は等しくなり、P素子とN素子の暗電流の差は10p
A以下となり、結果としてS/Nが良好なバランス特性
が得られ受信感度を0.7dB改善とすることができ
る。
[Embodiment 3] FIG. 6 is a sectional view of a light receiving element according to a third embodiment of the present invention. The manufacturing method is the same as in Example 1,
It is characterized in that the common electrode 8 is formed on the n-InP buffer layer 3. As in the first embodiment, it is possible to prevent the occurrence of a leak current through the substrate between the n-type layer of one element and the n-type layer of the other element. The difference in dark current between the P element and the N element is 10p
A or less, and as a result, a good S / N balance characteristic can be obtained, and the reception sensitivity can be improved by 0.7 dB.

【0015】[実施例4]以下、本発明の第4の実施例
について図面を参照して説明する。図7は本発明の半導
体受光素子の実施例を示す。図8(a)〜(d)及び図
9(e)〜(h)は本発明の半導体受光素子の製法を示
す。半絶縁性InP基板1上に気相成長法によりキャリ
ア濃度1E15〜2E16cm−3層厚1〜3μmが好ま
しく、今回はキャリア濃度1E15cm−3層厚2μmの
n−InP緩衝層3、キャリア濃度1E15〜5E15
cm−3層厚3〜4μmが好ましく、今回はキャリア濃度
3E15cm−3層厚2μmのn- −InGaAs光吸収
層4を成長した後、最後に窓層としてキャリア濃度2E
15〜6E15cm−3層厚1〜2μmが好ましく、今回
はキャリア濃度5E15cm−3層厚1.4μmのn-
InP窓層5を成長する(図8(a))。上記エピタキ
シャルウエハに素子分離のためのエッチング用マスク1
5をCVD法により成長(図8(b))した後、前記窓
層5側から半絶縁性InP基板1までを例えばRIE
(Reactive Ion Ettching )法により除去し素子分離を
行う。
Embodiment 4 Hereinafter, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 7 shows an embodiment of the semiconductor light receiving element of the present invention. 8 (a) to 8 (d) and 9 (e) to 9 (h) show a method for manufacturing a semiconductor light receiving element of the present invention. The carrier concentration is preferably 1E15 to 2E16 cm−3 layer thickness of 1 to 3 μm on the semi-insulating InP substrate 1 by the vapor phase growth method. In this case, the n-InP buffer layer 3 having the carrier concentration of 1E15 cm−3 layer thickness of 2 μm is used. 5E15
In this case, the n -InGaAs light absorbing layer 4 having a carrier concentration of 3E15 cm−3 and a thickness of 2 μm is grown, and finally a carrier concentration of 2E is used as a window layer.
Preferably 15~6E15cm-3 thickness 1 to 2 [mu] m, n of the carrier concentration 5E15 cm-3 the layer thickness 1.4μm This time - -
An InP window layer 5 is grown (FIG. 8A). Etching mask 1 for element isolation on the epitaxial wafer
5 is grown by the CVD method (FIG. 8B), and then, for example, RIE is performed from the window layer 5 side to the semi-insulating InP substrate 1.
(Reactive Ion Etching) method to perform element isolation.

【0016】前記エッチングにより露出したエピタキシ
ャル層とエピタキシャル層の間の半絶縁性InP基板表
面に、前記エッチング用マスクを用いて例えばBeのイ
オン注入法により不純物注入を行った後、エッチング用
マスクを除去し、新たにCVD法によりリン酸化ガラス
とSiO2 の保護膜14を成長した後700℃の高温処
理を行いイオン注入領域にp−InPキャリアブロック
層2を形成する。(図8(c))。次に受光領域に相当
する部分の保護膜14に穴開けを行い、例えばZnの封
止拡散により受光部分に相当する1E17〜1E20cm
−3のp+領域6を選択的に形成する(図8(d))。
前記保護膜を除去した後、露出している素子表面に反射
防止膜を兼ねた表面保護膜として例えばSiNx膜7を
P−CVD法等により形成する(図9(e))。
Impurities are implanted into the surface of the semi-insulating InP substrate between the epitaxial layers exposed by the etching by using, for example, the Be ion implantation method using the etching mask, and then the etching mask is removed. Then, a protective film 14 of phosphoric glass and SiO 2 is newly grown by the CVD method, and then a high-temperature treatment at 700 ° C. is performed to form the p-InP carrier block layer 2 in the ion-implanted region. (FIG. 8 (c)). Next, a hole is made in a portion of the protective film 14 corresponding to the light receiving region, and 1E17 to 1E20 cm corresponding to the light receiving portion is formed by, for example, sealing diffusion of Zn.
The −3 p + region 6 is selectively formed (FIG. 8D).
After removing the protective film, for example, a SiNx film 7 is formed on the exposed element surface as a surface protective film also serving as an anti-reflection film by a P-CVD method or the like (FIG. 9E).

【0017】次に前記受光領域上のSiNx膜の一部を
ホトレジストをマスクにして穴開けを行いp−InP領
域を露出させた後、p型オーミック電極12として例え
ばAuZnを蒸着法等を用いて蒸着を行い(図9
(f))、蒸着後ホトレジストマスクを除去し、蒸着し
たAuZnを合金化するため380℃の加熱処理を施
す。次に前記受光領域外にn側電極10及び共通電極8
を設けるためn−InP窓層5上のSiNx膜7の一部
をホトレジストをマスクにして穴開けを行いn−InP
領域6を露出させた後、n型オーミック電極11として
例えばAuGeを蒸着法等を用いて蒸着を行い(図9
(g))、蒸着後ホトレジストマスクを除去し、蒸着し
たAuZnを合金化するため360℃の加熱処理を施
す。最後にN素子のp型オーミック電極と共通電極及
び、P素子のp型オーミック電極12とp型電極9をつ
なぐように空中配線13を例えばAuメッキを用いて形
成し、また配線用としてn型電極、p型電極及び共通電
極部分をAuメッキを用いて形成する(図9(h))。
Next, a part of the SiNx film on the light receiving region is opened by using a photoresist as a mask to expose the p-InP region, and then, for example, AuZn is formed as a p-type ohmic electrode 12 by using an evaporation method or the like. Vapor deposition is performed (Fig. 9
(F)), after the deposition, the photoresist mask is removed, and a heat treatment at 380 ° C. is performed to alloy the deposited AuZn. Next, the n-side electrode 10 and the common electrode 8
A hole is formed in a part of the SiNx film 7 on the n-InP window layer 5 using a photoresist as a mask to provide n-InP.
After exposing the region 6, for example, AuGe is deposited as the n-type ohmic electrode 11 by using an evaporation method or the like (FIG. 9).
(G)) After the deposition, the photoresist mask is removed, and a heat treatment at 360 ° C. is performed to alloy the deposited AuZn. Finally, an aerial wiring 13 is formed using, for example, Au plating so as to connect the p-type ohmic electrode and the common electrode of the N element and the p-type ohmic electrode 12 and the p-type electrode 9 of the P element. The electrode, the p-type electrode, and the common electrode are formed using Au plating (FIG. 9H).

【0018】この様にして作成したDual−PINに
おいて、N素子のn側電極−共通電極間にバイアスをか
けた時、n側電極10→n−InP窓層5→n−InG
aAs光吸収層4→n−InP緩衝層3を通った電流
は、p−InPキャリアブロック層2により妨げられる
ため、基板を介してn型層−n型層間を流れるリーク電
流とはならない。従ってN素子に発生する暗電流の経路
はP素子と同じpn接合を介した経路のみとなるため、
P素子とN素子の暗電流の差は10pA以下となり、結
果としてS/Nが良好なバランス特性が得られ受信感度
を0.7dB改善することができる。上記効果は気相成
長法によるエピタキシャルウエハー以外に、液相成長
法、CVD法、MOCVD法、MBE法、ALE法によ
るエピタキシャルウエハーにおいても同じ効果が得られ
る。
In the Dual-PIN thus prepared, when a bias is applied between the n-side electrode and the common electrode of the N element, the n-side electrode 10 → n-InP window layer 5 → n-InG
Since the current passing through the aAs light absorbing layer 4 → n-InP buffer layer 3 is blocked by the p-InP carrier blocking layer 2, it does not become a leak current flowing between the n-type layer and the n-type layer via the substrate. Therefore, the path of the dark current generated in the N element is only the path via the same pn junction as the P element,
The difference between the dark current of the P element and the dark current of the N element is 10 pA or less. As a result, a good S / N balance characteristic is obtained, and the reception sensitivity can be improved by 0.7 dB. The same effect can be obtained in an epitaxial wafer formed by a liquid phase growth method, a CVD method, a MOCVD method, an MBE method, or an ALE method, in addition to an epitaxial wafer formed by a vapor phase growth method.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
隣合う2つの素子間にp型のキャリアブロック層を設け
ることで、一方の素子のn型層ともう一方の素子のn型
層間の基板を介したリーク電流の発生を防ぐことができ
るため、両素子間の暗電流の発生経路は等しくなり、暗
電流及びS/Nの差が1%以下となる。その結果感度を
0.7dB改善することができるという効果を奏するも
のである。
As described above, according to the present invention,
By providing a p-type carrier block layer between two adjacent elements, it is possible to prevent leakage current from flowing through the substrate between the n-type layer of one element and the n-type layer of the other element. The dark current generation paths between the two elements are equal, and the difference between the dark current and the S / N is 1% or less. As a result, there is an effect that the sensitivity can be improved by 0.7 dB.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の半導体受光素子の断面図で
ある。
FIG. 1 is a sectional view of a semiconductor light receiving element according to a first embodiment of the present invention.

【図2】本発明の実施例1の半導体受光素子の製法
(a)〜(d)の説明図である。
FIGS. 2A to 2D are explanatory diagrams of manufacturing methods (a) to (d) of the semiconductor light receiving element according to the first embodiment of the present invention.

【図3】本発明の実施例1の半導体受光素子の製造
(e)〜(h)の説明図である。
3A to 3H are explanatory diagrams of manufacturing (e) to (h) of the semiconductor light receiving element according to the first embodiment of the present invention.

【図4】本発明の実施例1の半導体受光素子の暗電流特
性図である。
FIG. 4 is a dark current characteristic diagram of the semiconductor light receiving element according to the first embodiment of the present invention.

【図5】本発明の実施例2の半導体受光素子の断面図で
ある。
FIG. 5 is a sectional view of a semiconductor light receiving element according to a second embodiment of the present invention.

【図6】本発明の実施例3の半導体受光素子の断面図で
ある。
FIG. 6 is a sectional view of a semiconductor light receiving element according to a third embodiment of the present invention.

【図7】本発明の実施例4の半導体受光素子の断面図で
ある。
FIG. 7 is a sectional view of a semiconductor light receiving element according to a fourth embodiment of the present invention.

【図8】本発明の実施例4の半導体受光素子の製法
(a)〜(d)の説明図である。
FIGS. 8A to 8D are explanatory diagrams of manufacturing methods (a) to (d) of the semiconductor light receiving element according to the fourth embodiment of the present invention.

【図9】本発明の実施例4の半導体受光素子の製造
(e)〜(h)の説明図である。
FIG. 9 is an explanatory view of manufacturing (e) to (h) of the semiconductor light receiving element according to the fourth embodiment of the present invention.

【図10】従来例の応用例である。FIG. 10 is an application example of a conventional example.

【図11】従来例の半導体受光素子の断面図である。FIG. 11 is a sectional view of a conventional semiconductor light receiving element.

【図12】従来例の半導体受光素子の暗電流特性図であ
る。
FIG. 12 is a dark current characteristic diagram of a conventional semiconductor light receiving element.

【図13】従来例の半導体受光素子の暗電流発生の説明
図である。
FIG. 13 is an explanatory diagram of generation of dark current in a conventional semiconductor light receiving element.

【符号の説明】[Explanation of symbols]

1 n+ −InP基板 2 キャリアブロック層 3 n−InP緩衝層 4 n- −InGaAs光吸収層 5 n−InP窓層 6 p−InP領域 7 SiNx膜 8 共通電極 9 p側電極 10 n側電極 11 n側オーミック電極 12 p側オーミック電極 13 空中配線 14 SiO2 膜 15 エッチング用マスク 16 ホトレジストReference Signs List 1 n + -InP substrate 2 carrier block layer 3 n-InP buffer layer 4 n -- InGaAs light absorption layer 5 n-InP window layer 6 p-InP region 7 SiNx film 8 common electrode 9 p-side electrode 10 n-side electrode 11 n-side ohmic electrode 12 p-side ohmic electrode 13 aerial wiring 14 SiO 2 film 15 etching mask 16 photoresist

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半絶縁性基板(Eg1)上に第一導伝型
キャリアブロック層(Eg1)と第二導伝型緩衝層(E
g1)と第二導伝型光吸収層(Eg2)と第二導伝型窓
層(Eg1)がEg1>Eg2の条件にて順次構成され
たヘテロエピタキシャル層と、前記窓層内に部分的に第
一導伝型領域(Eg1)を設けた素子構造を、前記半絶
縁性基板上に間隔を置いて二つ以上形成した構造と、第
二素子の第二導伝型光吸収層と第一素子の第一導伝型領
域とを導伝性金属にて接続したことを特徴とする半導体
受光素子。
1. A first conductive type carrier block layer (Eg1) and a second conductive type buffer layer (E) on a semi-insulating substrate (Eg1).
g1), a second conductive type light absorption layer (Eg2), and a second conductive type window layer (Eg1) in which a heteroepitaxial layer is sequentially formed under the condition of Eg1>Eg2; A structure in which two or more element structures each having a first conductive region (Eg1) are provided on the semi-insulating substrate at an interval; a second conductive light absorbing layer of a second element; A semiconductor light-receiving element, wherein a first conductive region of the element is connected with a conductive metal.
【請求項2】 半絶縁性基板(Eg1)上に第二導伝型
緩衝層(Eg1)と第二導伝型光吸収層(Eg2)と第
二導伝型窓層(Eg1)がEg1>Eg2の条件にて順
次構成されたヘテロエピタキシャル層と、前記窓層内に
部分的に第一導伝型領域(Eg1)を設けた素子構造
を、前記半絶縁性基板上に間隔を置いて二つ以上形成し
た構造と、前記第一素子の第一導伝型領域と前記第二素
子の第二導伝型窓層が半絶縁性基板まで達する素子分離
の溝を持ち、空中配線の素子を直列に配置した構造で前
記第一素子及び第二素子の半絶縁性基板まで達する溝の
部分に第一導電型不純物を注入した構造と、前記第一素
子の第一導伝型領域と前記第二素子の第二導伝型窓層と
を導伝性金属にて接続したことを特徴とする半導体受光
素子。
2. The semiconductor device according to claim 1, wherein the second conductive buffer layer (Eg1), the second conductive light absorbing layer (Eg2), and the second conductive window layer (Eg1) are formed on the semi-insulating substrate (Eg1). A heteroepitaxial layer sequentially formed under the condition of Eg2 and an element structure in which the first conductive region (Eg1) is partially provided in the window layer are provided on the semi-insulating substrate at an interval. One or more formed structures, the first conductive region of the first element and the second conductive window layer of the second element have an element isolation groove reaching the semi-insulating substrate, and an element of aerial wiring is provided. A structure in which a first conductivity type impurity is implanted in a groove portion reaching a semi-insulating substrate of the first element and the second element in a structure arranged in series, a first conductivity type region of the first element and the A semiconductor light receiving element, wherein two element second conduction type window layers are connected by a conductive metal.
【請求項3】 請求項2記載の半導体受光素子におい
て、第二素子の第二導伝型窓層の替わりに第二導伝型緩
衝層と第一素子の第一導伝型領域とを導伝性金属にて接
続したことを特徴とする半導体受光素子。
3. The semiconductor light receiving device according to claim 2, wherein a second conductive buffer layer and a first conductive region of the first device are provided instead of the second conductive window layer of the second device. A semiconductor light receiving element, wherein the light receiving element is connected by a conductive metal.
【請求項4】 請求項2記載の半導体受光素子におい
て、第二素子の第二導伝型窓層の替わりに第二導伝型緩
衝層と第一素子の第一導伝型領域とを導伝性金属にて接
続したことを特徴とする半導体受光素子。
4. The semiconductor light receiving device according to claim 2, wherein a second conductive buffer layer and a first conductive region of the first element are connected instead of the second conductive window layer of the second element. A semiconductor light receiving element, wherein the light receiving element is connected by a conductive metal.
JP5203653A 1993-07-26 1993-07-26 Semiconductor light receiving element Expired - Fee Related JP2663842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5203653A JP2663842B2 (en) 1993-07-26 1993-07-26 Semiconductor light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5203653A JP2663842B2 (en) 1993-07-26 1993-07-26 Semiconductor light receiving element

Publications (2)

Publication Number Publication Date
JPH0745855A JPH0745855A (en) 1995-02-14
JP2663842B2 true JP2663842B2 (en) 1997-10-15

Family

ID=16477622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5203653A Expired - Fee Related JP2663842B2 (en) 1993-07-26 1993-07-26 Semiconductor light receiving element

Country Status (1)

Country Link
JP (1) JP2663842B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370203B2 (en) * 2004-05-25 2009-11-25 三菱電機株式会社 Semiconductor element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6214479A (en) * 1985-07-12 1987-01-23 Oki Electric Ind Co Ltd Light emitting/receiving device
JP2674657B2 (en) * 1988-07-28 1997-11-12 富士通株式会社 Semiconductor device
JP2570424B2 (en) * 1989-06-29 1997-01-08 日本電気株式会社 Semiconductor light receiving element

Also Published As

Publication number Publication date
JPH0745855A (en) 1995-02-14

Similar Documents

Publication Publication Date Title
JP5232981B2 (en) SiGe photodiode
US6043550A (en) Photodiode and photodiode module
EP3306679B1 (en) Light-receiving element and optical integrated circuit
Wada et al. Monolithic four-channel photodiode/amplifier receiver array integrated on a GaAs substrate
JP2017076651A (en) Semiconductor light-receiving device
US6396117B1 (en) Semiconductor photodetector, method for manufacturing semiconductor photodetector and photodetector module
EP0530212B1 (en) Structure of Laser Diode
Achouche et al. InGaAs communication photodiodes: from low-to high-power-level designs
Burroughes et al. 1.3 mu m InGaAs MSM photodetector with abrupt InGaAs/AlInAs interface
Okimoto et al. InP-based PIC integrated with butt-joint coupled waveguide pin PDs for 100GBaud coherent networks
US4916305A (en) Optical detectors with selective bias voltage application
JP2663842B2 (en) Semiconductor light receiving element
JPH08274366A (en) Semiconductor light receiving device
Sloan Photodetectors
Bauer et al. InGaAs dual-pin detector with very symmetric properties for use in coherent optical receivers
JP3031238B2 (en) Semiconductor light receiving element
JP2646978B2 (en) Semiconductor light receiving element
Achouche et al. New all 2-inch manufacturable high performance evanescent coupled waveguide photodiodes with etched mirrors for 40 Gb/s optical receivers
Chandrasekhar et al. Integrated directional couplers with photodetectors by hydride vapour phase epitaxy
Wang et al. Top-Illuminated Avalanche Photodiodes With Cascaded Multiplication Layers for High-Speed and Wide Dynamic Range Performance
Beling et al. Photodetectors
Andrievski et al. High speed InGaAs photodetector modules for fibre optic communications
Chandrasekhar et al. Integrated balanced mixer circuit for coherent lightwave receivers
Nada et al. Inverted p-down Design for High-Speed Photodetectors. Photonics 2021, 8, 39
Ye High speed photodiode and 90° optical hybrid for 2 µm optical communication systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees