JPH07153942A - Insulated gate bipolar transistor and manufacture thereof - Google Patents

Insulated gate bipolar transistor and manufacture thereof

Info

Publication number
JPH07153942A
JPH07153942A JP30146493A JP30146493A JPH07153942A JP H07153942 A JPH07153942 A JP H07153942A JP 30146493 A JP30146493 A JP 30146493A JP 30146493 A JP30146493 A JP 30146493A JP H07153942 A JPH07153942 A JP H07153942A
Authority
JP
Japan
Prior art keywords
region
conductivity
conductivity type
collector
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30146493A
Other languages
Japanese (ja)
Inventor
Masami Yokozawa
眞▲覩▼ 横沢
Hiroyuki Shindo
裕之 進藤
Hideki Takehara
秀樹 竹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP30146493A priority Critical patent/JPH07153942A/en
Publication of JPH07153942A publication Critical patent/JPH07153942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an insulated gate bipolar transistor unnecessitating a high-speed diode which has been attached externally when the high-speed diode is used for driving a motor. CONSTITUTION:An N<+> region 2 consisting of an epitaxial layer and an N<-> region 3 are formed onto a P<+> silicon substrate (a collector region) 1, a P<+> region 4 is formed into the N<-> region 3 through a selective diffusion, and phosphorus is diffused to shape an N<+> region 5. A silicon dioxide film 6, a polysilicon film 7 and an aluminum film 8 are formed successively onto the P<+> region 4. The collector region side of the P<+> silicon substrate 1 is irradiated partially with laser beams, and a silicon crystal is melted up to the inside of the N<-> region 2. Melted regions are recrystallized (solidified) instantaneously by stopping irradiation, and shaped as N-type polycrystalline regions 9. A metallic film 10 for an electrode is formed onto the exposed surfaces of the P<-> silicon substrate 1 and the polycrystalline regions 9 as the collector surfaces of an IGBT.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、モータ駆動用半導体
デバイスとして用いられる絶縁ゲート型バイポーラトラ
ンジスタ(以下、本文では「IGBT」と略す)および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulated gate bipolar transistor (hereinafter abbreviated as "IGBT" in the text) used as a semiconductor device for driving a motor and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、モータ駆動用半導体デバイスとし
てバイポーラトランジスタやMOSFETが用いられて
きた。また、最近ではIGBTが注目されている。従来
のIGBTの模式断面図を図3に示す。図3において、
1はコレクタ領域となるP+ シリコン基板、2はバッフ
ァ領域となるN+ 領域、3はN- 領域、4はゲート領域
となるP+ 領域、5はエミッタ領域となるN+ 領域、6
はゲート酸化膜となる二酸化珪素膜、7はポリシリコン
膜、8はアルミニウム膜からなる電極、10は電極用の
金属膜である。
2. Description of the Related Art Conventionally, bipolar transistors and MOSFETs have been used as semiconductor devices for driving motors. Further, recently, the IGBT has been drawing attention. A schematic sectional view of a conventional IGBT is shown in FIG. In FIG.
Reference numeral 1 denotes a P + silicon substrate serving as a collector region, 2 denotes an N + region serving as a buffer region, 3 denotes an N region, 4 denotes a P + region serving as a gate region, 5 denotes an N + region serving as an emitter region, 6
Is a silicon dioxide film serving as a gate oxide film, 7 is a polysilicon film, 8 is an electrode made of an aluminum film, and 10 is a metal film for the electrode.

【0003】この従来のIGBTは、エミッタ領域から
コレクタ領域まで、N+ 領域5,P + 領域4,N- 領域
3,N+ 領域2およびP+ シリコン基板1からなり、N
+ /P+ /N- /N+ /P+ 構造となっている。
This conventional IGBT has a structure in which the emitter region is
N to the collector area+Area 5, P +Area 4, N-region
3, N+Region 2 and P+Made of silicon substrate 1, N
+/ P+/ N-/ N+/ P+It has a structure.

【0004】[0004]

【発明が解決しようとする課題】上記従来のIGBT
は、前述したようにエミッタ領域からコレクタ領域ま
で、N+ /P+ /N- /N+ /P+ 構造となっており、
コレクタ領域であるP+ シリコン基板1の存在によって
ダイオードを内蔵していない。そのため、IGBTをモ
ータ駆動用として用いる際には、還流用ダイオードとし
て高速ダイオードをIGBTのコレクタ・エミッタ間に
外付けする必要がある。そのため、高速ダイオード代、
取り付けのための工数アップ、さらには、取り付け場所
の確保によるパッケージの小型化の制限などの課題を残
す。特に、3相モータ用インバータモジュールに用いる
ときには、1台当たりIGBTと高速ダイオードを6ケ
ずつ使用するので、モジュールの原価に大きく影響す
る。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
Has an N + / P + / N / N + / P + structure from the emitter region to the collector region as described above,
The diode is not built in due to the existence of the P + silicon substrate 1 which is the collector region. Therefore, when the IGBT is used for driving a motor, it is necessary to externally attach a high speed diode as a free wheeling diode between the collector and the emitter of the IGBT. Therefore, high-speed diode fee,
There are issues such as increased man-hours for mounting, and restrictions on miniaturization of the package by securing a mounting place. In particular, when used in a three-phase motor inverter module, one IGBT and six high-speed diodes are used per unit, which greatly affects the cost of the module.

【0005】この発明の目的は、モータ駆動用として用
いる際に従来外付けしていた高速ダイオードを不要とす
るIGBTおよびその製造方法を提供することである。
An object of the present invention is to provide an IGBT which does not require a high speed diode which is conventionally attached externally when used for driving a motor, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】請求項1記載のIGBT
は、コレクタ領域となる一導電型基板と、この一導電型
基板の一主面上に形成したバッファ領域となる高濃度他
導電型の第1の領域と、この第1の領域上に形成した低
濃度他導電型の第2の領域と、この第2の領域内の表面
に形成したゲート領域となる高濃度一導電型の第3の領
域と、この第3の領域内の表面に形成したエミッタ領域
となる高濃度他導電型の第4の領域と、一導電型基板の
他主面から第1の領域の内部に達する領域に形成した他
導電型の第5の領域とを備えている。
An IGBT according to claim 1, wherein:
Are formed on the first region, a one-conductivity-type substrate serving as a collector region, a high-concentration other-conductivity-type first region serving as a buffer region formed on one main surface of the one-conductivity-type substrate. A second region of low-concentration other conductivity type, a third region of high-concentration one conductivity type to be a gate region formed on the surface in the second region, and a third region formed on the surface in the third region A high-concentration other-conductivity-type fourth region to be an emitter region and a different-conductivity-type fifth region formed in a region reaching from the other main surface of the one-conductivity-type substrate to the inside of the first region. .

【0007】請求項2記載のIGBTは、コレクタ領域
となる一導電型基板の一主面上にバッファ領域となる高
濃度他導電型の第1の領域を形成し、この第1の領域上
に低濃度他導電型の第2の領域を形成し、この第2の領
域内の表面にゲート領域となる高濃度一導電型の第3の
領域を形成し、この第3の領域内の表面にエミッタ領域
となる高濃度他導電型の第4の領域を形成する工程と、
一導電型基板の他主面から部分的にレーザ光線を照射し
て一導電型基板の他主面から第1の領域の内部に達する
まで部分的に溶解し、再結晶化させて他導電型の第5の
領域を形成する工程とを含むことを特徴とする。
According to another aspect of the IGBT of the present invention, a first region of a high-concentration other conductivity type that serves as a buffer region is formed on one main surface of a one conductivity type substrate that serves as a collector region, and the first region is formed on the first region. A second region of low-concentration other conductivity type is formed, and a third region of high-concentration one-conductivity type to be a gate region is formed on the surface in the second region, and on the surface in the third region. A step of forming a high concentration other conductivity type fourth region to be an emitter region,
A laser beam is partially irradiated from the other main surface of the one-conductivity type substrate and partially dissolved from the other main surface of the one-conductivity type substrate until it reaches the inside of the first region, and recrystallized to cause another conductivity type. And forming a fifth region of.

【0008】[0008]

【作用】この発明の構成によれば、一導電型基板(コレ
クタ領域)の他主面から第1の領域(バッファ領域)の
内部に達する領域に他導電型の第5の領域を設けている
ため、第5の領域(ドレイン),第1の領域,第2の領
域,第3の領域および第4の領域(ソース)からなるM
OSFETが内蔵されている。すなわち、IGBTおよ
びMOSFETのゲートとエミッタ(ソース)を共通と
し、かつ、コレクタ(ドレイン)をも共通化した複合型
IGBTを形成できる。したがって、MOSFETのド
レイン・ソース間に形成されているダイオードをIGB
Tのコレクタ・エミッタ間のダイオードとして用いるこ
とができる。
According to the structure of the present invention, the other conductive type fifth region is provided in the region reaching from the other main surface of the one conductive type substrate (collector region) to the inside of the first region (buffer region). Therefore, M including the fifth region (drain), the first region, the second region, the third region, and the fourth region (source)
OSFET is built-in. That is, it is possible to form a composite IGBT in which the gate and emitter (source) of the IGBT and MOSFET are common and the collector (drain) is also common. Therefore, the diode formed between the drain and source of the MOSFET is
It can be used as a diode between the collector and emitter of T.

【0009】また、他導電型の第5の領域は、拡散処理
が終了した一導電型基板の他主面から部分的にレーザ光
線を照射して一導電型基板の他主面から高濃度他導電型
の第1の領域の内部に達するまで部分的に溶解し、再結
晶化させることにより、容易に形成することができる。
Further, the fifth region of the other conductivity type is partially irradiated with a laser beam from the other main surface of the one conductivity type substrate which has been subjected to the diffusion treatment, so that the other main surface of the one conductivity type substrate is exposed to a high concentration or the like. It can be easily formed by partially melting and recrystallizing until reaching the inside of the conductivity type first region.

【0010】[0010]

【実施例】図1はこの発明の一実施例のIGBTの模式
断面図、図2はその等価回路図である。図1において、
1はコレクタ領域となるP+ シリコン基板(一導電型基
板)、2はバッファ領域となるN+ 領域(第1の領
域)、3はN- 領域(第2の領域)、4はゲート領域と
なるP+ 領域(第3の領域)、5はエミッタ領域となる
+ 領域(第4の領域)、6はゲート酸化膜となる二酸
化珪素膜、7はポリシリコン膜、8はアルミニウム膜か
らなる電極、9はN型の多結晶領域(第5の領域)、1
0は電極用の金属膜である。
1 is a schematic sectional view of an IGBT according to an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram thereof. In FIG.
1 is a P + silicon substrate (one conductivity type substrate) which will be a collector region, 2 is an N + region (first region) which will be a buffer region, 3 is an N region (second region), 4 is a gate region Is a P + region (third region), 5 is an N + region (fourth region) to be an emitter region, 6 is a silicon dioxide film to be a gate oxide film, 7 is a polysilicon film, and 8 is an aluminum film. Electrodes, 9 are N-type polycrystalline regions (fifth region), 1
Reference numeral 0 is a metal film for electrodes.

【0011】この実施例のIGBTは、P+ シリコン基
板1からN+ 領域2の内部に達する領域にN型の多結晶
領域9を設けたことを特徴とする。このIGBTの製造
方法を説明する。ボロンを添加した比抵抗0.01Ω・
cmのP+ シリコン基板(コレクタ領域)1上に、アン
チモンを添加してN+ 比抵抗0.05Ω・cmのエピタ
キシャル層からなるN+ 領域2を15μm形成する。そ
の後、リンを添加したN- 比抵抗40Ω・cmのエピタ
キシャル層からなるN- 領域3を50μm形成する。そ
して、N- 領域3内に選択拡散によってP+ 領域4を形
成した後、リンを高濃度に拡散させてN+ 領域5を形成
する。その後、P+ 領域4上に、厚み800Åの二酸化
珪素膜6、厚み0.5μmのポリシリコン膜7、そして
厚み3μmのアルミニウム膜8を順次形成する。
The IGBT of this embodiment is characterized in that an N-type polycrystalline region 9 is provided in a region extending from the P + silicon substrate 1 to the inside of the N + region 2. A method of manufacturing this IGBT will be described. Specific resistance of 0.01 Ω with boron added
On a P + silicon substrate (collector region) 1 of cm, antimony is added to form an N + region 2 of 15 μm made of an epitaxial layer having an N + specific resistance of 0.05 Ω · cm. After that, an N region 3 composed of an epitaxial layer having an N specific resistance of 40 Ω · cm added with phosphorus is formed in a thickness of 50 μm. Then, after the P + region 4 is formed in the N region 3 by selective diffusion, phosphorus is diffused at a high concentration to form the N + region 5. Then, a silicon dioxide film 6 having a thickness of 800 Å, a polysilicon film 7 having a thickness of 0.5 μm, and an aluminum film 8 having a thickness of 3 μm are sequentially formed on the P + region 4.

【0012】つぎに、P+ シリコン基板1のコレクタ領
域側にレーザ光線を部分的に照射し、N+ 領域2の内部
までシリコン結晶を溶解させる。溶解した領域は、照射
を中止することで直ちに再結晶化(固化)し、N型の多
結晶領域9となる。これはN + 領域2が高濃度のN+
あること、また再結晶化速度が早いために、容易にN型
の多結晶となる。
Next, P+Silicon substrate 1 collector area
Partially irradiate the laser beam on the area side, N+Inside area 2
Dissolve the silicon crystals until. Irradiate the melted area
By immediately stopping the re-crystallization, it will recrystallize (solidify) immediately, and
It becomes the crystal region 9. This is N +Region 2 has a high concentration of N+so
Since it is present and the recrystallization rate is fast, it is easily N-type
Becomes a polycrystal.

【0013】その後、IGBTのコレクタ面となるP+
シリコン基板1および多結晶領域9の露出面に電極用金
属膜10を形成する。この実施例によれば、N型の多結
晶領域9を設けることにより、N型の多結晶領域9と、
- 領域3と、P+ 領域4と、N+ 領域5とからなるN
チャネルMOSFETが形成され、図2に示すように、
MOSFETのドレイン・ソース間に形成されているダ
イオード11が、IGBTのコレクタ・エミッタ間に形
成されることになる。このように、従来のIGBTの製
造工程にレーザ光線によるコレクタ領域とバッファ領域
の部分的溶解と再結晶化工程を追加するだけで、ダイオ
ード11を内臓したIGBTを容易に得ることができ
る。そのため、モータ駆動用として用いる際に、別のダ
イオードを外付けする必要がない。その結果、従来IG
BTデバイスをモータ駆動に用いる際に必要であった外
付け用高速ダイオードを不要とするばかりか、外付けの
工数全廃を可能にし、製造原価の低減に貢献できる。
After that, P + which becomes the collector surface of the IGBT is formed.
An electrode metal film 10 is formed on the exposed surfaces of the silicon substrate 1 and the polycrystalline region 9. According to this embodiment, by providing the N-type polycrystalline region 9, the N-type polycrystalline region 9 and
N consisting of N region 3, P + region 4, and N + region 5
A channel MOSFET is formed, and as shown in FIG.
The diode 11 formed between the drain and source of the MOSFET is formed between the collector and emitter of the IGBT. As described above, an IGBT including the diode 11 can be easily obtained only by adding the steps of partially melting and recrystallizing the collector region and the buffer region by the laser beam to the conventional IGBT manufacturing process. Therefore, when used for driving a motor, it is not necessary to attach another diode externally. As a result, conventional IG
Not only does the external high-speed diode required when using the BT device for driving a motor become unnecessary, but it also enables the total elimination of external man-hours and contributes to a reduction in manufacturing cost.

【0014】また、P+ シリコン基板1のコレクタ領域
側にレーザ光線を部分的に照射し、溶解・再結晶化して
N型の多結晶領域9を形成して平坦面にしているため、
リードフレームへIGBTチップを半田付けしたとき、
ボイドの発生が少なく、その結果、放熱特性も良好にで
きる。なお、レーザ光線を照射して溶解させる領域は、
+ シリコン基板1を貫通しN+ 領域2の一部とするこ
とが必要である。なぜならば、N+ 領域2を貫通させて
- 領域3に到達すると耐圧が低下するからである。一
方、P+ シリコン基板1を貫通しないときはダイオード
11は形成されない。また、部分的にレーザ光線を照射
するには、たくさんの小穴をあけた金属板を用いればよ
い。照射する領域としない領域の比は、IGBTおよび
ダイオード11の電流容量に関係するが約1:1でよ
い。
Further, the collector region side of the P + silicon substrate 1 is partially irradiated with a laser beam to be melted and recrystallized to form an N-type polycrystalline region 9 to have a flat surface.
When the IGBT chip is soldered to the lead frame,
Generation of voids is small, and as a result, heat dissipation characteristics can be improved. In addition, the area irradiated with the laser beam and melted is
It is necessary to penetrate the P + silicon substrate 1 and be a part of the N + region 2. This is because the breakdown voltage decreases when it penetrates the N + region 2 and reaches the N region 3. On the other hand, when the P + silicon substrate 1 is not penetrated, the diode 11 is not formed. To partially irradiate the laser beam, a metal plate with many small holes may be used. The ratio of the irradiated area to the non-irradiated area depends on the current capacity of the IGBT and the diode 11, but may be about 1: 1.

【0015】また、上記実施例では、一導電型をP型と
し、他導電型をN型として説明したが、これに限られる
ものではない。
In the above embodiment, one conductivity type is P type and the other conductivity type is N type. However, the present invention is not limited to this.

【0016】[0016]

【発明の効果】この発明によれば、一導電型基板(コレ
クタ領域)の他主面から第1の領域(バッファ領域)の
内部に達する領域に他導電型の第5の領域を設けること
により、MOSFETが内蔵されたIGBTを得ること
ができる。したがって、MOSFETのドレイン・ソー
ス間に形成されているダイオードをIGBTのコレクタ
・エミッタ間のダイオードとして用いることができる。
その結果、従来IGBTデバイスをモータ駆動に用いる
際に必要であった外付け用高速ダイオードを不要とする
ばかりか、外付けの工数全廃を可能にし、製造原価の低
減に貢献できる。
According to the present invention, the fifth region of the other conductivity type is provided in the region reaching from the other main surface of the one conductivity type substrate (collector region) to the inside of the first region (buffer region). Thus, an IGBT having a built-in MOSFET can be obtained. Therefore, the diode formed between the drain and the source of the MOSFET can be used as the diode between the collector and the emitter of the IGBT.
As a result, not only the high-speed diode for external attachment, which was required when using the IGBT device for driving a motor in the related art, is not required, but also the man-hours for external attachment can be eliminated, which contributes to the reduction of manufacturing cost.

【0017】また、他導電型の第5の領域は、拡散処理
が終了した一導電型基板の他主面から部分的にレーザ光
線を照射して一導電型基板の他主面から高濃度他導電型
の第1の領域の内部に達するまで部分的に溶解し、再結
晶化させることにより、容易に形成することができる。
The other conductivity type fifth region is partially irradiated with a laser beam from the other main surface of the one conductivity type substrate for which the diffusion process has been completed, so that the other main surface of the one conductivity type substrate has a high concentration or the like. It can be easily formed by partially melting and recrystallizing until reaching the inside of the conductivity type first region.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例のIGBTの断面図であ
る。
FIG. 1 is a sectional view of an IGBT according to an embodiment of the present invention.

【図2】この発明の一実施例のIGBTの等価回路図で
ある。
FIG. 2 is an equivalent circuit diagram of an IGBT according to an embodiment of the present invention.

【図3】従来のIGBTの断面図である。FIG. 3 is a sectional view of a conventional IGBT.

【符号の説明】[Explanation of symbols]

1 P+ シリコン基板(一導電型基板) 2 N+ 領域(第1の領域) 3 N- 領域(第2の領域) 4 P+ 領域(第3の領域) 5 N+ 領域(第4の領域) 9 N型の多結晶領域(第5の領域) 11 ダイオード1 P + Silicon substrate (one conductivity type substrate) 2 N + region (first region) 3 N region (second region) 4 P + region (third region) 5 N + region (fourth region) ) 9 N-type polycrystalline region (fifth region) 11 Diode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 コレクタ領域となる一導電型基板と、こ
の一導電型基板の一主面上に形成したバッファ領域とな
る高濃度他導電型の第1の領域と、この第1の領域上に
形成した低濃度他導電型の第2の領域と、この第2の領
域内の表面に形成したゲート領域となる高濃度一導電型
の第3の領域と、この第3の領域内の表面に形成したエ
ミッタ領域となる高濃度他導電型の第4の領域と、前記
一導電型基板の他主面から前記第1の領域の内部に達す
る領域に形成した他導電型の第5の領域とを備えた絶縁
ゲート型バイポーラトランジスタ。
1. A one-conductivity-type substrate to be a collector region, a high-concentration other-conductivity-type first region to be a buffer region formed on one main surface of the one-conductivity-type substrate, and a first region on the first region. A second region of a low-concentration other conductivity type formed on the second region, a third region of a high-concentration one conductivity type to be a gate region formed on the surface in the second region, and a surface in the third region A high-concentration other-conductivity-type fourth region to be an emitter region, and another-conductivity-type fifth region formed in a region extending from the other main surface of the one-conductivity-type substrate to the inside of the first region. And an insulated gate bipolar transistor having.
【請求項2】 コレクタ領域となる一導電型基板の一主
面上にバッファ領域となる高濃度他導電型の第1の領域
を形成し、この第1の領域上に低濃度他導電型の第2の
領域を形成し、この第2の領域内の表面にゲート領域と
なる高濃度一導電型の第3の領域を形成し、この第3の
領域内の表面にエミッタ領域となる高濃度他導電型の第
4の領域を形成する工程と、 前記一導電型基板の他主面から部分的にレーザ光線を照
射して前記一導電型基板の他主面から前記第1の領域の
内部に達するまで部分的に溶解し、再結晶化させて他導
電型の第5の領域を形成する工程とを含むことを特徴と
する絶縁ゲート型バイポーラトランジスタの製造方法。
2. A high-concentration other-conductivity type first region serving as a buffer region is formed on one main surface of a one-conductivity type substrate serving as a collector region, and a low-concentration other-conductivity type region is formed on the first region. A second region is formed, a high-concentration one-conductivity-type third region serving as a gate region is formed on the surface in the second region, and a high-concentration region serving as an emitter region is formed on the surface in the third region. Forming a fourth region of another conductivity type; and irradiating a laser beam partially from the other main surface of the one conductivity type substrate to the inside of the first region from the other main surface of the one conductivity type substrate. To partially melt and recrystallize to form a fifth region of the other conductivity type until the temperature reaches the above temperature, the method for manufacturing an insulated gate bipolar transistor.
JP30146493A 1993-12-01 1993-12-01 Insulated gate bipolar transistor and manufacture thereof Pending JPH07153942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30146493A JPH07153942A (en) 1993-12-01 1993-12-01 Insulated gate bipolar transistor and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30146493A JPH07153942A (en) 1993-12-01 1993-12-01 Insulated gate bipolar transistor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH07153942A true JPH07153942A (en) 1995-06-16

Family

ID=17897220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30146493A Pending JPH07153942A (en) 1993-12-01 1993-12-01 Insulated gate bipolar transistor and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH07153942A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734497B2 (en) 2001-02-02 2004-05-11 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor, semiconductor device, method of manufacturing insulated-gate bipolar transistor, and method of manufacturing semiconductor device
US7154145B2 (en) 2003-08-27 2006-12-26 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor incorporating diode
CN100336229C (en) * 2003-07-24 2007-09-05 三菱电机株式会社 Insulated gate bipolar transistor and its production method and current transformation circuit
JP2007266549A (en) * 2006-03-30 2007-10-11 Shindengen Electric Mfg Co Ltd Igbt, and manufacturing method of igbt
JP2008117881A (en) * 2006-11-02 2008-05-22 Sanyo Electric Co Ltd Semiconductor device, and its manufacturing method
US7705398B2 (en) 2006-10-20 2010-04-27 Mitsubishi Electric Corporation Semiconductor device preventing recovery breakdown and manufacturing method thereof
JP2012084722A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Semiconductor device manufacturing method
JP2012512538A (en) * 2008-12-15 2012-05-31 アーベーベー・テヒノロギー・アーゲー Bipolar punch-through semiconductor device and method of manufacturing such a semiconductor device
WO2015027961A1 (en) * 2013-09-02 2015-03-05 无锡华润上华半导体有限公司 Reverse conduction insulated gate bipolar transistor (igbt) manufacturing method
US9960165B2 (en) 2013-11-05 2018-05-01 Toyota Jidosha Kabushiki Kaisha Semiconductor device having adjacent IGBT and diode regions with a shifted boundary plane between a collector region and a cathode region

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734497B2 (en) 2001-02-02 2004-05-11 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor, semiconductor device, method of manufacturing insulated-gate bipolar transistor, and method of manufacturing semiconductor device
CN100336229C (en) * 2003-07-24 2007-09-05 三菱电机株式会社 Insulated gate bipolar transistor and its production method and current transformation circuit
US7750365B2 (en) 2003-07-24 2010-07-06 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor with built-in freewheeling diode
US7154145B2 (en) 2003-08-27 2006-12-26 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor incorporating diode
DE102004064116B4 (en) * 2003-08-27 2011-03-03 Mitsubishi Denki K.K. Insulating layer transistor with built-in diode and inverter circuit
US8008711B2 (en) 2003-08-27 2011-08-30 Mitsubishi Denki Kabushiki Kaisha Insulated gate transistor incorporating diode
JP2007266549A (en) * 2006-03-30 2007-10-11 Shindengen Electric Mfg Co Ltd Igbt, and manufacturing method of igbt
DE102007019561B4 (en) * 2006-10-20 2012-10-25 Mitsubishi Electric Corp. Semiconductor device and manufacturing method thereof
US7705398B2 (en) 2006-10-20 2010-04-27 Mitsubishi Electric Corporation Semiconductor device preventing recovery breakdown and manufacturing method thereof
JP2008117881A (en) * 2006-11-02 2008-05-22 Sanyo Electric Co Ltd Semiconductor device, and its manufacturing method
JP2012512538A (en) * 2008-12-15 2012-05-31 アーベーベー・テヒノロギー・アーゲー Bipolar punch-through semiconductor device and method of manufacturing such a semiconductor device
JP2012084722A (en) * 2010-10-13 2012-04-26 Toyota Motor Corp Semiconductor device manufacturing method
WO2015027961A1 (en) * 2013-09-02 2015-03-05 无锡华润上华半导体有限公司 Reverse conduction insulated gate bipolar transistor (igbt) manufacturing method
CN104425259A (en) * 2013-09-02 2015-03-18 无锡华润上华半导体有限公司 Manufacturing method for reverse conducting insulated gate bipolar transistor
US9666682B2 (en) 2013-09-02 2017-05-30 Csmc Technologies Fab1 Co., Ltd. Reverse conduction insulated gate bipolar transistor (IGBT) manufacturing method
US9960165B2 (en) 2013-11-05 2018-05-01 Toyota Jidosha Kabushiki Kaisha Semiconductor device having adjacent IGBT and diode regions with a shifted boundary plane between a collector region and a cathode region

Similar Documents

Publication Publication Date Title
JP2590284B2 (en) Semiconductor device and manufacturing method thereof
US20110086471A1 (en) Method of producing a semiconductor device with an aluminum or aluminum alloy electrode
US7135387B2 (en) Method of manufacturing semiconductor element
WO2011096326A1 (en) Process for production of semiconductor element, and device for production of semiconductor element
JP2984478B2 (en) Conductivity modulation type semiconductor device and method of manufacturing the same
US10249751B2 (en) High-speed diode with crystal defects and method of manufacturing
JPH07153942A (en) Insulated gate bipolar transistor and manufacture thereof
US7135751B2 (en) High breakdown voltage junction terminating structure
JP2003059856A (en) Method of manufacturing semiconductor
JP2010212530A (en) Method of manufacturing semiconductor device
JP5668270B2 (en) Manufacturing method of semiconductor device
JP5556431B2 (en) Manufacturing method of semiconductor device
KR100187735B1 (en) Method of manufacturing semiconductor device with controlled carrier lifetime
JP2009283636A (en) Production process of semiconductor device
JP2005079462A (en) Semiconductor device and method for manufacturing the same
JPS6180860A (en) Power mosfet
JPH0927623A (en) Alloy drain electric field effect semiconductor element and formation
JP3960174B2 (en) Manufacturing method of semiconductor device
JPH10150004A (en) Semiconductor device and its manufacture
JPH0897432A (en) Manufacture of thin film semiconductor device
JPH09307103A (en) Composite type semiconductor device and its manufacture
JPH07263668A (en) Compound type semiconductor element
JPH1093078A (en) Insulated-gate type bipolar transistor and manufacturing method thereof
JPH0766965B2 (en) Semiconductor device and manufacturing method thereof
JPH02271679A (en) Conductivity modulation type mosfet