JPH07153032A - Magnetic head and magnetic recording/reproducing method - Google Patents

Magnetic head and magnetic recording/reproducing method

Info

Publication number
JPH07153032A
JPH07153032A JP30154493A JP30154493A JPH07153032A JP H07153032 A JPH07153032 A JP H07153032A JP 30154493 A JP30154493 A JP 30154493A JP 30154493 A JP30154493 A JP 30154493A JP H07153032 A JPH07153032 A JP H07153032A
Authority
JP
Japan
Prior art keywords
magnetic
core
conductor
detection conductor
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30154493A
Other languages
Japanese (ja)
Inventor
Masakatsu Senda
正勝 千田
Osamu Ishii
修 石井
Tomoyuki Toshima
知之 戸島
Yasuhiro Koshimoto
泰弘 越本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP30154493A priority Critical patent/JPH07153032A/en
Priority to DE69431614T priority patent/DE69431614T2/en
Priority to EP94401890A priority patent/EP0640840B1/en
Publication of JPH07153032A publication Critical patent/JPH07153032A/en
Priority to US08/593,386 priority patent/US5734267A/en
Priority to US08/593,387 priority patent/US5811971A/en
Priority to US08/631,402 priority patent/US5705926A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high reproducing output, a high S/N, a high sensitivity and a high signal detection accuracy by a method wherein a phenomenon that an impedance is significantly varied by an external magnetic field in a radio frequency range. CONSTITUTION:A magnetic head (r) is composed of a coil winding 11, a magnetic core 12, a nonmagnetic insulator 13 filling a space in the core 12 and electrodes 14a and 14b to which a DC bias current is applied at the time of reproducing. A gap 12d formed in the core 12 traces the recording surface of a magnetic recording medium 17. Further, a V-shaped detecting conductor 15 and a horizontal bottom end part 15a are buried in the insulator 13 in the core 12. Detecting conductor electrodes 16a and 16b are formed on the top parts of the wing parts 15a and 15b of the conductor 15 continuously with the wing parts 15a and 15b respectively. If a ratio frequency current is applied to the conductor 15 at the time of reproducing, an electromagnetic wave is reflected and absorbed by the core 12 and, if the core 12 is getting magnetized by an external magnetic field, a relative permeability is reduced and becomes zero when the core 12 reaches a saturated magnetizing state. As an impedance in the core 12 is increased in a ratio frequency range at that time, a very large S/N can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド及びこれを
用いた磁気記録の再生方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head and a magnetic recording reproducing method using the same.

【0002】[0002]

【従来の技術】磁気記録の分野では、記憶装置の小型・
大容量化の要請に伴い、当該記録装置に適用される記録
媒体における記録密度の向上が望まれている。ここで従
来の薄膜型のリング型インダクティブ磁気ヘッドの構造
及び当該磁気ヘッドを用いた記録再生方法を図面につき
説明する[西川正明著:「磁気記録の理論」(朝倉書
店)参照]。
2. Description of the Related Art In the field of magnetic recording, small storage devices
With the demand for larger capacity, it is desired to improve the recording density of a recording medium applied to the recording apparatus. Here, a structure of a conventional thin film ring type inductive magnetic head and a recording / reproducing method using the magnetic head will be described with reference to the drawings [see Masaaki Nishikawa: "Theory of Magnetic Recording" (Asakura Shoten)].

【0003】図9(a)は従来のリング型インダクティ
ブ磁気ヘッドの縦断正面図、図9(b)は同・IXb−IX
b線視断面図である。図中、αは従来のリング型インダ
クティブ磁気ヘッド、1は巻線コイル、2は磁性体コ
ア、2aはギャップ、3は非磁性絶縁体、4a,4bは
電極、5は磁気記録媒体である。
FIG. 9 (a) is a vertical sectional front view of a conventional ring type inductive magnetic head, and FIG. 9 (b) is the same as IXb-IX.
It is a b line sectional view. In the figure, α is a conventional ring-type inductive magnetic head, 1 is a winding coil, 2 is a magnetic core, 2a is a gap, 3 is a non-magnetic insulator, 4a and 4b are electrodes, and 5 is a magnetic recording medium.

【0004】従来のリング型インダクティブ磁気ヘッド
αでは、記録過程においては、巻線コイル1に電流を流
して磁性体コア2を磁化し、ギャップ2aからの漏洩磁
界によって磁気記録媒体5を磁化して信号を記録する。
一方、再生過程においては、磁気記録媒体5から発生す
る媒体磁界をギャップ2aで拾って磁性体コア2を磁化
し、巻線コイル1に誘導される誘導起電力によって信号
を再生する。
In the conventional ring-type inductive magnetic head α, in the recording process, a current is passed through the winding coil 1 to magnetize the magnetic core 2, and the leakage magnetic field from the gap 2a magnetizes the magnetic recording medium 5. Record the signal.
On the other hand, in the reproducing process, the medium magnetic field generated from the magnetic recording medium 5 is picked up in the gap 2a to magnetize the magnetic core 2, and the signal is reproduced by the induced electromotive force induced in the winding coil 1.

【0005】一方、弱い媒体磁界強度に対しても再生を
可能とする磁気ヘッドとして、磁気抵抗効果型ヘッドが
提案されている。図10に磁気抵抗効果型ヘッドを示
す。図中、βは磁気抵抗効果型ヘッド(以下、「MRヘ
ッド」とする)、6は磁気抵抗素子(以下、「MR素
子」とする)、7a,7bは検出用電極、8は直流バイ
アス用導体、9a,9bは直流バイアス電流供給電極、
10は磁気記録媒体である。
On the other hand, a magnetoresistive head has been proposed as a magnetic head capable of reproducing even with a weak medium magnetic field strength. FIG. 10 shows a magnetoresistive head. In the figure, β is a magnetoresistive head (hereinafter referred to as “MR head”), 6 is a magnetoresistive element (hereinafter referred to as “MR element”), 7a and 7b are detection electrodes, and 8 is for DC bias. Conductors, 9a and 9b are DC bias current supply electrodes,
Reference numeral 10 is a magnetic recording medium.

【0006】図10に示すMRヘッドβは再生専用ヘッ
ドであるが、その再生原理は、検出用電極7a,7b間
に直流定電流を通電しておき、当該磁気記録媒体10か
らの磁界強度の変化によるMR素子6の電気抵抗値の変
化を、検出用電極7a、7bの電圧変化として取り出し
て、記録信号を検出するものである。
Although the MR head β shown in FIG. 10 is a read-only head, the reproducing principle is that a constant DC current is passed between the detection electrodes 7a and 7b to reduce the magnetic field strength from the magnetic recording medium 10. The change in the electric resistance value of the MR element 6 due to the change is extracted as a change in the voltage of the detection electrodes 7a and 7b, and the recording signal is detected.

【0007】従来、MRヘッドβとしては、強磁性体の
磁気抵抗効果を利用したものが広く使用されてきた。M
R効果による抵抗値Rの変化は次の式(1)で表され
る。 R=R0 +ΔRcos2 θ …(1) R0 :磁化方向が電流方向と直交した時の抵抗 ΔR:磁化方向と電流方向が平行になった場合の抵抗と
抵抗R0 との差 θ :磁化方向と電流方向との間の角度
Conventionally, as the MR head β, one utilizing the magnetoresistive effect of a ferromagnetic material has been widely used. M
The change in the resistance value R due to the R effect is expressed by the following equation (1). R = R 0 + ΔR cos 2 θ (1) R 0 : Resistance when magnetization direction is perpendicular to current direction ΔR: Difference between resistance and resistance R 0 when magnetization direction and current direction are parallel θ: Magnetization Angle between direction and current direction

【0008】[0008]

【発明が解決しようとする課題】しかしながら、一般に
磁気記録媒体は記録密度の上昇に伴って、一情報あたり
が占有する磁化面積は減少し、従って、そこから得られ
る磁界強度は減少する。よって、図9に示したリング型
インダクティブ磁気ヘッドαにおいては、記録密度の上
昇に従って再生出力レベルが急激に低下し、記録情報の
再生が困難となるという問題が発生している。
However, in general, in the magnetic recording medium, as the recording density increases, the magnetized area occupied by one piece of information decreases, and therefore the magnetic field strength obtained therefrom decreases. Therefore, in the ring-type inductive magnetic head α shown in FIG. 9, there is a problem that the reproduction output level sharply decreases as the recording density increases, making it difficult to reproduce the recorded information.

【0009】また、前記のMRヘッドβの検出素子とし
て使用されていた磁気抵抗素子6は、原理上磁気から電
気抵抗値への一方向への変換のみが可能であって、可逆
性を有しない。従って、MRヘッドβは、再生専用ヘッ
ドに用途が限定され、記録用ヘッドとしては使用できな
かった。
Further, the magnetoresistive element 6 used as the detecting element of the MR head β is in principle capable of only one-way conversion from magnetism to electric resistance value and has no reversibility. . Therefore, the MR head β cannot be used as a recording head because its application is limited to a read-only head.

【0010】また、MRヘッドβのS/N比はΔR/R
0 で表される。従来、MRヘッドβに用いられてきた代
表的な強磁性体である、NiFe,NiCo,NiCu
合金などでは、MR比はいずれも数%程度(室温)と低
く、またΔRそのものも、小さな値でしかなかった。従
って、これらを用いるMRヘッドβでは、トラック幅が
数μmになると、十分なS/N比、感度を実現すること
が困難であった。
The S / N ratio of the MR head β is ΔR / R
It is represented by 0 . NiFe, NiCo, and NiCu, which are typical ferromagnetic materials that have been conventionally used for the MR head β.
In the case of alloys and the like, the MR ratio was as low as several% (room temperature), and ΔR itself was only a small value. Therefore, in the MR head β using these, it was difficult to realize sufficient S / N ratio and sensitivity when the track width became several μm.

【0011】最近、Fe/Cr多層膜において、MR比
が50%となる現象(巨大磁気抵抗効果:M.N.Baibich,
J.M.Broto, A.Fert, F.Nguyen Van Dau, F.Petroff,
P.Eitenne, G.Creuzet, A.Friedrich and J.Chazelas,
Phys. Rev. Lett., 61, 2472'88 )が発見されたが、動
作温度が4.2Kと極低温であり、また20kOeとい
った大きな磁界印加が必要であるため、実用には向かな
い。さらに、抵抗の外部磁界依存性に大きなヒステリシ
スが現れるため、信号検出精度が低くなるという問題点
もある。
Recently, in the Fe / Cr multilayer film, the phenomenon that the MR ratio becomes 50% (giant magnetoresistive effect: MNBaibich,
JMBroto, A.Fert, F.Nguyen Van Dau, F.Petroff,
P.Eitenne, G.Creuzet, A.Friedrich and J.Chazelas,
Phys. Rev. Lett., 61, 2472'88) was discovered, but it is not suitable for practical use because its operating temperature is 4.2K and it is extremely low, and a large magnetic field of 20 kOe is required. Furthermore, since a large hysteresis appears in the dependence of the resistance on the external magnetic field, there is a problem that the signal detection accuracy is lowered.

【0012】さらに、(1)式から明らかなように、M
R効果は磁界反転に対して対称的であるため、極性検出
機能を持たせるためには、直流バイアス磁界印加が必要
となり、そのための方法として、電流バイアス法が提案
されている。当該電流バイアス法は、MR素子6に隣接
して、MR素子6と、電気絶縁して直流バイアス用導体
8を設置し、当該直流バイアス用導体8に流した直流バ
イアス電流による直流バイアス磁界を利用する方法であ
る。
Further, as is clear from the equation (1), M
Since the R effect is symmetrical with respect to the magnetic field reversal, it is necessary to apply a DC bias magnetic field in order to have a polarity detection function, and a current bias method has been proposed as a method therefor. The current bias method uses a DC bias magnetic field due to a DC bias current flowing through the DC bias conductor 8 by electrically insulating the DC bias conductor 8 from the MR element 6 adjacent to the MR element 6. Is the way to do it.

【0013】しかし、この電流バイアス法においては、
構成部品数が増え、部品設計上及び部品作製上、複雑さ
が伴うという問題点が存在する。以上のように、従来の
リング型インダクティブ磁気ヘッドαでは記録密度を向
上させると再生出力が急減するという問題点が、MRヘ
ッドβではS/N比,感度及び信号検出精度が低く、ま
た、電流バイアス法を採用すれば部品構成が複雑になる
という問題点が存在した。
However, in this current bias method,
There is a problem that the number of constituent parts increases and complexity is involved in part design and part manufacture. As described above, in the conventional ring-type inductive magnetic head α, the problem that the reproduction output sharply decreases when the recording density is improved is that the MR head β has a low S / N ratio, sensitivity and signal detection accuracy, and the current If the bias method is adopted, there is a problem that the component structure becomes complicated.

【0014】ここにおいて、本発明は、再生出力の低
さ、S/N比、感度、信号検出精度の低さ、部品構成の
複雑さを解決した、磁気ヘッド及び磁気記録再生方法を
提供せんとするものである。
In this case, the present invention provides a magnetic head and a magnetic recording / reproducing method that solve the problems of low reproduction output, S / N ratio, sensitivity, low signal detection accuracy, and complexity of component structure. To do.

【0015】前記従来の課題の解決は、本発明が次に列
挙する新規な特徴的構成手段及び手法を採用することに
より達成される。すなわち、本発明装置の特徴は、リン
グ型インダクティブ磁気ヘッドにおいて、磁性層のみか
らなる単板状材料、あるいは、磁性層と非磁性絶縁層と
を交互に多重積層した合板状材料からなる磁性体コア
と、当該磁性体コア外部に巻回される巻線コイルと、前
記磁性体コア内又は外側面に直接又は非磁性絶縁体を介
して少なくとも1対以上の検出用導体電極を配される検
出用導体とを具備してなる磁気ヘッドである。
The solution of the above-mentioned conventional problems can be achieved by the present invention by adopting the novel characteristic construction means and methods listed below. That is, the device of the present invention is characterized in that, in the ring-type inductive magnetic head, a magnetic material core made of a single plate-shaped material consisting of only magnetic layers or a plywood-shaped material in which magnetic layers and nonmagnetic insulating layers are alternately laminated And a winding coil wound outside the magnetic core, and at least one pair of detecting conductor electrodes disposed inside or outside the magnetic core directly or through a nonmagnetic insulator for detection. A magnetic head including a conductor.

【0016】本発明方法の第1の特徴は、磁性層のみか
らなる単板状材料、あるいは、磁性層と非磁性絶縁層と
を交互に多重積層した合板状材料からなる磁性体コア
と、当該磁性体コア外部に巻回される巻線コイルと、前
記磁性体コア内又は外側面に直接又は非磁性絶縁体を介
して少なくとも1対以上の検出用導体電極を配される検
出用導体とを具備した磁気ヘッドの、当該検出用導体に
高周波電流を印加し、磁気媒体の記録情報を反映する前
記磁性体コアの磁化状態に応じて、前記検出用導体のイ
ンピーダンスが変化することに基づいて、前記磁気媒体
の記録情報を再生してなる磁気記録再生方法である。
A first feature of the method of the present invention is a magnetic material core made of a single plate material consisting of only magnetic layers, or a plywood material in which magnetic layers and non-magnetic insulating layers are alternately laminated. A winding coil wound outside the magnetic core, and a detection conductor in which at least one pair of detection conductor electrodes are arranged inside or outside the magnetic core directly or via a non-magnetic insulator. A high frequency current is applied to the detection conductor of the magnetic head provided, and the impedance of the detection conductor changes according to the magnetization state of the magnetic core that reflects the recorded information of the magnetic medium. It is a magnetic recording / reproducing method for reproducing recorded information on the magnetic medium.

【0017】本発明方法の第2の特徴は、磁性層のみか
らなる単板状材料、あるいは、磁性層と非磁性絶縁層と
を交互に多重積層した合板状材料からなる磁性体コア
と、当該磁性体コア外部に巻回される巻線コイルと、前
記磁性体コア内又は外側面に直接又は非磁性絶縁体を介
して少なくとも1対以上の検出用導体電極を配される検
出用導体とを具備した磁気ヘッドの、当該検出用導体に
高周波電流を印加し、当該検出用導体又は前記巻線コイ
ルに直流バイアス電流を流し、磁気媒体の記録情報を反
映する前記磁性体コアの磁化状態に応じて、前記検出用
導体のインピーダンスが変化することに基づいて、前記
磁気媒体の記録情報を再生してなる磁気記録再生方法で
ある。
The second feature of the method of the present invention is that the magnetic material core is made of a single plate material consisting of only magnetic layers, or a plywood material in which magnetic layers and nonmagnetic insulating layers are alternately laminated. A winding coil wound outside the magnetic core, and a detection conductor in which at least one pair of detection conductor electrodes are arranged inside or outside the magnetic core directly or via a non-magnetic insulator. A high-frequency current is applied to the detection conductor of the magnetic head provided, and a DC bias current is applied to the detection conductor or the winding coil, depending on the magnetization state of the magnetic core that reflects the recorded information on the magnetic medium. Then, the magnetic recording / reproducing method comprises reproducing the recorded information on the magnetic medium based on the change of the impedance of the detecting conductor.

【0018】本発明方法の第3の特徴は、前記本発明方
法の第1又は第2の特徴における検出用導体に印加され
る高周波電流の周波数が、磁性体コアに用いられた磁性
体の磁気共鳴周波数近傍である磁気記録再生方法であ
る。
The third feature of the method of the present invention is that the frequency of the high frequency current applied to the detecting conductor in the first or second feature of the method of the present invention is the magnetic property of the magnetic substance used for the magnetic core. This is a magnetic recording / reproducing method in the vicinity of the resonance frequency.

【0019】[0019]

【作用】本発明は、前記の手法及び手段を講ずるので、
磁気ヘッドにおける再生過程では、高周波においてイン
ピーダンスが外部磁界において大きく変化する現象を利
用しているため、高再生出力、高S/N比、高感度、高
信号検出精度が得られる。また、検出用導体あるいは巻
線コイルが直流バイアス用導体を兼ねるため、単純な部
品構成により信号磁界の極性検出が可能となる。
Since the present invention takes the above-mentioned method and means,
In the reproducing process of the magnetic head, the phenomenon that the impedance largely changes in the external magnetic field at a high frequency is utilized, so that a high reproducing output, a high S / N ratio, a high sensitivity, and a high signal detection accuracy can be obtained. Further, since the detection conductor or the winding coil also serves as the DC bias conductor, the polarity of the signal magnetic field can be detected with a simple component configuration.

【0020】[0020]

【実施例】【Example】

(装置例)本発明の装置例を図面につき説明する。図1
(a)は本発明の装置例を示す磁気ヘッドの縦断面図、
図1(b)は図1(a)中Ib−Ib線視断面図、図2
は検出端の配設位置のバリエーションを示した模型図で
ある。
(Example of Device) An example of the device of the present invention will be described with reference to the drawings. Figure 1
(A) is a longitudinal sectional view of a magnetic head showing an example of the apparatus of the present invention,
1B is a sectional view taken along line Ib-Ib in FIG.
[Fig. 4] is a model diagram showing variations of the arrangement positions of detection ends.

【0021】図中、γは本実施例の磁気ヘッド、11は
巻線コイル、12は磁性体コア、13,13′,13″
は非磁性絶縁体、14a,14bは巻線コイル用電極、
15は検出用導体、16a,16bは検出用導体の電
極、17は磁気記録媒体、18は高周波電流発振器、1
9は直流バイアス用電源、20は検波器である。
In the figure, γ is the magnetic head of this embodiment, 11 is a winding coil, 12 is a magnetic core, 13, 13 ', 13 ".
Is a non-magnetic insulator, 14a and 14b are winding coil electrodes,
Reference numeral 15 is a detection conductor, 16a and 16b are detection conductor electrodes, 17 is a magnetic recording medium, 18 is a high-frequency current oscillator, 1
Reference numeral 9 is a DC bias power source, and 20 is a wave detector.

【0022】本装置例の磁気ヘッドγは、中心から外方
に向かって渦巻状に巻回された巻線コイル11と、当該
巻線コイル11の一部下側を抱持する2枚の単板状磁性
材料12a,12bを上端部12cで貼着し、下端に微
小な間隙を有するギャップ12dを形成した磁性体コア
12と、前記巻線コイル11の絶縁を保持しつつ支持し
てなる前記磁性体コア12の間隙に充填された非磁性絶
縁体13と、前記巻線コイル11の中心と周端の両極と
それぞれ電気的に接続されて再生時には直流バイアス電
流を通電される電極14a,14bより構成されてお
り、前記磁性体コア12に形成されたギャップ12dは
磁気記録媒体17の記録面上をトレースする。
The magnetic head γ of the example of the present apparatus has a winding coil 11 spirally wound outward from the center and two single plates that hold a part of the lower side of the winding coil 11. Magnetic material 12a, 12b adhered at the upper end 12c, and a magnetic core 12 having a gap 12d having a minute gap at the lower end, and the above-mentioned magnetic material which is supported while maintaining insulation of the winding coil 11. From the non-magnetic insulator 13 filled in the gap of the body core 12 and the electrodes 14a and 14b electrically connected to both the center and peripheral ends of the winding coil 11 and supplied with a DC bias current during reproduction. The gap 12d formed in the magnetic core 12 traces the recording surface of the magnetic recording medium 17.

【0023】さらに前記磁性体コア12中には、前記ギ
ャップ12dの近傍を経由してV形検出用導体15水平
下端部の検出端15aが非磁性絶縁体13中に埋設され
ており、当該検出用導体15の左右上向末広がり翼状部
15b,15c両上端には検出用導体電極16a,16
bがそれぞれ一体連接されている。
Further, in the magnetic core 12, a detection end 15a at the horizontal lower end of the V-shaped detection conductor 15 is embedded in the non-magnetic insulator 13 via the vicinity of the gap 12d, and the detection is carried out. The detection conductor electrodes 16a, 16 are provided at the upper ends of the wing-shaped portions 15b, 15c of the conductor 15 for spreading upward and downward.
b are integrally connected to each other.

【0024】これら磁性体コア12と検出端15aの相
互の配設位置のバリエーションを図2(a)〜(o)に
示す。検出用導体15に通電された高周波電流による高
周波電磁波のエネルギーを磁性体コア12に付与可能と
する限り、検出端15aの配設は、図2中の(b),
(d),(g),(k),(n)に示すように磁性体コ
ア12の内部、あるいは図2中の(a),(c),
(e),(f),(h),(i),(j),(l),
(m),(o)に示すように近傍の任意の場所に配設す
ることが可能であり、図2に示す以外にも各種のバリエ
ーションが考えられる。なお、検出用導体電極16a,
16bは複数であっても、また、検出端15aは磁性体
コア12に直接設置されていても同様の効果を得ること
が出来る。
Variations of the mutual arrangement positions of the magnetic core 12 and the detection end 15a are shown in FIGS. As long as the energy of the high-frequency electromagnetic wave generated by the high-frequency current supplied to the detection conductor 15 can be applied to the magnetic core 12, the detection end 15a is arranged as shown in (b) of FIG.
As shown in (d), (g), (k), and (n), the inside of the magnetic core 12 or (a), (c), and
(E), (f), (h), (i), (j), (l),
As shown in (m) and (o), it can be arranged in any place in the vicinity, and various variations other than those shown in FIG. 2 are possible. The detection conductor electrodes 16a,
Even if a plurality of 16b are provided and the detection end 15a is directly installed on the magnetic core 12, the same effect can be obtained.

【0025】(方法例)本発明の磁気ヘッドγにおける
記録再生方法を説明する。記録方法としては、図9に示
す従来のリング型インダクティブ磁気ヘッドαと同一の
原理を用いて記録を行う。
(Example of Method) A recording / reproducing method in the magnetic head γ of the present invention will be described. As a recording method, recording is performed using the same principle as that of the conventional ring-type inductive magnetic head α shown in FIG.

【0026】一方、再生過程では、検出用導体15に高
周波電流を印加し、磁性体コア12の磁化状態に応じ
て、検出用導体15のインピーダンスが変化することに
基いて再生を行う。以下に、再生過程の動作原理を説明
する。
On the other hand, in the reproducing process, a high frequency current is applied to the detecting conductor 15 and reproduction is performed based on the impedance of the detecting conductor 15 changing according to the magnetization state of the magnetic core 12. The operation principle of the reproducing process will be described below.

【0027】検出用導体15に周波数fの電流を印加し
た場合、磁性体コア12で電磁波の反射,吸収が起こ
り、検出用導体電極16a,16b間のインピーダンス
Z(f)は下記の式(2)のようになる。 Z(f)=Z0 (f)+ΔZmag (f) …(2) Z0 (f) :検出用導体15のみに由来するインピ
ーダンス ΔZmag (f):磁性体コア12での反射・吸収に由来
する インピーダンスの増加分
When a current of frequency f is applied to the detection conductor 15, the electromagnetic wave is reflected and absorbed by the magnetic core 12, and the impedance Z (f) between the detection conductor electrodes 16a and 16b is expressed by the following equation (2) )become that way. Z (f) = Z 0 (f) + ΔZ mag (f) (2) Z 0 (f): Impedance derived only from the detection conductor 15 ΔZ mag (f): For reflection / absorption in the magnetic core 12. Derived impedance increase

【0028】上記の式(2)においては、Z0 (f)は
周波数が数GHz以下では、周波数に依存せず、ほとん
ど一定値となる。一方、ΔZmag (f)は磁性体コア1
2の比透磁率μr(f)と、 ΔZmag (f) ∝ f・μr(f) …(3) の関係にある。
In the above formula (2), Z 0 (f) is almost constant and does not depend on the frequency when the frequency is several GHz or less. On the other hand, ΔZ mag (f) is the magnetic core 1
The relative permeability μr (f) of 2 and ΔZ mag (f) ∝ f · μr (f) (3) are satisfied.

【0029】磁性体コア12が外部磁界により磁化して
いくと、比透磁率μr(f)は徐々に小さくなり、磁化
飽和状態では比透磁率μr(f)は零となる。この時、
検出用導体電極16a,16b間に生ずる電圧V(pe
ak to peak)の外部磁界H依存性を概念的に
示すと、図3のようになる。
When the magnetic core 12 is magnetized by the external magnetic field, the relative permeability μr (f) gradually decreases, and the relative permeability μr (f) becomes zero in the magnetization saturation state. This time,
The voltage V (pe) generated between the detection conductor electrodes 16a and 16b
The external magnetic field H dependency of ak to peak) is conceptually shown in FIG.

【0030】電流がほぼ一定とすると、S/N比は、 ΔV/V(0)={V(0)−V(H)}/V(0)≒ ΔZmag (f)/{Z0 (f)+ΔZmag (f)} …(4) V(0):外部磁界Hが零時の電圧値 V(H):磁性体コア12が飽和時の電圧値 ΔV :V(0)−V(H) と表され、Z0 (f)は小さく、ΔZmag (f)は高周
波域で大きくなるため、S/N比は非常に大きな値とな
る。また、磁気ヘッドγの磁性体コア12は、弱磁界で
飽和し、ヒステリシスが小さいという特性を持つため、
感度及び信号検出精度も向上する。
Assuming that the current is almost constant, the S / N ratio is ΔV / V (0) = {V (0) -V (H)} / V (0) ≈ΔZ mag (f) / {Z 0 ( f) + ΔZ mag (f)} (4) V (0): voltage value when the external magnetic field H is zero V (H): voltage value when the magnetic core 12 is saturated ΔV: V (0) -V ( H), Z 0 (f) is small, and ΔZ mag (f) is large in the high frequency range, so the S / N ratio becomes a very large value. Further, since the magnetic core 12 of the magnetic head γ has a characteristic that it is saturated in a weak magnetic field and has a small hysteresis,
The sensitivity and signal detection accuracy are also improved.

【0031】ところで、極性検出機能を持たせるために
は、検出用導体15あるいは巻線コイル11に直流電流
を流して直流バイアス磁界Hbiasを発生させ、図3に示
すV−H曲線上の動作点をP0 に移動させる。
By the way, in order to have a polarity detection function, a DC current is passed through the detection conductor 15 or the winding coil 11 to generate a DC bias magnetic field H bias, and the operation on the VH curve shown in FIG. 3 is performed. Move point to P 0 .

【0032】この際、本方法例で用いる磁気ヘッドγで
は、検出用導体15あるいは巻線コイル11が、図10
に示す従来例のリング型インダクティブ磁気ヘッドβの
直流バイアス用導体を兼ねるため、部品構成が単純化さ
れる。さらに、P0 をV−H曲線の勾配が最大となる点
とすることにより、検出感度を一層向上させることが可
能となる。
At this time, in the magnetic head γ used in this example of the method, the detecting conductor 15 or the winding coil 11 has a structure shown in FIG.
Since it also serves as the DC bias conductor of the ring-type inductive magnetic head β of the conventional example shown in (3), the component structure is simplified. Further, by setting P 0 to the point where the gradient of the VH curve is maximized, it becomes possible to further improve the detection sensitivity.

【0033】図4に再生過程のブロックダイアグラム
を、図5(A)〜(E)に図4中A点〜E点における各
部の信号波形をそれぞれ示す。高周波電流発振器18か
らは図5(A)に示すような例えば800MHzの高周
波電流が検出用導体15に、また直流バイアス用電源1
9からは図5(B)に示すような直流バイアス電流が検
出用導体15あるいは巻線コイル11にそれぞれ印加さ
れる。
FIG. 4 shows a block diagram of the reproducing process, and FIGS. 5A to 5E show signal waveforms at points A to E in FIG. 4, respectively. A high-frequency current of, for example, 800 MHz from the high-frequency current oscillator 18 to the detection conductor 15 as shown in FIG.
From 9, a DC bias current as shown in FIG. 5B is applied to the detection conductor 15 or the winding coil 11.

【0034】この直流バイアス電流によって直流バイア
ス磁界Hbiasが発生し、動作点は図3に示すP0 点に移
動する。信号磁界として、ここでは、図5(C)に示す
例えば30MHzの磁界を印加し、これによって電極1
6a,16b間の電圧Vが図3に示すV(P1 )とV
(P2 )を往復する。
A DC bias magnetic field H bias is generated by this DC bias current, and the operating point moves to point P 0 shown in FIG. As the signal magnetic field, here, for example, a magnetic field of 30 MHz shown in FIG.
The voltage V between 6a and 16b is V (P 1 ) and V shown in FIG.
Go back and forth on (P 2 ).

【0035】電極16a,16b間には、800MHz
の信号が30MHzの信号で振幅変調された電圧が、図
5(D)で示すように発生する。これを検波器20に通
すことにより、30MHzの信号を図5(E)に示す出
力電圧として再生することができる。
800 MHz between the electrodes 16a and 16b
A voltage obtained by amplitude-modulating the signal of 30 MHz with the signal of 30 MHz is generated as shown in FIG. By passing this through the wave detector 20, a 30 MHz signal can be reproduced as the output voltage shown in FIG.

【0036】本装置例の磁気ヘッドγでは、高周波電磁
波が磁性体コア12で反射・吸収される現象を利用して
いるが、この際、表皮効果のため、磁性体コア12の有
効体積が減少し、反射・吸収量が低減する。
In the magnetic head γ of the example of the present device, a phenomenon in which high frequency electromagnetic waves are reflected and absorbed by the magnetic core 12 is utilized. At this time, the effective volume of the magnetic core 12 is reduced due to the skin effect. However, the amount of reflection / absorption is reduced.

【0037】これを回避するためには、図6に示すよう
に、磁性体コア12の単板状磁性材料12a,12bに
代えて磁性層12eと非磁性絶縁層12fとを交互に多
重積層した多層構造とすることが効果的であり、また、
この場合、磁性層12eの厚さを表皮効果により通過可
能な限界である表皮深さよりも薄く形成すること、ま
た、非磁性絶縁層12fの厚さを磁性層12e間の電気
的絶縁を保ち得る厚さ以上に形成すると、より効果的で
ある。
In order to avoid this, as shown in FIG. 6, instead of the single-plate magnetic materials 12a and 12b of the magnetic core 12, magnetic layers 12e and nonmagnetic insulating layers 12f are alternately laminated in multiple layers. It is effective to have a multilayer structure, and
In this case, the thickness of the magnetic layer 12e may be formed to be thinner than the skin depth which is the limit that can be passed by the skin effect, and the thickness of the non-magnetic insulating layer 12f may maintain the electrical insulation between the magnetic layers 12e. It is more effective if it is formed more than the thickness.

【0038】(測定例)図7に本装置例を使用した本方
法例の測定例を示す。本測定例においては、図1に示し
た磁気ヘッドγを使用し、磁性体コア12合板状材料1
2a′,12b′の磁性層12eには50nm厚のNi
Fe合金を、非磁性絶縁層12fには50nm厚のSi
2 を使用し、図6に示すような多重積層構造を採用し
た。
(Measurement Example) FIG. 7 shows a measurement example of this method example using this apparatus example. In this measurement example, the magnetic head γ shown in FIG.
The magnetic layers 12e of 2a 'and 12b' are made of Ni of 50 nm thickness.
Fe alloy is used for the non-magnetic insulating layer 12f, and Si of 50 nm thickness is used.
O 2 was used and a multi-layer structure as shown in FIG. 6 was adopted.

【0039】さらに、磁性体コア12の全体膜厚は3μ
m、磁性体コア12の先端部の幅は10μm、ギャップ
12d間隙幅は0.3μmとし、検出用導体15には1
μm厚のCuを使用し、検出用導体15幅は10μmと
した。測定はすべて室温で行った。
Further, the total thickness of the magnetic core 12 is 3 μm.
m, the width of the tip of the magnetic core 12 is 10 μm, the gap 12d is 0.3 μm in width, and the detection conductor 15 has a width of 1 μm.
Cu having a thickness of μm was used, and the width of the detection conductor 15 was 10 μm. All measurements were performed at room temperature.

【0040】図7に電圧変化比ΔV/V(0)の周波数
f依存性を示す。ΔV/V(0)は数百MHzから1G
Hz付近で60〜70%の大きな値となる。この周波数
帯域でΔV/V(0)が大きくなるのは、この周波数帯
域が、磁性体コア12に用いたNiFe合金の磁気共鳴
周波数600MHz〜1GHzに一致するためである。
FIG. 7 shows the frequency f dependence of the voltage change ratio ΔV / V (0). ΔV / V (0) is from several hundred MHz to 1G
It becomes a large value of 60 to 70% near Hz. The reason why ΔV / V (0) becomes large in this frequency band is that this frequency band coincides with the magnetic resonance frequency of 600 MHz to 1 GHz of the NiFe alloy used for the magnetic core 12.

【0041】ここで、図8に、800MHzでの電圧V
(peak to peak)の外部磁界H依存性を示
す。電圧VはNiFe合金の異方性磁界である5Oe前
後で大きく減少し、大体20Oeでほぼ一定値となる。
Here, in FIG. 8, the voltage V at 800 MHz
The dependence of (peak to peak) on the external magnetic field H is shown. The voltage V greatly decreases around 5 Oe, which is the anisotropic magnetic field of the NiFe alloy, and has a substantially constant value at approximately 20 Oe.

【0042】以上のように、本測定例では、60〜70
%の大きなS/N比が得られ、また数Oeの小さな外部
磁界Hでも大きな電圧変化を生じるため、感度も高い。
なお、外部磁界Hの増減を繰り返しても、ヒステリシス
は観測されず、信号検出感度は高いことが確認された。
As described above, in this measurement example, 60 to 70
%, A large S / N ratio is obtained, and a large voltage change is generated even with a small external magnetic field H of several Oe, so that the sensitivity is high.
It should be noted that no hysteresis was observed even when the external magnetic field H was repeatedly increased and decreased, and it was confirmed that the signal detection sensitivity was high.

【0043】なお、図7からわかるように、ΔV/V
(0)は高周波電流の周波数を磁性体コア12に用いた
磁性体の磁気共鳴周波数付近とした場合、最大となる。
従って、高S/N比及び高感度を得るためには、本装置
例γを磁性体コア12に用いる磁性体の磁気共鳴周波数
近傍で動作させることが効果的である。
As can be seen from FIG. 7, ΔV / V
(0) becomes maximum when the frequency of the high frequency current is set near the magnetic resonance frequency of the magnetic material used for the magnetic core 12.
Therefore, in order to obtain a high S / N ratio and high sensitivity, it is effective to operate the device example γ in the vicinity of the magnetic resonance frequency of the magnetic material used for the magnetic core 12.

【0044】また、磁性層12eの材料としては、F
e,Co,NiにFe,Co,Ni,Zr,Nb,Y,
Hf,Ti,Mo,W,Ta,Si,B,Reのうち、
単独あるいは複数の元素を添加した材料を、非磁性絶縁
層12fとしては、SiO2 ,AlN,Al2 3 ,B
N,TiN,SiCを、また検出用導体15としては、
Cu,Al,Ag,Au,Pt,Sn,Cr,Zn,I
nを各々用いた場合、同等の効果を得ることができる。
The material of the magnetic layer 12e is F
e, Co, Ni to Fe, Co, Ni, Zr, Nb, Y,
Of Hf, Ti, Mo, W, Ta, Si, B, Re,
The non-magnetic insulating layer 12f may be made of SiO 2 , AlN, Al 2 O 3 , or B, which may be made of a single material or a material containing a plurality of elements.
N, TiN, SiC, and the detection conductor 15 are
Cu, Al, Ag, Au, Pt, Sn, Cr, Zn, I
When n is used, the same effect can be obtained.

【0045】[0045]

【発明の効果】以上、説明したように、本発明によれ
ば、従来の装置及び方法と比較して、再生出力,S/
N,感度がいずれも非常に高くなるため、磁気記録の高
記録密度化に対して、非常に優れた有用性を発揮する。
また、従来の電流バイアス法を適用した磁気抵抗効果型
ヘッドと比較すると、検出用導体あるいは巻線コイルが
直流バイアス用導体を兼ねるため、構成部品点数の削
減、構成の簡易化による製造コストの低減、製作工程の
削減を図ることができ、量産性及び経済性に優れる。
As described above, according to the present invention, compared with the conventional apparatus and method, reproduction output, S /
Since both N and sensitivity are extremely high, they are very useful for increasing the recording density of magnetic recording.
In addition, compared with the conventional magnetoresistive head that applies the current bias method, the detection conductor or winding coil also serves as the DC bias conductor, reducing the number of components and reducing the manufacturing cost by simplifying the configuration. The manufacturing process can be reduced, and mass productivity and economic efficiency are excellent.

【0046】さらに、従来の巨大磁気抵抗効果と比較し
た場合、常温での動作、直流バイアス磁界の印加量の低
減、低磁界応答が可能であり、再生に際し、極低温等の
特殊な周囲環境を設定する必要がなく、さらにヒステリ
シスが小さく高精度な検出が可能であり、検出系の構成
が単純で感度が高く、高信頼性を有するなどの数々の優
れた特徴を発揮する。
Further, when compared with the conventional giant magnetoresistive effect, it is possible to operate at room temperature, reduce the amount of application of the DC bias magnetic field, and have a low magnetic field response. It does not need to be set, has a small hysteresis, enables highly accurate detection, has a simple configuration of the detection system, has high sensitivity, and has high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の装置例を示す磁気ヘッドの縦
断正面図,(b)は同・Ib−Ib線視断面図である。
FIG. 1A is a vertical sectional front view of a magnetic head showing an example of the device of the present invention, and FIG. 1B is a sectional view taken along line Ib-Ib of FIG.

【図2】同上、検出端配設位置のバリエーションを示し
た模型図である。
FIG. 2 is a model diagram showing variations of the positions where the detection ends are arranged.

【図3】本発明の方法例を説明する電圧Vと外部磁界H
との相関特性線図である。
FIG. 3 is a voltage V and an external magnetic field H illustrating an example of the method of the present invention.
It is a correlation characteristic diagram with.

【図4】同上、再生過程のブロックダイアグラムであ
る。
FIG. 4 is a block diagram of a reproduction process of the same.

【図5】図4中の、各A〜E点のそれぞれの波形図であ
る。
5 is a waveform diagram of points A to E in FIG.

【図6】磁性体コアの一部拡大縦断側面図である。FIG. 6 is a partially enlarged vertical side view of a magnetic core.

【図7】本発明の方法例による測定例を説明する、電圧
変化比ΔV/V(0)と周波数fとの相関特性線図であ
る。
FIG. 7 is a correlation characteristic diagram of a voltage change ratio ΔV / V (0) and a frequency f for explaining a measurement example according to the method example of the present invention.

【図8】同上、電圧Vと外部磁界Hとの相関特性線図で
ある。
FIG. 8 is a correlation characteristic diagram of the voltage V and the external magnetic field H of the above.

【図9】(a)は従来のリング型インダクティブ磁気ヘ
ッドの縦断正面図、(b)はIXb−IXb線視断面図であ
る。
9A is a vertical sectional front view of a conventional ring-type inductive magnetic head, and FIG. 9B is a sectional view taken along line IXb-IXb.

【図10】電流バイアス法を適用する、従来の磁気抵抗
効果型ヘッド(MRヘッド)の構成原理図である。
FIG. 10 is a structural principle diagram of a conventional magnetoresistive head (MR head) to which a current bias method is applied.

【符号の説明】[Explanation of symbols]

α…リング型インダクティブ磁気ヘッド β…磁気抵抗効果型ヘッド γ…本発明の磁気ヘッド 1,11…巻線コイル 2,12…磁性体コア 3…非磁性絶縁体 4a,4b…電極 5,10,17…磁気記録媒体 6…磁気抵抗素子 7a,7b…検出用電極 8…直流バイアス用導体 9a,9b…直流バイアス電流供給電極 12a,12b…単板状磁性材料 12a′,12b′…合板状磁性材料 12c…上端部 2a,12d…ギャップ 12e…磁性層 12f…非磁性絶縁層 13,13′,13″…非磁性絶縁体 14a,14b…巻線コイル用電極 15…検出用導体 15a…検出端 15b,15c…上向末広がり翼状部 16a,16b…検出用導体電極 18…高周波電流発振器 19…直流バイアス用電源 20…検波器 α ... Ring-type inductive magnetic head β ... Magnetoresistive head γ ... Magnetic head of the present invention 1, 11 ... Winding coil 2, 12 ... Magnetic core 3 ... Nonmagnetic insulator 4a, 4b ... Electrode 5, 10, 17 ... Magnetic recording medium 6 ... Magnetoresistive element 7a, 7b ... Detection electrode 8 ... DC bias conductor 9a, 9b ... DC bias current supply electrode 12a, 12b ... Single plate magnetic material 12a ', 12b' ... Ply plate magnetic Material 12c ... Upper end 2a, 12d ... Gap 12e ... Magnetic layer 12f ... Nonmagnetic insulating layer 13, 13 ', 13 "... Nonmagnetic insulator 14a, 14b ... Winding coil electrode 15 ... Detection conductor 15a ... Detection end Numerals 15b, 15c ... upward divergent wings 16a, 16b ... detection conductor electrode 18 ... high-frequency current oscillator 19 ... DC bias power supply 20 ... detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 越本 泰弘 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yasuhiro Koshimoto 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リング型インダクティブ磁気ヘッドにおい
て、 磁性層のみからなる単板状材料、あるいは、磁性層と非
磁性絶縁層とを交互に多重積層した合板状材料からなる
磁性体コアと、 当該磁性体コア外部に巻回される巻線コイルと、 前記磁性体コア内又は外側面に直接又は非磁性絶縁体を
介して少なくとも1対以上の検出用導体電極を配される
検出用導体とを具備することを特徴とした磁気ヘッド。
1. In a ring-type inductive magnetic head, a magnetic core made of a single plate-shaped material consisting of only magnetic layers or a plywood-shaped material in which magnetic layers and non-magnetic insulating layers are alternately laminated in multiple layers, A winding coil wound outside the body core; and a detection conductor in which at least one pair of detection conductor electrodes are arranged inside or on the outer surface of the magnetic core directly or via a non-magnetic insulator. A magnetic head characterized by:
【請求項2】磁性層のみからなる単板状材料、あるい
は、磁性層と非磁性絶縁層とを交互に多重積層した合板
状材料からなる磁性体コアと、 当該磁性体コア外部に巻回される巻線コイルと、 前記磁性体コア内又は外側面に直接又は非磁性絶縁体を
介して少なくとも1対以上の検出用導体電極を配される
検出用導体とを具備した磁気ヘッドの、 当該検出用導体に高周波電流を印加し、 磁気媒体の記録情報を反映する前記磁性体コアの磁化状
態に応じて、前記検出用導体のインピーダンスが変化す
ることに基づいて、前記磁気媒体の記録情報を再生する
ことを特徴とした磁気記録再生方法。
2. A magnetic material core made of a single plate material composed only of a magnetic layer or a plywood material in which magnetic layers and non-magnetic insulating layers are alternately laminated in multiple layers, and wound around the outside of the magnetic material core. A magnetic head comprising: a winding coil; and a detection conductor in which at least one pair of detection conductor electrodes are arranged inside or on the outer surface of the magnetic body directly or via a non-magnetic insulator. When a high-frequency current is applied to the recording conductor, the recorded information on the magnetic medium is reproduced based on the impedance of the detecting conductor changing according to the magnetization state of the magnetic core that reflects the recorded information on the magnetic medium. A magnetic recording / reproducing method characterized by:
【請求項3】磁性層のみからなる単板状材料、あるい
は、磁性層と非磁性絶縁層とを交互に多重積層した合板
状材料からなる磁性体コアと、 当該磁性体コア外部に巻回される巻線コイルと、 前記磁性体コア内又は外側面に直接又は非磁性絶縁体を
介して少なくとも1対以上の検出用導体電極を配される
検出用導体とを具備した磁気ヘッドの、 当該検出用導体に高周波電流を印加し、 当該検出用導体又は前記巻線コイルに直流バイアス電流
を流し、 磁気媒体の記録情報を反映する前記磁性体コアの磁化状
態に応じて、前記検出用導体のインピーダンスが変化す
ることに基づいて、前記磁気媒体の記録情報を再生する
ことを特徴とした磁気記録再生方法。
3. A magnetic material core made of a single plate material consisting only of a magnetic layer, or a plywood material in which magnetic layers and non-magnetic insulating layers are alternately laminated in multiple layers, and wound around the outside of the magnetic material core. A magnetic head comprising: a winding coil; and a detection conductor in which at least one pair of detection conductor electrodes are arranged inside or on the outer surface of the magnetic body directly or via a non-magnetic insulator. A high-frequency current is applied to the detection conductor, a DC bias current is applied to the detection conductor or the winding coil, and the impedance of the detection conductor is changed according to the magnetization state of the magnetic core that reflects the recorded information of the magnetic medium. The magnetic recording / reproducing method is characterized in that the recorded information on the magnetic medium is reproduced on the basis of the change of.
【請求項4】検出用導体に印加される高周波電流の周波
数が、磁性体コアに用いられた磁性体の磁気共鳴周波数
近傍であることを特徴とする請求項2又は請求項3記載
の磁気記録再生方法。
4. The magnetic recording according to claim 2, wherein the frequency of the high frequency current applied to the detecting conductor is in the vicinity of the magnetic resonance frequency of the magnetic material used for the magnetic core. How to play.
JP30154493A 1993-08-25 1993-12-01 Magnetic head and magnetic recording/reproducing method Pending JPH07153032A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP30154493A JPH07153032A (en) 1993-12-01 1993-12-01 Magnetic head and magnetic recording/reproducing method
DE69431614T DE69431614T2 (en) 1993-08-25 1994-08-24 Magnetic field measuring method and device
EP94401890A EP0640840B1 (en) 1993-08-25 1994-08-24 Magnetic field sensing method and apparatus
US08/593,386 US5734267A (en) 1993-08-25 1996-01-29 Magnetic head, magnetic recording method using the magnetic head, and magnetic field sensing method using the magnetic head based on impedance changes of a high frequency excited conductor
US08/593,387 US5811971A (en) 1993-08-25 1996-01-29 Magnetic sensor and magnetic field sensing method using said magnetic sensor based on impedance changes of a high frequency excited conductor
US08/631,402 US5705926A (en) 1993-08-25 1996-04-12 Magnetic sensor and magnetic field sensing method of using same based on impedance changes of a high frequency supplied conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30154493A JPH07153032A (en) 1993-12-01 1993-12-01 Magnetic head and magnetic recording/reproducing method

Publications (1)

Publication Number Publication Date
JPH07153032A true JPH07153032A (en) 1995-06-16

Family

ID=17898221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30154493A Pending JPH07153032A (en) 1993-08-25 1993-12-01 Magnetic head and magnetic recording/reproducing method

Country Status (1)

Country Link
JP (1) JPH07153032A (en)

Similar Documents

Publication Publication Date Title
JP6414250B2 (en) Underlying laminated body, laminated element including the same, magnetic sensor, and microwave assisted magnetic head
JP3022023B2 (en) Magnetic recording / reproducing device
US5811971A (en) Magnetic sensor and magnetic field sensing method using said magnetic sensor based on impedance changes of a high frequency excited conductor
JP2006286855A (en) Magnetic oscillation device, magnetic sensor, magnetic head and magnetic reproducer
JP2009301695A (en) Thin-film magnetic head for microwave assist and microwave-assisted magnetic recording method
JPWO2011030449A1 (en) Three-dimensional magnetic recording / reproducing device
JPH10312513A (en) Thin film magnetic head
US8373940B2 (en) Magnetic head having a facing electrode pair for generating an electromagnetic field and applying energy to the magnetic recording layer
JPS6028004A (en) Magnetic recording and reproducing device
US4635152A (en) Magnetic resonance-type playback apparatus including a magnetic material having magnetic anisotropy
KR20090119253A (en) A device for generating high frequency microwave and high frequency magnetic field using spin transfer torque
JPH07153032A (en) Magnetic head and magnetic recording/reproducing method
JPS58166510A (en) Magnetic reproducing device
JPH0763832A (en) Magnetic sensor and method for detecting magnetic field
JPH0793712A (en) Ring type inductive magnetic head and magnetic reproducing method
JPH08330645A (en) Magnetic detection element
JPH07262523A (en) Magnetic head
JP3607815B2 (en) Magnetic head, double-layered perpendicular magnetic recording medium, and magnetic reproducing method
JP3523834B2 (en) Magnetic field sensor and magnetic field sensing system
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPH09251612A (en) Thin film magnetic head
JPH0836715A (en) Magnetoresistance effect-type magnetic head
JPH07326023A (en) Magnetic head and magnetic storage device using the same
JP3537380B2 (en) Magnetic head and magnetic reproducing device
JP2000156317A (en) Magnetic recording and reproducing device