JPH07151257A - Electromagnetic control valve - Google Patents

Electromagnetic control valve

Info

Publication number
JPH07151257A
JPH07151257A JP29688093A JP29688093A JPH07151257A JP H07151257 A JPH07151257 A JP H07151257A JP 29688093 A JP29688093 A JP 29688093A JP 29688093 A JP29688093 A JP 29688093A JP H07151257 A JPH07151257 A JP H07151257A
Authority
JP
Japan
Prior art keywords
moving core
magnetic
magnetic attraction
axial direction
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29688093A
Other languages
Japanese (ja)
Other versions
JP3089626B2 (en
Inventor
Masayasu Ushida
正泰 牛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP05296880A priority Critical patent/JP3089626B2/en
Publication of JPH07151257A publication Critical patent/JPH07151257A/en
Application granted granted Critical
Publication of JP3089626B2 publication Critical patent/JP3089626B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetically Actuated Valves (AREA)

Abstract

PURPOSE:To provide an electromagnetic control valve which permits the control with high precision for the fluid flow rate with a simple structure. CONSTITUTION:The outer ring 8b of a ball bearing 8 which supports the magnetic attraction side of a shaft 11 is formed from a magnetic body. The end part on the magnetic attraction side of a moving core 10 is formed into a taper form so that the outside diameter reduces toward the magnetic attraction side, and the shaft 11 penetrates in the axial direction through the center part. An electric current is supplied into a coil 5 from the state where electric current is not supplied into the coil 5, and when a ring 12 makes contact with the outer ring 8b of the ball bearing 8 on the magnetic attraction side, the gap between the attraction side end surface of the moving core 10 and the opposed surface of the outer ring 8b of the ball bearing 8 becomes 1mm or less. The sufficient magnetic attraction force in the axial direction is generated by the increase of the flow of the magnetic flux in the axial direction, and the constant magnetic attraction characteristic an be obtained independently of the axial direction position of the moving core 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体の流量を制御する
電磁制御弁に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic control valve for controlling the flow rate of fluid.

【0002】[0002]

【従来の技術】従来、この種の電磁制御弁は、ソレノイ
ド部に発生する磁気吸引力によりムービングコアが駆動
されると、スリーブに収容されたスプールがムービング
コアとともに駆動され、この磁気吸引力と磁気吸引力の
反対方向にスプールを付勢するスプリングの付勢力との
合力がスプールを往復動させることにより流体流量を調
整している。このとき、理想的には図7の(C)に示す
ように、電流値に略比例してムービングコアのストロー
ク、すなわち軸方向位置が決定されることが望ましい。
そのためには、図7の(A)に示すように、ソレノイ
ド部に入力する電流とソレノイド部に発生する磁束がム
ービングコアを駆動する磁気吸引力とが略比例し、図
7の(B)に示すように、この磁気吸引力がムービング
コアのストロークに関係なく一定である必要がある。特
に、ムービングコアが磁気吸引力により軸方向に移動す
るため、ムービングコアのストロークに関係なく磁気吸
引力を一定にすることは工夫を要する。吸引力がスプー
ルのストロークに関係なく一定になるように、以下に述
べるような電磁制御弁が知られている。
2. Description of the Related Art Conventionally, in this type of electromagnetic control valve, when a moving core is driven by a magnetic attraction force generated in a solenoid portion, a spool housed in a sleeve is driven together with the moving core, and the magnetic attraction force The resultant force with the biasing force of the spring that biases the spool in the direction opposite to the magnetic attraction force causes the spool to reciprocate, thereby adjusting the fluid flow rate. At this time, ideally, as shown in FIG. 7C, it is desirable that the stroke of the moving core, that is, the axial position, be determined substantially in proportion to the current value.
For that purpose, as shown in FIG. 7A, the current input to the solenoid portion and the magnetic attraction force for driving the moving core by the magnetic flux generated in the solenoid portion are substantially proportional to each other. As shown, this magnetic attraction force needs to be constant regardless of the stroke of the moving core. In particular, since the moving core moves in the axial direction by the magnetic attraction force, it is necessary to devise to make the magnetic attraction force constant regardless of the stroke of the moving core. An electromagnetic control valve as described below is known so that the suction force is constant regardless of the stroke of the spool.

【0003】この電磁制御弁は、スプールと別体に形成
された非磁性体のシャフトを有し、磁気吸引力を受ける
磁性体のムービングコアの中心に両端が突出するように
このシャフトを貫通圧入している。シャフトが受ける摩
擦抵抗を減少し極めてスムーズに軸方向移動できるよう
にシャフトの突出部分の両端をボールベアリングで軸受
支持し、ムービングコアの磁気吸引力を受ける側のシャ
フトの片方端をスプールに当接させている。
This electromagnetic control valve has a shaft made of a non-magnetic material, which is formed separately from the spool. The shaft is penetrated and press-fitted so that both ends of the moving core of the magnetic material receive a magnetic attraction force. is doing. Both ends of the protruding part of the shaft are supported by ball bearings so that the frictional resistance received by the shaft is reduced and the shaft can move extremely smoothly in the axial direction, and one end of the shaft that receives the magnetic attraction force of the moving core abuts the spool. I am letting you.

【0004】また、他の電磁制御弁は、ムービングコア
が吸引移動してムービングコアの横面と対向する磁性体
とのラップ量が増加するのにともない径方向吸引力が増
加し軸方向吸引力が低下するのを防止するため、ムービ
ングコアの吸引側端部が先端に行くに従って外径が細く
なるテーパ状に形成されている。また、さらに他の電磁
制御弁は、ムービングコアの吸引側端面と対向接近する
磁性体の対向面を設けることによりムービングコアの吸
引側端面とこの磁性体の対向面との間で磁気吸引力を発
生させ、前記軸方向吸引力の低下をさらに防止してい
る。しかしこの電磁制御弁では、ムービングコアの吸引
側端面と前記磁性体の対向面とが当接するとムービング
コアの吸引側端面と磁性体の対向面とが強力な吸引力で
吸着し、ソレノイド部の電流を遮断しても即時に離間し
ないという問題がある。その対策として、ムービングコ
アの吸引側端面と対向面との間に非磁性体部材を介在さ
せることが考えられる。非磁性体部材を介在させる方法
として、スプール一体式のムービングコアに非磁性体部
材を圧入するもの、また、ムービングコアとボールベア
リングとの間に別体部品として非磁性体部材を配置する
等の方法がある。このとき、ムービングコアが最も吸引
側へ移動したとき、ムービングコアと磁性体の対向面と
のギャップ、すなわち磁性体部材の軸方向介在部材が磁
気吸引特性に大きく影響する。
Further, in the other electromagnetic control valve, as the moving core sucks and moves, and the lapping amount between the lateral surface of the moving core and the facing magnetic body increases, the radial attractive force increases and the axial attractive force increases. In order to prevent the movement of the moving core from decreasing, the suction side end of the moving core is formed in a taper shape whose outer diameter becomes smaller toward the tip. Further, another electromagnetic control valve provides a magnetic attraction force between the attraction side end face of the moving core and this magnetic substance face by providing a facing face of the magnetic body facing and approaching the attraction side end face of the moving core. It is generated to further prevent the axial suction force from decreasing. However, in this electromagnetic control valve, when the suction side end surface of the moving core and the facing surface of the magnetic body come into contact with each other, the suction side end surface of the moving core and the facing surface of the magnetic body are attracted by a strong suction force, and There is a problem that even if the current is cut off, the current is not separated immediately. As a countermeasure against this, a non-magnetic member may be interposed between the end surface of the moving core on the suction side and the facing surface. As a method of interposing the non-magnetic member, for example, a non-magnetic member is press-fitted into a spool-integrated moving core, or a non-magnetic member is arranged as a separate component between the moving core and the ball bearing. There is a way. At this time, when the moving core moves to the most attraction side, the gap between the moving core and the facing surface of the magnetic material, that is, the axially interposed member of the magnetic material member greatly affects the magnetic attraction characteristics.

【0005】[0005]

【発明が解決しようとする課題】このような従来の電磁
制御弁では、ムービングコアの吸引側端部を先端にいく
に従い外径が小さくなるテーパ形状にしたものでは、ム
ービングコアのテーパ部と径方向に対向する磁性体との
ラップ量が増加するにともない軸方向吸引力の低下があ
る程度防止されるがまだ不十分である。また、非磁性体
部材を介在させ、ムービングコアの吸引側端面とこの吸
引側端面と対向する磁性体が吸着することを防止する電
磁制御弁では、ムービングコアの吸引側端面と対向磁性
体との接近にともない発生する磁気吸引力を増加させる
ため非磁性体の厚みはある程度の薄さが必要であるが、
薄すぎると組付け性、耐久性が悪化するという問題があ
る。
In such a conventional electromagnetic control valve, in the case where the moving core has a taper shape in which the outer diameter becomes smaller toward the tip, the suction side end of the moving core becomes smaller than the diameter of the moving core. A decrease in the axial attraction force is prevented to some extent as the amount of wrapping with the magnetic body facing in the direction increases, but this is still insufficient. Further, in the electromagnetic control valve that prevents the attraction of the suction side end surface of the moving core and the magnetic body facing the suction side end surface with the non-magnetic member interposed, the suction side end surface of the moving core and the facing magnetic body are separated from each other. The nonmagnetic material must be thin to some extent in order to increase the magnetic attraction force generated as it approaches.
If it is too thin, there is a problem that the assembling property and durability deteriorate.

【0006】本発明はこのような問題点を解決するため
になされたもので、簡単な構造で流体流量の高精度な制
御を可能にする電磁制御弁を提供する。
The present invention has been made to solve the above problems, and provides an electromagnetic control valve that enables highly accurate control of a fluid flow rate with a simple structure.

【0007】[0007]

【課題を解決するための手段】前記目的を達成するため
の本発明の電磁流体制御弁は、筒状に形成され、流体の
通路となる開口部を有するスリーブと、前記スリーブの
内壁に摺動可能に支持され、大径部と小径部とを有する
スプールと、筒状に形成され、前記スリーブの軸方向端
部に固定され、周囲にコイルを巻回した磁性体からなる
磁気駆動部と、筒状に形成され、磁気吸引側端面に環状
の溝を形成するとともに磁気吸引側端部に磁気吸引側に
進むに従い外径が減少するテーパ部を形成した磁性体か
らなるムービングコアと、前記溝から突出するように前
記溝に嵌合する非磁性体からなるリングと、前記ムービ
ングコアを軸方向に貫通して固定され、前記スプールの
軸方向端部に当接可能な非磁性体からなるシャフトと、
前記シャフトの両端を軸方向に滑らかに摺動可能に支持
するように前記磁気駆動部に固定される支持部材であっ
て、前記シャフトの両端のうち磁気吸引側を支持する前
記支持部材において、前記ムービングコアと軸方向に対
向する磁気吸引側の対向面が磁性体で形成される支持部
材と、を備えたことを特徴とする。
The electromagnetic fluid control valve of the present invention for achieving the above object is a sleeve formed in a tubular shape and having an opening serving as a passage for a fluid, and sliding on an inner wall of the sleeve. A spool having a large-diameter portion and a small-diameter portion that are movably supported, and a magnetic drive portion that is formed in a tubular shape, is fixed to the axial end portion of the sleeve, and includes a magnetic body around which a coil is wound, A moving core made of a magnetic material, which is formed in a tubular shape and has an annular groove formed on the end surface of the magnetic attraction side and a taper portion whose outer diameter decreases toward the magnetic attraction side at the end portion of the magnetic attraction side, and the groove. A ring made of a non-magnetic material that fits in the groove so as to project from the shaft, and a shaft made of a non-magnetic material that is fixed by axially penetrating the moving core and is capable of contacting the axial end of the spool. When,
A support member fixed to the magnetic drive unit so as to support both ends of the shaft so as to be slidable in the axial direction smoothly, wherein the support member supports the magnetic attraction side of both ends of the shaft, And a support member having a magnetic attraction side facing surface that faces the moving core in the axial direction and is made of a magnetic material.

【0008】[0008]

【作用】本発明の電磁制御弁によると、ソレノイド部に
発生する磁束によりムービングコアが吸引されるとき、
滑らかに軸方向に摺動可能にシャフトを支持部材で支持
するためシャフトが軸方向に往復動するときの摩擦抵抗
が減少する。また、ムービングコアの吸引側端部をテー
パ状に形成したことによりムービングコアの軸方向位置
に係わらず磁気吸引力が変化しにくくなる。また、シャ
フトの磁気吸引側を支持する支持部材において、ムービ
ングコアと対向する対向面を磁性体で形成することによ
り、軸方向の磁気吸引力の低下をさらに減少する。この
とき、ムービングコアの吸引側端面に設けた溝に非磁性
体を突出するように嵌合することにより、ムービングコ
アと支持部材とが吸着することを防止するとともにムー
ビングコアと支持部材とのギャップを小さくできる。
According to the electromagnetic control valve of the present invention, when the moving core is attracted by the magnetic flux generated in the solenoid,
Since the shaft is supported slidably in the axial direction by the support member, frictional resistance when the shaft reciprocates in the axial direction is reduced. Further, since the end portion of the moving core on the suction side is formed in a tapered shape, the magnetic attraction force is unlikely to change regardless of the axial position of the moving core. Further, in the support member that supports the magnetic attraction side of the shaft, the opposing surface that faces the moving core is formed of a magnetic material, so that the decrease in the magnetic attraction force in the axial direction is further reduced. At this time, by fitting the non-magnetic material so as to project into the groove provided on the end surface of the moving core on the suction side, it is possible to prevent the moving core and the supporting member from being attracted and to prevent the gap between the moving core and the supporting member. Can be made smaller.

【0009】[0009]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本発明の電磁制御弁を内燃機関のバルブタイミン
グ調整装置の油圧制御弁に適用した一実施例を図1およ
び図2に示す。図1は、ソレノイド部1に電流を流さな
いで磁気吸引力を発生させていない状態、図2は、ソレ
ノイド部1に電流を流して磁気吸引力を発生させてムー
ビングコアを作動させた状態を示す。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show an embodiment in which the electromagnetic control valve of the present invention is applied to a hydraulic control valve of a valve timing adjusting device for an internal combustion engine. 1 shows a state in which a magnetic attraction force is not generated without passing a current through the solenoid portion 1, and FIG. 2 shows a state in which a current is passed through the solenoid portion 1 to generate a magnetic attraction force to operate the moving core. Show.

【0010】油圧制御弁は、電流を供給することにより
磁気吸引力を発生するソレノイド部1、ソレノイド部1
で発生する磁気吸引力により駆動され、制御室21およ
び22に供給するオイル流量と制御室21および22か
ら排出するオイルの流量とを調整するスプール制御弁2
からなる。ソレノイド部1は、円筒状の磁性体であるヨ
ーク3とステータ4とがかしめ固定で連結されて磁気回
路が構成されており、ヨーク3の内径部3aおよびステ
ータ4の中心部4aとヨーク3の外径部3bとの間に中
空円筒状のコイル5が内蔵されている。コイル5は、巻
端をターミナル7に接続し、樹脂部6と一体成形されて
いる。
The hydraulic control valve includes a solenoid portion 1 and a solenoid portion 1 which generate a magnetic attraction force by supplying an electric current.
Driven by the magnetic attraction force generated in the control chambers 21 and 22, the flow rate of oil supplied to the control chambers 21 and 22 and the flow rate of oil discharged from the control chambers 21 and 22 are adjusted.
Consists of. In the solenoid section 1, a yoke 3 which is a cylindrical magnetic body and a stator 4 are connected by caulking and fixed to form a magnetic circuit, and an inner diameter portion 3a of the yoke 3 and a central portion 4a of the stator 4 and the yoke 3 are formed. A hollow cylindrical coil 5 is built in between the outer diameter portion 3b. The coil 5 has its winding end connected to the terminal 7, and is integrally molded with the resin portion 6.

【0011】ヨーク3の内径部3aとステータ4の中心
部4aとは軸方向において空間ギャップ9を介して対向
している。ヨーク3の内径部3aの内壁とステータ4の
中心部4aの内壁とにはそれぞれボールベアリング8が
圧入固定されている。ボールベアリング8はボール8a
とボール8aを保持する外輪8bとで構成されている。
図1の矢印B側の外輪8bは磁性体で形成されている。
The inner diameter portion 3a of the yoke 3 and the central portion 4a of the stator 4 are opposed to each other with a space gap 9 therebetween in the axial direction. Ball bearings 8 are press-fitted and fixed to the inner wall of the inner diameter portion 3a of the yoke 3 and the inner wall of the central portion 4a of the stator 4, respectively. Ball bearing 8 is ball 8a
And an outer ring 8b that holds the ball 8a.
The outer ring 8b on the arrow B side in FIG. 1 is made of a magnetic material.

【0012】ステータ4の中心部4aの内壁と一対のボ
ールベアリング8とで囲まれた空間に磁性体からなるム
ービングコア10が配置されている。ムービングコア1
0の図1の矢印Bで示す磁気吸引側の端部は磁気吸引側
に向かって外径が細くなるようにテーパ部10aが形成
され、テーパ部10aの先端面に環状の座ぐり穴10b
が形成されている。ムービングコア10の中心部にはム
ービングコア10を軸方向に貫通して非磁性体のシャフ
ト11が圧入固定されている。そして、シャフト11の
突出部11aおよび11bはそれぞれボールベアリング
8に軸受支持されており、ムービングコア10はシャフ
ト11と一体にスムーズに軸方向移動できる。非磁性体
のリング12および13がそれぞれシャフト11に圧入
固定され、ムービングコア10の両端に当接している。
リング12はさらに座ぐり穴10b内に埋め込まれ、ム
ービングコア10よりわずかに突出している。リング1
2および13は、圧入加重を保持するため理想的には2
mmの厚さが必要とされ、リング12の座ぐり穴10bか
らの突出量は1mm以下に設定されている。
A moving core 10 made of a magnetic material is arranged in a space surrounded by the inner wall of the central portion 4a of the stator 4 and the pair of ball bearings 8. Moving core 1
1 has a taper portion 10a formed at the end on the magnetic attraction side indicated by the arrow B in FIG. 1 so that the outer diameter becomes smaller toward the magnetic attraction side, and an annular counterbore hole 10b is formed on the tip surface of the taper portion 10a.
Are formed. At the center of the moving core 10, a non-magnetic shaft 11 is press-fitted and fixed so as to penetrate the moving core 10 in the axial direction. The protruding portions 11a and 11b of the shaft 11 are bearing-supported by the ball bearings 8, respectively, and the moving core 10 can move smoothly in the axial direction together with the shaft 11. The non-magnetic rings 12 and 13 are press-fitted and fixed to the shaft 11 and are in contact with both ends of the moving core 10.
The ring 12 is further embedded in the counterbore 10b and slightly protrudes from the moving core 10. Ring 1
2 and 13 are ideally 2 because they hold the press-fitting load.
A thickness of mm is required, and the amount of protrusion of the ring 12 from the counterbore hole 10b is set to 1 mm or less.

【0013】スプール制御弁2のスリーブ14の一端は
ヨーク3にかしめ固定され、他端の内部には調整ナット
16が螺入している。スリーブ14は所定の壁面位置に
オイルを通過させる複数の通路と連通する複数の開口部
14a、14b、14c、14d、14eが形成されて
いる。油圧解放路31は開口部14aとオイルタンク1
9とを連通し、油圧通路32は開口部14bと制御室2
1とを連通し、油圧供給路33は開口部14cとオイル
ポンプ18とを連通し、油圧通路34は開口部14dと
制御室22とを連通し、油圧解放路35は開口部14e
とオイルタンク19とを連通している。
One end of the sleeve 14 of the spool control valve 2 is crimped and fixed to the yoke 3, and an adjusting nut 16 is screwed into the inside of the other end. The sleeve 14 is formed with a plurality of openings 14a, 14b, 14c, 14d, 14e communicating with a plurality of passages for allowing oil to pass through at a predetermined wall surface position. The hydraulic pressure release passage 31 includes the opening 14a and the oil tank 1.
9, the hydraulic passage 32 is connected to the opening 14b and the control chamber 2.
1, the hydraulic pressure supply passage 33 communicates the opening 14c with the oil pump 18, the hydraulic passage 34 communicates the opening 14d with the control chamber 22, and the hydraulic release passage 35 has the opening 14e.
And the oil tank 19 are communicated with each other.

【0014】スリーブ14の内壁には、軸方向に摺動可
能にスプール15が支持されている。スプール15は、
スリーブ14の内径とほぼ同じ径を有するランド部であ
る大径部15a、15b、15c、15dと、これら大
径部を連結する小径部とから構成されている。スプール
15の一端と調整ナット16との間にスプリング17が
介在し、このスプリング17の付勢力によりスプール1
5の他端はシャフト11に当接し、リング13は図1に
示す矢印A側のボールベアリング8の外輪8bに押し付
けられている。また、調整ナット16の締め具合を調整
することにより圧縮コイルスプリング17の付勢力を調
整できる。
A spool 15 is supported on the inner wall of the sleeve 14 so as to be slidable in the axial direction. Spool 15
It is composed of large diameter portions 15a, 15b, 15c, 15d, which are lands having a diameter substantially the same as the inner diameter of the sleeve 14, and small diameter portions connecting these large diameter portions. A spring 17 is interposed between one end of the spool 15 and the adjusting nut 16, and the biasing force of the spring 17 causes the spool 1 to move.
The other end of 5 abuts on the shaft 11, and the ring 13 is pressed against the outer ring 8b of the ball bearing 8 on the arrow A side shown in FIG. Further, the biasing force of the compression coil spring 17 can be adjusted by adjusting the tightening degree of the adjustment nut 16.

【0015】図1はコイル5に電流を供給していない状
態を示し、ムービングコア10には磁気吸引力が作用し
ておらず、スプール15およびムービングコア10は圧
縮コイルスプリング17により図1の矢印A方向に付勢
されている。このとき、スプール制御弁2の開口部14
cと開口部14d間が連通し、開口部14bと開口部1
4c間が遮断されることによりポンプ18からのオイル
が制御室22に圧送される。同時に、開口部14aと開
口部14b間が連通し、開口部14bと開口部14c間
が遮断されることにより制御室21のオイルがタンク1
9へ排出される。
FIG. 1 shows a state in which no current is supplied to the coil 5, the magnetic attraction force is not acting on the moving core 10, and the spool 15 and the moving core 10 are compressed by the compression coil spring 17 and indicated by the arrow in FIG. It is biased in the A direction. At this time, the opening 14 of the spool control valve 2
c and the opening 14d communicate with each other, and the opening 14b and the opening 1
The oil from the pump 18 is pressure-fed to the control chamber 22 by disconnecting between 4c. At the same time, the opening 14a and the opening 14b are communicated with each other, and the opening 14b and the opening 14c are cut off from each other, so that the oil in the control chamber 21 is removed from the tank 1.
It is discharged to 9.

【0016】図2は、図1に示す状態からコイル5に電
流を供給しムービングコア10が移動した状態を示して
いる。ヨーク3の内径部3aとムービングコア10間で
磁気吸引力が発生し、ムービングコア10とスプール1
5がスプリング17の付勢力に抗し、図1に示される状
態から図1の矢印B方向の磁気吸引側に移動し、図2に
示す位置に移動する。ムービングコア10は、リング1
2と磁気吸引側のボールベアリング8の外輪8bとが当
接するところで静止する。このとき、スプール制御弁2
の開口部14bと開口部14c間が連通し、開口部14
cと開口部14d間が遮断されることにより制御圧室2
1へオイルが圧送される。同時に開口部14dと開口部
14e間が連通し、開口部14cおよび開口部14d間
が遮断されることにより制御圧室22のオイルがタンク
19へ排出される。
FIG. 2 shows a state where the moving core 10 is moved by supplying an electric current to the coil 5 from the state shown in FIG. A magnetic attraction force is generated between the inner diameter portion 3a of the yoke 3 and the moving core 10, and the moving core 10 and the spool 1
5 resists the urging force of the spring 17, moves from the state shown in FIG. 1 to the magnetic attraction side in the direction of arrow B in FIG. 1, and moves to the position shown in FIG. Moving core 10 is ring 1
2 and the outer ring 8b of the ball bearing 8 on the magnetic attraction side come into contact with each other to be stationary. At this time, the spool control valve 2
Between the opening 14b and the opening 14c of the
The control pressure chamber 2 is cut off by blocking between c and the opening 14d.
Oil is pumped to 1. At the same time, the opening 14d and the opening 14e communicate with each other, and the opening 14c and the opening 14d are shut off, so that the oil in the control pressure chamber 22 is discharged to the tank 19.

【0017】次に、比較例と対比して本発明の実施例の
作動、効果を説明する。図5および図6に比較例を示
す。図5に示す比較例は、ムービングコア100の磁気
吸引側端面に十分な圧入加重が保持できる厚さ2mmのリ
ング120を介在したものである。図5の(A)に示す
ソレノイド部1のコイル5に電流を供給しない状態から
コイル5に電流を供給すると、図6に示すように、コイ
ル5に供給する電流値の大きさによって磁気吸引力は異
なる。ムービングコア100の軸方向移動に対して磁気
吸引力は一旦上昇し、図5の(B)に示すリング120
がボールベアリング8の外輪8bに当接する位置へ移動
するに従って低下する傾向を示している。これは、リン
グ120がボールベアリング8に当接した図5の(B)
に示す状態において、ボールベアリング8の外輪8bと
ムービングコア100の吸引側端面とのギャップがリン
グ120の厚み以下にならないためムービングコア10
0とボールベアリング8の外輪8bとの間に十分な磁気
吸引力が発生せず、ムービングコア100と径方向に対
向するヨーク3とのラップ量aの増加にともない径方向
の磁気吸引力が増加するからである。
Next, the operation and effect of the embodiment of the present invention will be described in comparison with the comparative example. A comparative example is shown in FIGS. In the comparative example shown in FIG. 5, a ring 120 having a thickness of 2 mm capable of holding a sufficient press-fitting load is provided on the end surface of the moving core 100 on the magnetic attraction side. When a current is supplied to the coil 5 from a state in which no current is supplied to the coil 5 of the solenoid unit 1 shown in FIG. 5A, the magnetic attraction force depends on the magnitude of the current value supplied to the coil 5, as shown in FIG. Is different. The magnetic attraction force temporarily increases with the axial movement of the moving core 100, and the ring 120 shown in FIG.
Shows a tendency to decrease as it moves to a position where it comes into contact with the outer ring 8b of the ball bearing 8. This is shown in FIG. 5B in which the ring 120 is in contact with the ball bearing 8.
In the state shown in FIG. 3, the gap between the outer ring 8b of the ball bearing 8 and the suction side end surface of the moving core 100 does not become equal to or less than the thickness of the ring 120.
0 and the outer ring 8b of the ball bearing 8 do not generate a sufficient magnetic attraction force, and the magnetic attraction force in the radial direction increases as the lap amount a between the moving core 100 and the yoke 3 that faces the radial direction increases. Because it does.

【0018】一方、本実施例では、図3に示すように、
ムービングコア10の座ぐり穴10bに厚さ2mmのリン
グ12を埋め込んで介在させ、ムービングコア10の磁
気吸引側の最先端面よりもリング12が1mm以下突出す
る構成である。図3の(A)に示すソレノイド部1のコ
イル5に電流を供給しない状態からコイル5に電流を供
給すると、図4に示すように、コイル5に供給する電流
値の大きさによって磁気吸引力は異なる。ムービングコ
ア10が軸方向移動し図3の(B)に示すようにリング
12がボールベアリング8の外輪8bに当接すると、ム
ービングコア10の吸引側端面とボールベアリング8の
外輪8bの対向面とのギャップは1mm以下となる。この
ため、ムービングコア10と径方向に対向するヨーク3
とのラップ量aの増加がしても比較例より軸方向の磁束
の流れが増大することによりムービングコア10とボー
ルベアリング8の磁性体からなる外輪8bとの間に十分
な磁気吸引力が発生し、図4に示すように磁気吸引力は
低下せず、ムービングコア10の軸方向位置に関係なく
一定の磁気吸引力特性を得ることができる。比較例にお
いてもリング120の厚みを薄くすれば本実施例と同様
な磁気吸引特性を得ることは可能であるが、組付け時お
よび使用時の強度が低下するという問題があるため実用
的ではない。
On the other hand, in this embodiment, as shown in FIG.
A ring 12 having a thickness of 2 mm is embedded in the counterbore 10b of the moving core 10 so as to intervene, and the ring 12 projects by 1 mm or less from the most distal end surface of the moving core 10 on the magnetic attraction side. When a current is supplied to the coil 5 from a state in which no current is supplied to the coil 5 of the solenoid unit 1 shown in FIG. 3A, as shown in FIG. Is different. When the moving core 10 moves in the axial direction and the ring 12 comes into contact with the outer ring 8b of the ball bearing 8 as shown in FIG. 3B, the suction side end surface of the moving core 10 and the facing surface of the outer ring 8b of the ball bearing 8 come into contact with each other. Gap is less than 1mm. Therefore, the yoke 3 that faces the moving core 10 in the radial direction.
Even if the amount of wrapping a between the moving core 10 and the ball bearing 8 is increased, the magnetic flux in the axial direction is increased compared to the comparative example, so that a sufficient magnetic attraction force is generated between the moving core 10 and the outer ring 8b made of a magnetic material of the ball bearing 8. However, as shown in FIG. 4, the magnetic attraction force does not decrease, and a constant magnetic attraction force characteristic can be obtained regardless of the axial position of the moving core 10. Even in the comparative example, if the thickness of the ring 120 is reduced, it is possible to obtain the same magnetic attraction characteristic as that of the present example, but it is not practical because there is a problem that the strength during assembly and during use is reduced. .

【0019】本実施例では、ムービングコア10の軸方
向位置に関係なく磁気吸引力を一定に保持できるため、
コイル5に供給する電流値に略比例してムービングコア
10の軸方向位置が決定される。したがって、電流値の
大きさによってスプール15の位置が決まるため、電流
値を制御することにより制御室21および22に供給、
排出されるオイルの流量を高精度に制御可能である。
In this embodiment, since the magnetic attraction force can be kept constant regardless of the axial position of the moving core 10,
The axial position of the moving core 10 is determined substantially in proportion to the current value supplied to the coil 5. Therefore, since the position of the spool 15 is determined by the magnitude of the current value, it is supplied to the control chambers 21 and 22 by controlling the current value.
The flow rate of oil discharged can be controlled with high accuracy.

【0020】また本実施例では、ムービングコア10は
両端部がボールベアリング8で軸受支持されスムーズに
軸方向移動し、軸方向移動範囲はボールベアリング8の
外輪8bで規制される。これにより、スリーブ3の内径
部3aとステータ4の中心部4aのムービングコア10
とボールベアリング8とが内蔵される空間がほぼ同径の
1つの区間となるため、スリーブ3およびステータ4が
それぞれ簡単な形状で1つの物体として容易に形成でき
る。
Further, in this embodiment, the moving core 10 is supported by the ball bearings 8 at both ends and smoothly moves in the axial direction, and the axial movement range is restricted by the outer ring 8b of the ball bearing 8. As a result, the moving core 10 of the inner diameter portion 3a of the sleeve 3 and the central portion 4a of the stator 4 is
Since the space in which the ball bearing 8 and the ball bearing 8 are built is one section having substantially the same diameter, the sleeve 3 and the stator 4 can be easily formed as one object with a simple shape.

【0021】さらにまた本実施例では、非磁性体のリン
グ12が磁性体からなるムービングコア10の吸引側端
面とボールベアリング8の外輪8bとの間に介在する構
成である。このため、ムービングコア10の磁気吸引側
端面とボールベアリング8の外輪8bとが当接して強力
な磁気吸引力により吸着してしまい、コイル5の電流を
遮断しても即時にムービングコア10がスプリング17
の付勢力で引き離されないという問題を防止可能であ
る。また、リング12はシャフト11に圧入固定される
ため組付けが非常に容易である。
Further, in this embodiment, the non-magnetic ring 12 is interposed between the suction side end surface of the moving core 10 made of a magnetic body and the outer ring 8b of the ball bearing 8. Therefore, the magnetic attraction side end surface of the moving core 10 and the outer ring 8b of the ball bearing 8 come into contact with each other and are attracted by a strong magnetic attraction force, and even if the current of the coil 5 is cut off, the moving core 10 immediately becomes a spring. 17
It is possible to prevent the problem of not being separated by the urging force of. Further, the ring 12 is press-fitted and fixed to the shaft 11, so that the ring 12 is very easy to assemble.

【0022】[0022]

【発明の効果】以上述べた本発明の電磁制御弁は、簡単
な構造でムービングコアの軸方向位置とソレノイド部に
供給する電流との特性をリニアに近付け、ソレノイド部
に供給する電流値に対応するムービングコアの正確な軸
方向位置を把握できることにより高精度な流体の流量制
御が可能であり、組付け性も向上する。
The solenoid control valve of the present invention described above has a simple structure and linearly approximates the characteristics of the axial position of the moving core and the electric current supplied to the solenoid portion to correspond to the electric current value supplied to the solenoid portion. Since the accurate axial position of the moving core can be grasped, the flow rate of the fluid can be controlled with high accuracy, and the assembling property is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電磁制御弁をバルブタイミング調整装
置の油圧制御弁に適用した一実施例の最遅角時を示す断
面図である。
FIG. 1 is a cross-sectional view showing an embodiment in which an electromagnetic control valve of the present invention is applied to a hydraulic control valve of a valve timing adjusting device at the most retarded angle.

【図2】本発明の電磁制御弁をバルブタイミング調整装
置の油圧制御弁に適用した一実施例の最進角時を示す断
面図である。
FIG. 2 is a cross-sectional view showing the most advanced angle of an embodiment in which the electromagnetic control valve of the present invention is applied to a hydraulic control valve of a valve timing adjusting device.

【図3】本発明の電磁制御弁の主要部分を示す断面図で
ある。(A)は最遅角時を示し、(B)は最進角時を示
す。
FIG. 3 is a sectional view showing a main part of an electromagnetic control valve of the present invention. (A) shows the most retarded angle, and (B) shows the most advanced angle.

【図4】本発明の位置実施例によるムービングコア軸方
向位置と磁気吸引力との関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between a moving core axial position and a magnetic attraction force according to a position embodiment of the present invention.

【図5】比較例の電磁制御弁の主要部分を示す断面図で
ある。(A)は最遅角時を示し、(B)は最進角時を示
す。
FIG. 5 is a sectional view showing a main part of an electromagnetic control valve of a comparative example. (A) shows the most retarded angle, and (B) shows the most advanced angle.

【図6】比較例のムービングコア軸方向位置と磁気吸引
力との関係を示す特性図である。
FIG. 6 is a characteristic diagram showing a relationship between a moving core axial position and a magnetic attraction force in a comparative example.

【図7】(A)は、ソレノイド部に供給する電流とこの
供給電流によりソレノイド部に発生する磁気吸引力との
理想的な関係を示す特性図である。(B)は、ソレノイ
ド部に発生する磁気吸引力とムービングコアの軸方向位
置との理想的な関係を示す特性図である。(C)は、ソ
レノイド部に供給する電流とムービングコアの軸方向位
置との理想的な関係を示す特性図である。
FIG. 7A is a characteristic diagram showing an ideal relationship between a current supplied to a solenoid part and a magnetic attraction force generated in the solenoid part by the supplied current. FIG. 6B is a characteristic diagram showing an ideal relationship between the magnetic attraction force generated in the solenoid and the axial position of the moving core. FIG. 6C is a characteristic diagram showing an ideal relationship between the current supplied to the solenoid portion and the axial position of the moving core.

【符号の説明】[Explanation of symbols]

1 ソレノイド部 2 スプール制御弁 3 ヨーク(磁気駆動部) 4 ステータ(磁気駆動部) 5 コイル(磁気駆動部) 8 ボールベアリング(支持部材) 10 ムービングコア 10a テーパ部 10b 座ぐり穴(溝) 11 シャフト 12 リング 13 リング 14 スリーブ 14a 開口部 14b 開口部 14c 開口部 14d 開口部 14e 開口部 15 スプール 15a 大径部(ランド部) 15b 大径部(ランド部) 15c 大径部(ランド部) 15d 大径部(ランド部) DESCRIPTION OF SYMBOLS 1 Solenoid part 2 Spool control valve 3 Yoke (magnetic drive part) 4 Stator (magnetic drive part) 5 Coil (magnetic drive part) 8 Ball bearing (supporting member) 10 Moving core 10a Tapered part 10b Counterbore hole (groove) 11 Shaft 12 Ring 13 Ring 14 Sleeve 14a Opening 14b Opening 14c Opening 14d Opening 14e Opening 15 Spool 15a Large diameter (land) 15b Large diameter (land) 15c Large diameter (land) 15d Large diameter Section (land section)

【手続補正書】[Procedure amendment]

【提出日】平成5年12月13日[Submission date] December 13, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒状に形成され、流体の通路となる開口
部を有するスリーブと、 前記スリーブの内壁に摺動可能に支持され、大径部と小
径部とを有するスプールと、 筒状に形成され、前記スリーブの軸方向端部に固定さ
れ、周囲にコイルを巻回した磁性体からなる磁気駆動部
と、 筒状に形成され、磁気吸引側端面に環状の溝を形成する
とともに磁気吸引側端部に磁気吸引側に進むに従い外径
が減少するテーパ部を形成した磁性体からなるムービン
グコアと、 前記溝から突出するように前記溝に嵌合する非磁性体か
らなるリングと、 前記ムービングコアを軸方向に貫通して固定され、前記
スプールの軸方向端部に当接可能な非磁性体からなるシ
ャフトと、 前記シャフトの両端を軸方向に滑らかに摺動可能に支持
するように前記磁気駆動部に固定される支持部材であっ
て、前記シャフトの両端のうち磁気吸引側を支持する前
記支持部材において、前記ムービングコアと軸方向に対
向する磁気吸引側の対向面が磁性体で形成される支持部
材と、 を備えたことを特徴とする電磁制御弁。
1. A sleeve formed in a tubular shape and having an opening serving as a fluid passage, a spool slidably supported by an inner wall of the sleeve and having a large diameter portion and a small diameter portion, and a tubular shape. A magnetic drive unit that is formed and fixed to the axial end of the sleeve, and that is composed of a magnetic body around which a coil is wound; and a cylindrical shape that forms an annular groove on the end surface of the magnetic attraction side and magnetic attraction. A moving core made of a magnetic material having a taper portion whose outer diameter decreases toward the magnetic attraction side at a side end, and a ring made of a non-magnetic material fitted in the groove so as to protrude from the groove, A shaft, which is fixed through the moving core in the axial direction and is made of a non-magnetic material that can abut against the axial end of the spool, and supports both ends of the shaft so as to be slidable in the axial direction. Fixed to the magnetic drive In the supporting member that supports a magnetic attraction side of both ends of the shaft, a supporting member that has a magnetic attraction side facing surface that axially faces the moving core is formed of a magnetic material. And an electromagnetic control valve.
JP05296880A 1993-11-26 1993-11-26 Solenoid control valve Expired - Lifetime JP3089626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05296880A JP3089626B2 (en) 1993-11-26 1993-11-26 Solenoid control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05296880A JP3089626B2 (en) 1993-11-26 1993-11-26 Solenoid control valve

Publications (2)

Publication Number Publication Date
JPH07151257A true JPH07151257A (en) 1995-06-13
JP3089626B2 JP3089626B2 (en) 2000-09-18

Family

ID=17839365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05296880A Expired - Lifetime JP3089626B2 (en) 1993-11-26 1993-11-26 Solenoid control valve

Country Status (1)

Country Link
JP (1) JP3089626B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878782A (en) * 1995-09-13 1999-03-09 Aisin Seiki Kabushiki Kaisha Switching valve
US6029704A (en) * 1998-02-06 2000-02-29 Denso Corporation Electromagnetic control valve
JP2000291811A (en) * 1999-04-02 2000-10-20 Toyoda Mach Works Ltd Solenoid valve
WO2001027511A1 (en) 1999-10-13 2001-04-19 Mitsubishi Denki Kabushiki Kaisha Solenoid valve
US6371164B2 (en) 1999-09-14 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Oil control valve capable of preventing reduction in oil flow
WO2003050441A1 (en) * 2001-12-11 2003-06-19 Kayaba Industry Co., Ltd. Solenoid-operated proportional flow control valve
FR2887950A1 (en) * 2005-07-01 2007-01-05 Service Ind Sante Novam Sarl Gas e.g. oxygen, supply valve for medical application, has valve body made of stainless steel, radial bores that open out in notch communicating with gas inlet channels if valve is open, and throttle valve movable to valve closing position
WO2014011918A3 (en) * 2012-07-11 2014-06-05 Flextronics Ap, Llc Direct acting solenoid actuator
JP2020183784A (en) * 2019-05-07 2020-11-12 株式会社不二越 Hydraulic device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5878782A (en) * 1995-09-13 1999-03-09 Aisin Seiki Kabushiki Kaisha Switching valve
US6029704A (en) * 1998-02-06 2000-02-29 Denso Corporation Electromagnetic control valve
JP2000291811A (en) * 1999-04-02 2000-10-20 Toyoda Mach Works Ltd Solenoid valve
US6371164B2 (en) 1999-09-14 2002-04-16 Mitsubishi Denki Kabushiki Kaisha Oil control valve capable of preventing reduction in oil flow
WO2001027511A1 (en) 1999-10-13 2001-04-19 Mitsubishi Denki Kabushiki Kaisha Solenoid valve
WO2003050441A1 (en) * 2001-12-11 2003-06-19 Kayaba Industry Co., Ltd. Solenoid-operated proportional flow control valve
US8418723B2 (en) 2001-12-11 2013-04-16 Kayaba Industry Co., Ltd. Electromagnetic proportional flow rate control valve
FR2887950A1 (en) * 2005-07-01 2007-01-05 Service Ind Sante Novam Sarl Gas e.g. oxygen, supply valve for medical application, has valve body made of stainless steel, radial bores that open out in notch communicating with gas inlet channels if valve is open, and throttle valve movable to valve closing position
WO2014011918A3 (en) * 2012-07-11 2014-06-05 Flextronics Ap, Llc Direct acting solenoid actuator
US9022346B2 (en) 2012-07-11 2015-05-05 Flextronics Ap, Llc Direct acting solenoid actuator
US9027904B2 (en) 2012-07-11 2015-05-12 Flextronics Ap, Llc Direct acting solenoid actuator
JP2020183784A (en) * 2019-05-07 2020-11-12 株式会社不二越 Hydraulic device

Also Published As

Publication number Publication date
JP3089626B2 (en) 2000-09-18

Similar Documents

Publication Publication Date Title
US6498416B1 (en) Electromagnetic actuator permanent magnet
US6806802B2 (en) Electromagnetic driving device and flow rate controlling apparatus employing the same driving device
JP4609324B2 (en) Linear solenoid
US6619616B1 (en) Solenoid valve device
US6564443B2 (en) Method for manufacturing electromagnetic operating apparatus
US20070057217A1 (en) Solenoid valve
JP2001263521A (en) Electromagnetic drive, fluid control valve using it, and manufacturing method for electromagnetic drive
US11846365B2 (en) Solenoid valve
JPH07151257A (en) Electromagnetic control valve
JP2008089080A (en) Electromagnetic driving device and solenoid valve using the same
US6938875B2 (en) Proportional solenoid valve
JP2001336662A (en) Solenoid valve
CN113168953A (en) Solenoid coil
JP4492649B2 (en) Bleed valve device
JPH11118063A (en) Solenoid control valve
US5788213A (en) Electrically operated pressure control valve
JP2001068335A (en) Electromagnetically driving device and electromagnetic valve using same
JP2005098310A (en) Linear solenoid and solenoid valve
US11994230B2 (en) Solenoid valve
WO2021106707A1 (en) Solenoid valve
JP4301318B2 (en) Bleed valve device
WO2019026211A1 (en) Electromagnetic type drive unit
US20090057594A1 (en) Bleed valve apparatus
US20230013945A1 (en) Solenoid valve
JPH11118062A (en) Solenoid control valve and method for assembling it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120721

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120721

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 13

EXPY Cancellation because of completion of term