JPH07150967A - Rockingly rotating disc type prime mover - Google Patents

Rockingly rotating disc type prime mover

Info

Publication number
JPH07150967A
JPH07150967A JP34179993A JP34179993A JPH07150967A JP H07150967 A JPH07150967 A JP H07150967A JP 34179993 A JP34179993 A JP 34179993A JP 34179993 A JP34179993 A JP 34179993A JP H07150967 A JPH07150967 A JP H07150967A
Authority
JP
Japan
Prior art keywords
movable member
wavy
disc
motion
degrees
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34179993A
Other languages
Japanese (ja)
Inventor
Hirosuke Abe
裕輔 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP34179993A priority Critical patent/JPH07150967A/en
Publication of JPH07150967A publication Critical patent/JPH07150967A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE:To provide engine power from low rotating speed by facing the faces formed into projecting parts concentrically at phase difference of specific angle of a movable member to the faces formed into concentrically projecting parts at phase difference of specific angle of fixed members, and rotationally moving the movable member at one-third the angular velocity of the angular velocity of rocking motion with the center of the movable member as a fulcrum. CONSTITUTION:A wave-shaped disc 1 of movable member is provided with wave-like recessed and projecting parts so that the projecting parts are concentrically formed at phase difference of 120 deg., and housings 2 of fixed members formed into concentrically projecting parts at phase difference of 180 deg. are arranged on the decided positions which the wave-shaped disc 1 faces. The wave- shaped disc 1 is rotated at one-third the angular velocity of the rocking motion, while in rocking motion with the center of a rotary shaft 7 as a fulcrum. Hereat, the form of the housing face facing to the projecting parts of the movable member can be not only wave-like, but smooth recessed and projecting face. Further, air-fuel mixture is sucked in, compressed in, and exhausted from the spaces formed between the housings and the movable member.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、原動機の原理に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the principle of a prime mover.

【0002】[0002]

【従来の技術】現在、自動車などに使用されている原動
機には、レシプロエンジン、ロータリーエンジンおよび
タービンエンジンがある。レシプロエンジンはピストン
の往復運動を特徴とした原動機である。しかし、ピスト
ンの往復運動にともなう重心の移動が大きいため振動が
大きく、かつエネルギー効率が良くないという欠点があ
った。ロータリーエンジンは、おむすび型のローターが
楕円運動を行いながら回転運動を行うことを特徴とする
原動機である。しかし、この原動機でも、ローターの重
心は楕円運動を行うために、少なからず振動が生じると
いう欠点があった。これに対して、タービンエンジン
は、圧縮爆発の行程を並列化した原動機であり、回転軸
を中心とした運動であるために重心の移動がなく、した
がって振動が少なく回転数を大きくできるという利点が
あるが、圧縮過程にタービンポンプを使用するために高
回転に達しないと十分なエンジン出力が得られないとい
う欠点があった。
2. Description of the Related Art Currently, prime movers used in automobiles include reciprocating engines, rotary engines and turbine engines. A reciprocating engine is a prime mover characterized by reciprocating piston movement. However, since the center of gravity moves largely with the reciprocating motion of the piston, there are drawbacks that vibration is large and energy efficiency is not good. A rotary engine is a prime mover characterized in that a rice ball-shaped rotor makes a rotary motion while making an elliptical motion. However, even in this prime mover, the center of gravity of the rotor has an elliptic motion, and therefore, there is a drawback that a considerable amount of vibration occurs. On the other hand, the turbine engine is a prime mover in which the compression and explosion strokes are arranged in parallel, and since it is a motion centered on the rotating shaft, there is no movement of the center of gravity, and therefore, there is an advantage that the vibration is small and the rotation speed can be increased. However, since the turbine pump is used in the compression process, a sufficient engine output cannot be obtained unless the engine speed reaches a high level.

【0003】[0003]

【課題が解決しようとする課題】したがって、行程に伴
う重心の移動がなく、かつ低回転からエンジン出力が得
られる原動機の原理は存在しなかった。本発明は、こう
した問題を解決できる新しい原動機の原理を提供するも
のである。
[Problems to be Solved] Therefore, there has been no principle of a prime mover in which the center of gravity does not move along with the stroke and the engine output is obtained from a low rotation speed. The present invention provides a new prime mover principle that can solve these problems.

【0004】[0004]

【課題を解決するための手段】課題を解決するために、
可動部材の運動範囲を取り囲む内面形状を持つハウジン
グ内に設置された可動部材が、揺動運動もしくは揺動類
似の運動を行いながら同時に回転運動を行うことを特徴
とする新しい原動機の原理を発明した。
[Means for Solving the Problems] In order to solve the problems,
Invented a principle of a new prime mover characterized in that a movable member installed in a housing having an inner surface shape that surrounds a range of motion of the movable member simultaneously performs rotary motion while performing rocking motion or motion similar to rocking. .

【0005】[0005]

【作用】燃料と空気との混合気は、可動部材の揺動運動
もしくは揺動類似の運動と回転運動に伴って、可動部材
とハウジングとで作る空間に吸引され、その空間が小さ
くなることにより圧縮され、爆発に伴いその空間は大き
くなり、次にその空間が小さくなることにより排出され
る。この一連の過程は、可動部材の揺動運動もしくは揺
動類似の運動と回転運動に伴って行われるため、重心の
移動が無く、また、混合気の圧縮に高回転を必要としな
い。
The mixture of fuel and air is sucked into the space formed by the movable member and the housing in accordance with the swinging motion of the movable member or the motion similar to the swinging and the rotating motion, and the space becomes smaller. It is compressed and explodes as its space grows and then shrinks. Since this series of processes is performed in association with the swinging movement of the movable member or the movement similar to the swinging and the rotating movement, the center of gravity does not move, and high rotation is not required to compress the air-fuel mixture.

【0006】[0006]

【実施例】【Example】

(イ)実施例1 可動部材には、同心円状に120度の位相差を持って3
カ所に波状の凹凸を持つ波状円板1を用いる。波状円板
1は、回転中心を支点として揺動運動を行い、その揺動
運動の3分の1の角速度で回転することとする。この場
合、揺動運動の角速度は、波状円板1が波状の凹凸が無
く平らな円板であると仮定した場合に、その円板の中心
軸が歳差運動を行った場合に見られる円板周囲の進行波
様の運動(揺動運動)の進行角速度(すなわち歳差運動
の角速度)を指す。波状円板1は、波状円板1の運動範
囲を取り囲む内面形状を持ったハウジング2内に設置さ
れるが、このときのハウジング2の内面は、同心円状に
180度の位相差を持って2カ所に波状の凹凸を持った
形状となる。ハウジング2には、吸気ポート3、排気ポ
ート4および点火装置5を設ける。波状円板1は回転中
心にユニバーサルジョイント機構6を持ち、ユニバーサ
ルジョイント機構6は、自由リング9とピン10により
波状円板1と回転軸7を揺動自在に連結する。回転軸7
は、ハウジング中心において回転自在に支持される。波
状円板1の外周はハウジング2の内周壁に接触し、波状
円板1の凸部はハウジング2の内側面と線状に接触し、
ユニバーザルジョイント機構6の波状円板側はハウジン
グ内側に接触するために、波状円板1とハウジング2の
間で空間が形成され、この空間がエンジンルーム8とな
る。なお、本実施例では波状円板1の上下両面にエンジ
ンルーム8が形成される。吸気、圧縮、爆発、排気の過
程を分かりやすく図示するために、回転軸から同心円状
の一周断面11をA−A’で切離して平面に展開したも
のが図5〜16である。それぞれの図は波状円板1が3
0度ずつ回転した場合を順番に図示したものであり、波
状円板1の回転は、波状円板1の周断面が左から右へと
動くように図示されている。吸気ポート、排気ポートお
よび点火装置の位置はそれぞれ点線円12、13、14
で示してある。また、波状の点線15は波状円板1に波
状の凹凸が無いと仮定した場合の平らな円板の円周を示
し、上述のごとく波状円板1の揺動運動の進行を表す。
波状円板1とハウジング2で形成されるエンジンルーム
は波状円板1の上下に計6カ所形成されるが、いま、そ
の内のひとつ16に注目すると、波状円板1が図5の位
置から90度回転するまでの間で、燃料と空気との混合
気は吸入ポートからエンジンルームのひとつ16に吸引
される(図5、6、7、8)。これに伴い、波状円板の
揺動運動は270度進行する。波状円板の次の90度の
回転で、吸引された混合気は圧縮される(図8、9、1
0、11)。これに伴い、波状円板の揺動運動はさらに
270度進行する。ここで混合気に点火17すると、爆
発により波状円板に回転力が与えられ、波状円板はさら
に90度回転する(図11、12、13、14)。これ
に伴い、波状円板の揺動運動はさらに270度進行す
る。波状円板の次の90度の回転で排気が排気ポートか
ら排出される(図14、15、16、5)。これに伴
い、波状円板の揺動運動はさらに270度進行する。こ
のサイクルが繰り返されることにより、回転軸からエン
ジン出力が取り出せる。また、波状円板の上下には合計
6個のエンジンルームがあるために、波状円板が360
度回転する間に6回の爆発が得られ、波状円板1には絶
えず回転力が与えられる仕組みである。 (ロ)実施形態 可動部材としては、実施例1では、同心円状に120度
の位相差を持って3カ所に波状の凹凸を持つ波状円板を
用いたが、必ずしも波状である必要はなく、ハウジング
と片面3カ所で滑らかに接触するような形態であれば良
い。また、実施例1では、波状円板の凹凸の数は3カ所
としたが、2カ所以上であれば何カ所でもよい。このと
き、ハウジング内面の凹凸は波状円板の凹凸の数から1
を引いた数である必要がある。ハウジング内面の凹凸
は、実施例1では可動部材同様に波状としたが、必ずし
も波状である必要はなく、滑らかな凹凸があればよい。
また三角形状などでもよい。しかし、波状以外では可動
部材の揺動運動が幾分ぎくしゃくするため、揺動類似の
運動となるが原理的にはなんら変わるところはない。実
施例1では、燃料と空気との混合気を圧縮して爆発させ
たが、空気のみを圧縮し、燃料噴射を行って爆発させる
方法を用いてもよい。また、実施例1では内燃機関とし
ての原動機を示したが、外燃機関としても使用可能であ
る。
(A) Example 1 The movable member has a concentric circle with a phase difference of 120 degrees.
A corrugated disc 1 having corrugated irregularities is used. The wavy disc 1 performs an oscillating motion with the center of rotation as a fulcrum, and rotates at an angular velocity of one third of the oscillating motion. In this case, the angular velocity of the oscillating motion is a circle seen when the central axis of the wavy disc 1 is a flat disc without wavy irregularities and when the center axis of the disc is precessed. It refers to the traveling angular velocity of a traveling wave-like motion (swing motion) around a plate (that is, the angular velocity of precession motion). The wavy disc 1 is installed in a housing 2 having an inner surface shape surrounding the movement range of the wavy disc 1. At this time, the inner surface of the housing 2 is concentric with a phase difference of 180 degrees. The shape has wavy irregularities at some places. The housing 2 is provided with an intake port 3, an exhaust port 4 and an ignition device 5. The wavy disc 1 has a universal joint mechanism 6 at the center of rotation, and the universal joint mechanism 6 swingably connects the wavy disc 1 and the rotary shaft 7 with a free ring 9 and a pin 10. Rotating shaft 7
Is rotatably supported at the center of the housing. The outer periphery of the wavy disc 1 contacts the inner peripheral wall of the housing 2, and the convex portion of the wavy disc 1 linearly contacts the inner surface of the housing 2,
Since the wavy disc side of the universal joint mechanism 6 contacts the inside of the housing, a space is formed between the wavy disc 1 and the housing 2, and this space becomes the engine room 8. In this embodiment, the engine rooms 8 are formed on both upper and lower surfaces of the wavy disc 1. In order to clearly show the processes of intake, compression, explosion, and exhaust, the concentric circular cross-section 11 is cut off along the line AA ′ from the rotary shaft and expanded into a plane in FIGS. Each figure has three wavy discs 1.
The case where the wavy disc 1 is rotated by 0 degrees is shown in order, and the wavy disc 1 is shown to rotate such that the circumferential cross section of the wavy disc 1 moves from left to right. The positions of the intake port, the exhaust port and the ignition device are indicated by dotted circles 12, 13, 14 respectively.
It is indicated by. Further, the wavy dotted line 15 indicates the circumference of a flat disc on the assumption that the wavy disc 1 has no wavy irregularities, and represents the progress of the swinging motion of the wavy disc 1 as described above.
The engine room formed by the wavy disc 1 and the housing 2 is formed at a total of 6 positions above and below the wavy disc 1. Now, focusing on one of them 16, the wavy disc 1 is located from the position of FIG. The mixture of fuel and air is sucked into one of the engine rooms 16 from the intake port until it rotates 90 degrees (FIGS. 5, 6, 7, and 8). Along with this, the oscillating motion of the wavy disc advances by 270 degrees. The next 90 ° rotation of the wavy disc compresses the aspirated mixture (FIGS. 8, 9, 1).
0, 11). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. When the air-fuel mixture is ignited 17 here, a rotational force is applied to the wavy disc due to the explosion, and the wavy disc further rotates 90 degrees (FIGS. 11, 12, 13, and 14). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. Exhaust gas is exhausted from the exhaust port with the next 90 degree rotation of the wavy disc (FIGS. 14, 15, 16, 5). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. By repeating this cycle, the engine output can be taken out from the rotating shaft. In addition, since there are a total of 6 engine rooms above and below the wavy disc, the wavy disc is 360
It is a mechanism in which six explosions are obtained while rotating once, and the rotational force is constantly applied to the wavy disc 1. (B) Embodiment In Example 1, as the movable member, a wavy disc having concentric circles with a phase difference of 120 degrees and three wavy irregularities was used, but the wavy disc does not necessarily have to be wavy. Any form may be used as long as it makes smooth contact with the housing at three points on one side. Further, in Example 1, the number of the irregularities of the wavy disc was three, but it may be any number as long as it is two or more. At this time, the unevenness of the inner surface of the housing is 1 from the number of unevenness of the wavy disc.
It must be the number minus. The unevenness of the inner surface of the housing is wavy like the movable member in the first embodiment, but it is not necessarily wavy and may be smooth unevenness.
It may also be triangular or the like. However, since the swinging motion of the movable member is somewhat jerky except for the wavy form, the motion is similar to the swinging motion, but in principle there is no change. In the first embodiment, the mixture of fuel and air is compressed and exploded, but a method of compressing only air and injecting fuel to explode may be used. Further, although the prime mover as the internal combustion engine is shown in the first embodiment, it may be used as an external combustion engine.

【0007】[0007]

【発明の効果】本発明により、行程に伴う重心の移動が
なく、かつ低回転からエンジン出力が得られる原動機を
提供できる。
According to the present invention, it is possible to provide a prime mover in which the center of gravity does not move during a stroke and an engine output can be obtained from a low rotation speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の組立斜視図FIG. 1 is an assembled perspective view of a first embodiment.

【図2】実施例1の断面図FIG. 2 is a sectional view of the first embodiment.

【図3】実施例1の可動部材の正面一部断面図FIG. 3 is a partial front cross-sectional view of the movable member according to the first embodiment.

【図4】実施例1の斜視図(周断面の図示)FIG. 4 is a perspective view of the first embodiment (illustration of a peripheral cross section).

【図5】実施例1の周断面図1(0度)FIG. 5 is a circumferential sectional view of Example 1 (0 degree).

【図6】実施例1の周断面図2(30度回転)FIG. 6 is a circumferential sectional view of Example 1 (rotated by 30 degrees).

【図7】実施例1の周断面図3(60度回転)FIG. 7 is a circumferential sectional view of Example 1 3 (rotated by 60 degrees).

【図8】実施例1の周断面図4(90度回転)FIG. 8 is a circumferential sectional view of Example 1 (rotated 90 degrees).

【図9】実施例1の周断面図5(120度回転)FIG. 9 is a circumferential sectional view of Example 1 (rotated by 120 degrees).

【図10】実施例1の周断面図6(150度回転)FIG. 10 is a circumferential sectional view of Example 1 6 (rotated by 150 degrees).

【図11】実施例1の周断面図7(180度回転)FIG. 11 is a circumferential sectional view of Example 1 (rotated 180 degrees).

【図12】実施例1の周断面図8(210度回転)FIG. 12 is a circumferential sectional view of Example 1 (rotated 210 degrees).

【図13】実施例1の周断面図9(240度回転)FIG. 13 is a circumferential sectional view of Example 1 (rotated by 240 degrees).

【図14】実施例1の周断面図10(270度回転)14 is a circumferential sectional view of Example 1 (rotated by 270 degrees). FIG.

【図15】実施例1の周断面図11(300度回転)FIG. 15 is a circumferential sectional view of Example 1 (rotation by 300 degrees).

【図16】実施例1の周断面図12(330度回転)FIG. 16 is a circumferential sectional view of Example 1 (rotation by 330 degrees).

【符号の説明】[Explanation of symbols]

1は波状円板 2はハウジング 3は吸気ポート 4は排気ポート 5は点火装置 6はユニバーサルジョイント機構 7は回転軸 8はエンジンルーム 9は自由リング 10はピン 11は周断面 12は吸気ポート位置 13は排気ポート位置 14は点火装置位置 15可動部材の揺動運動の進行状態 16エンジンルームのひとつ 17は点火を示す 1 is a wavy disc 2 is a housing 3 is an intake port 4 is an exhaust port 5 is an igniter 6 is a universal joint mechanism 7 is a rotating shaft 8 is an engine room 9 is a free ring 10 is a pin 11 is a peripheral section 12 is an intake port position 13 Is the exhaust port position 14 is the ignition device position 15 Progress of the swinging motion of the movable member 16 One of the engine rooms 17 shows ignition

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年10月31日[Submission date] October 31, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 揺動回転円板式原動機 [Title of Invention] Oscillating rotary disk type prime mover

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0001[Correction target item name] 0001

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0001】[0001]

【産業上の利用分野】この発明は、新しい原理に基づい
た原動機を提供するものである。
The present invention is based on a new principle.
To provide a prime mover .

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】現在、自動車などに使用されている原動
機には、レシプロエンジン、ロータリーエンジンおよび
タービンエンジンがある。レシプロエンジンはピストン
の往復運動を特徴とした原動機である。しかし、ピスト
ンの往復運動にともなう重心の移動が大きいため振動が
大きく、かつ往復運動を回転運動に変換するクランク機
構を必要とするため機械的ロスが大きいという欠点があ
った。ロータリーエンジンは、おむすび型のローターが
回転運動を行うことを特徴とする原動機である。しか
し、この原動機でも、ローターの重心は偏心回転運動
行うために、少なからず振動が生じるという欠点があっ
た。これに対して、タービンエンジンは、圧縮爆発の行
程を並列化した原動機であり、回転軸を中心とした運動
であるために重心の移動がなく、したがって振動が少な
く回転数を大きくできるという利点があるが、圧縮過程
にタービンポンプを使用するために高回転に達しないと
十分なエンジン出力が得られないという欠点があった。
2. Description of the Related Art Currently, prime movers used in automobiles include reciprocating engines, rotary engines and turbine engines. A reciprocating engine is a prime mover characterized by reciprocating piston movement. However, since the center of gravity moves with the reciprocating motion of the piston, the vibration is large, and the crank machine converts the reciprocating motion into the rotary motion.
Since it requires a structure, there is a drawback that mechanical loss is large . The rotary engine has a rice ball type rotor.
It is a prime mover characterized by making a rotary motion . However, even in this prime mover, the center of gravity of the rotor has an eccentric rotational motion, and thus there is a drawback in that vibration is generated to some extent. On the other hand, the turbine engine is a prime mover in which the compression and explosion strokes are arranged in parallel, and since it is a motion centered on the rotating shaft, there is no movement of the center of gravity, and therefore, there is an advantage that the vibration is small and the rotation speed can be increased. However, since the turbine pump is used in the compression process, a sufficient engine output cannot be obtained unless the engine speed reaches a high level.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】[0003]

【課題が解決しようとする課題】したがって、行程に伴
う重心の移動がなく、かつ低回転からエンジン出力が得
られる原動機の原理は存在しなかった。本発明は、こう
した問題を原理的に解決したものである。
[Problems to be Solved] Therefore, there has been no principle of a prime mover in which the center of gravity does not move along with the stroke and the engine output is obtained from a low rotation speed. The present invention solves these problems in principle .

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【課題を解決するための手段】課題を解決するために、
可動部材の、同心円状に120度の位相差で凸部をなす
面と、固定部材の、同心円状に180度の位相差で凸部
をなす面が対面し、可動部材が、中心を支点として、揺
動運動を行いながら、かつ揺動運動の角速度の3分の1
の角速度で回転運動を行うことを特徴とする新しい原理
の原動機を発明した。
[Means for Solving the Problems] In order to solve the problems,
Convex portions of the movable member are formed in a concentric pattern with a phase difference of 120 degrees.
Convex portion with a phase difference of 180 degrees between the surface and the fixing member
Face each other, and the movable member swings around the center as a fulcrum.
One third of the angular velocity of rocking motion while performing dynamic motion
New principle characterized by rotational motion at various angular velocities
Invented the prime mover .

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【作用】燃料と空気との混合気は、可動部材の揺動運動
回転運動に伴って、可動部材とハウジングとで作る空
(エンジンルーム)に吸引され、その空間が小さくな
ることにより圧縮され、爆発に伴いその空間は大きくな
り、次にその空間が小さくなることにより排出される。
この一連の過程は、可動部材の揺動運動と回転運動に伴
って行われるため、重心の移動が無く、また、混合気の
圧縮に高回転を必要としない。
[Operation] The air-fuel mixture of fuel and air is used for the swinging motion of the movable member.
And the rotational movement, it is sucked into the space (engine room) created by the movable member and the housing, and is compressed by the space becoming smaller, and the space becomes larger with the explosion, and then the space becomes smaller. Is discharged by.
Since this series of processes is performed in accordance with the swinging motion and the rotary motion of the movable member, there is no movement of the center of gravity, and high rotation is not required to compress the air-fuel mixture.

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【実施例】 (イ)実施例1 可動部材には、同心円状に120度の位相差で凸部をな
すように波状の凹凸を持つ波状円板1を用いる。波状円
板1は、中心を支点として揺動運動を行いながら、そ
の揺動運動の3分の1の角速度で回転することとする
なお、揺動運動の角速度は、波状円板1が波状の凹凸が
無く平らな円板であると仮定した場合に、その円板の中
心軸が、円板の中心を支点として歳差運動を行った場合
に見られる円板周囲の波様の運動(揺動運動)の進行角
速度(すなわち歳差運動の角速度)を指す。波状円板1
は、波状円板1の運動範囲を取り囲む内面形状を持った
ハウジング2内に設置されるが、このときのハウジング
2の内面は、同心円状に180度の位相差で凸部をなす
ようになめらかな凹凸を持つ形状とする。ハウジング2
には、吸気ポート3、排気ポート4および点火装置5を
設ける。波状円板1は回転中心にユニバーサルジョイン
ト機構6を持ち、ユニバーサルジョイント機構6は、自
由リング9とピン10により波状円板と回転軸7を揺動
自在に連結する。回転軸7は、ハウジング中心において
回転自在に支持される。波状円板1の外周はハウジング
2の内周壁に接触し、波状円板1の凸部はハウジング2
の内側面と線状に接触し、ユニバーサルジョイント機構
6の波状円板側はハウジング内側に接触するために、波
状円板1の凹部とハウジング2の間で空間が形成され、
この空間がエンジンルーム8となる。なお、本実施例で
は波状円板1の上下両面に計6カ所エンジンルームが形
成される。吸気、圧縮、爆発、排気の過程を分かりやす
く図示するために、回転軸から同心円状の一周断面11
をA−A’で切離して平面に展開したものが図5〜16
である。それぞれの図は波状円板1が30度ずつ回転し
た場合を順番に図示したものであり、波状円板1の回転
は、波状円板1の周断面が左から右へと動くように図示
されている。吸気ポート、排気ポートおよび点火装置の
位置はそれぞれ点線円i2、13、14で示してある。
また、波状の点線15は波状円板1に波状の凹凸が無い
と仮定した場合の平らな円板の円周を示し、上述のごと
く波状円板1の揺動運動の進行を表す。波状円板1とハ
ウジング2で形成されるエンジンルームは波状円板1の
上下に計6カ所形成されるが、いま、その内のひとつ1
6に注目すると、波状円板1が図5の位置から90度回
転するまでの間で、燃料と空気との混合気は吸入ポート
からエンジンルームのひとつ16に吸引される(図5、
6、7、8)。これに伴い、波状円板の揺動運動は27
0度進行する。波状円板の次の90度の回転で、吸引さ
れた混合気は圧縮される(図8、9、10、11)。こ
れに伴い、波状円板の揺動運動はさらに270度進行す
る。ここで混合気に点火17すると(図11)、爆発に
より波状円板に回転力が与えられ、波状円板はさらに9
0度回転する(図11、12、13、14)。これに伴
い、波状円板の揺動運動はさらに270度進行する。波
状円板の次の90度の回転で排気が排気ポートから排出
される(図14、15、16、5)。これに伴い、波状
円板の揺動運動はさらに270度進行する。このサイク
ルが繰り返されることにより、回転軸7に回転力が供給
される。また、波状円板の上下には合計6カ所エンジン
ルームがあるために、波状円板が360度回転する間に
6回の爆発が得られ、波状円板1には絶えず回転力が与
えられる仕組みである。 (ロ)実施形態 可動部材としては、実施例1では、同心円状に120度
の位相差で凸部をなす波状の円板を用いたが、必ずしも
波状円板である必要はなく、円板状もしくは円板の中心
部が盛り上がったコーン状の形態で、ハウジングと片面
3カ所で滑らかに接触しながら回転できる構造を持てば
よいまた、実施例1で明らかなように、基本的には波
状円板の片面があればエンジンは構成できる。さらに、
実施例1では、同心円状に120度の位相差で凸部をな
すため、波状円板の凸部は片面3カ所となっているが、
実際には同心円状に同位相差で片面2カ所以上の凸部が
あればエンジンを構成できる。このとき、波状円板の片
面凸部の数をnとすると、凸部の位相差はn分の360
度とし、波状円板の回転角速度は、揺動運動の角速度の
n分の1とする必要がある。また、ハウジング内面の凸
部の位相差はn−1分の360度とする。ただし、nが
2のときには、単なる圧縮機となるため、エンジンを構
成するには、レシプロエンジンのごとく弁機構が必要で
ある。nが3以上のときには、弁機構は必要ないが、n
が4以上のときには無効空間が構成される。可動部材の
凸部と対面するハウジング面の形状は、実施例1では可
動部材同様に波状としたが、必ずしも波状である必要は
なく、可動部材の形状に合わせて滑らかな凹凸があれば
よい。しかし、波状以外では可動部材の揺動運動が幾分
ぎくしゃくするが、原理的にはなんら変わるところはな
い。なお、実施例1では可動部材は受動運動を行うが、
可動部材の運動を能動的に行わせるためには、回転軸7
と可動部材の間にユニバーサルジョイント機構6の他に
減速歯車機構と揺動クランク機構が必要となる。また、
可動部材とハウジングの密閉を完全に行うためには、シ
ール部材の設置も必要である。実施例1では、燃料と空
気との混合気を圧縮して爆発させたが、空気のみを圧縮
し、燃料噴射を行って爆発させる方法を用いてもよい。
また、実施例1では内燃機関としての原動機を示した
が、外燃機関としても使用可能である。
Embodiment (a) Embodiment 1 The movable member is formed with a convex portion in a concentric pattern with a phase difference of 120 degrees.
The wavy disc 1 having wavy unevenness is used. The wavy disc 1 is supposed to rotate at an angular velocity that is one third of the swinging motion while performing the swinging motion with the center as a fulcrum .
Incidentally, the angular velocity of the swing motion, if the corrugated disc 1 is wavy unevenness is assumed to be no flat disc, the central axis of the discs, the precession center of the disc as a fulcrum It refers to the advancing angular velocity of the wavy motion (oscillating motion) around the disk when observed (that is, the angular velocity of precession motion). Wavy disc 1
Is installed in a housing 2 having an inner surface shape that surrounds the movement range of the wavy disc 1. The inner surface of the housing 2 at this time forms a convex portion concentrically with a phase difference of 180 degrees.
The shape should have smooth irregularities . Housing 2
An intake port 3, an exhaust port 4 and an ignition device 5 are provided in the. The wavy disc 1 has a universal joint mechanism 6 at the center of rotation, and the universal joint mechanism 6 swingably connects the wavy disc and the rotary shaft 7 with a free ring 9 and a pin 10. The rotating shaft 7 is rotatably supported at the center of the housing. The outer periphery of the wavy disc 1 is in contact with the inner peripheral wall of the housing 2, and the convex portion of the wavy disc 1 is the housing 2
Since the wavy disc side of the universal joint mechanism 6 comes into contact with the inside of the housing, a space is formed between the recess of the wavy disc 1 and the housing 2.
This space becomes the engine room 8. In this embodiment, a total of 6 engine rooms are formed on the upper and lower surfaces of the wavy disc 1. In order to illustrate the process of intake, compression, explosion, and exhaust in an easy-to-understand manner, a concentric circular cross section from the rotation axis 11
Fig. 5-16 shows the result of cutting off at A-A 'and developing it on a plane.
Is. Each of the figures sequentially illustrates the case where the wavy disc 1 is rotated by 30 degrees, and the wavy disc 1 is rotated so that the circumferential cross section of the wavy disc 1 moves from left to right. ing. The positions of the intake port, the exhaust port and the igniter are indicated by dotted circles i2, 13, 14 respectively.
Further, the wavy dotted line 15 indicates the circumference of a flat disc on the assumption that the wavy disc 1 has no wavy irregularities, and represents the progress of the swinging motion of the wavy disc 1 as described above. The engine room formed by the wavy disc 1 and the housing 2 is formed in a total of 6 places above and below the wavy disc 1. Now, one of them is
Focusing on 6, the mixture of fuel and air is sucked from the intake port to one of the engine rooms 16 until the wavy disc 1 rotates 90 degrees from the position of FIG. 5 (FIG. 5,
6, 7, 8). As a result, the swinging motion of the wavy disc is 27
Progress 0 degrees. At the next 90 ° rotation of the wavy disc, the aspirated mixture is compressed (FIGS. 8, 9, 10, 11). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. When the air-fuel mixture is ignited 17 (Fig. 11), a rotational force is applied to the wavy disc due to the explosion, and the wavy disc is further rotated by 9
It rotates 0 degrees (FIGS. 11, 12, 13, and 14). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. Exhaust gas is exhausted from the exhaust port with the next 90 degree rotation of the wavy disc (FIGS. 14, 15, 16, 5). Along with this, the oscillating motion of the wavy disc further advances by 270 degrees. The rotation force is supplied to the rotating shaft 7 by repeating this cycle.
To be done . Also, because there are a total of 6 engine rooms above and below the wavy disc, 6 explosions are obtained while the wavy disc rotates 360 degrees, and the wavy disc 1 is constantly given a rotational force. Is. (B) Embodiment In Example 1, as the movable member, a corrugated circular plate having a convex portion with a phase difference of 120 degrees concentrically was used.
It does not have to be a wavy disc , but a disc or the center of the disc
If it has a cone-like shape with raised parts and can rotate while smoothly contacting the housing at three points on one side,
Good . In addition, as apparent from the first embodiment, basically, the wave
The engine can be configured if there is one side of the circular disk. further,
In Example 1, since the convex portions are formed concentrically with a phase difference of 120 degrees, the convex portion of the wavy disc has three positions on one side.
In reality, an engine can be configured if there are two or more convex portions on one side with concentric circles and the same phase difference. At this time, when the number of convex portions on one side of the wavy disc is n, the phase difference of the convex portions is 360 / n.
The rotation angular velocity of the wavy disc must be 1 / n of the angular velocity of the swinging motion. Further, the phase difference of the convex portion on the inner surface of the housing is 360 degrees of n-1 / 360. However, when n is 2, it simply functions as a compressor, and thus a valve mechanism like a reciprocating engine is required to configure the engine. When n is 3 or more, the valve mechanism is not necessary, but n
Is 4 or more, an invalid space is constructed. Of movable members
Although the shape of the housing surface facing the convex portion is wavy like the movable member in the first embodiment, it is not necessarily wavy and may be smooth unevenness according to the shape of the movable member . However, although the swinging motion of the movable member outside the wave shape somewhat jerky, no where no change in principle manner. In the first embodiment, the movable member performs passive movement,
In order to actively move the movable member, the rotary shaft 7
Between the movable member and the universal joint mechanism 6
A reduction gear mechanism and an oscillating crank mechanism are required. Also,
To completely seal the movable member and the housing,
It is also necessary to install a ruler member. In the first embodiment, the mixture of fuel and air is compressed and exploded, but a method of compressing only air and injecting fuel to explode may be used.
Further, although the prime mover as the internal combustion engine is shown in the first embodiment, it may be used as an external combustion engine.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】可動部材の運動範囲を取り囲む内面形状を
持つハウジング内に設置された可動部材が、揺動運動も
しくは揺動類似の運動を行いながら回転運動を行うこと
を特徴とする原動機の原理
Claim: What is claimed is: 1. A principle of a prime mover characterized in that a movable member installed in a housing having an inner surface shape surrounding a range of motion of the movable member performs a rotary motion while performing a rocking motion or a motion similar to a rocking motion.
JP34179993A 1993-12-01 1993-12-01 Rockingly rotating disc type prime mover Pending JPH07150967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34179993A JPH07150967A (en) 1993-12-01 1993-12-01 Rockingly rotating disc type prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34179993A JPH07150967A (en) 1993-12-01 1993-12-01 Rockingly rotating disc type prime mover

Publications (1)

Publication Number Publication Date
JPH07150967A true JPH07150967A (en) 1995-06-13

Family

ID=18348854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34179993A Pending JPH07150967A (en) 1993-12-01 1993-12-01 Rockingly rotating disc type prime mover

Country Status (1)

Country Link
JP (1) JPH07150967A (en)

Similar Documents

Publication Publication Date Title
US3996901A (en) Rotary piston mechanism
US20090081065A1 (en) Rotary Working Machine Provided with an Assembly of Working Chambers with Periodically Variable Volume, In Particular a Compressor
JP5130372B2 (en) Rotating device
US4257752A (en) Rotary alternating piston machine with coupling lever rotating around offset crankpin
US4877379A (en) Rotary mechanism for three-dimensional volumetric change
JPH06272671A (en) Rotary piston machine
EP0103985A2 (en) Rotary engine or compressor
JPH07150967A (en) Rockingly rotating disc type prime mover
US5138993A (en) Rotary wavy motion type engine
US3556696A (en) Spherical motor
JPH03175101A (en) Oscillating rotary engine
JPH1162605A (en) Rotary type internal combustion engine
JPH0311102A (en) Scroll fluid machine
JP3865478B2 (en) Scroll compressor
JPH0733775B2 (en) Rotating machine
US3521979A (en) Dual-drive rotary engine
JP2000303852A (en) Internal combustion engine
JPS5979002A (en) Pendulum type power device
KR970001461B1 (en) Internal combustion engine of oscillating piston engines
JP2007506894A (en) Rotary internal combustion engine
JPH10205345A (en) Rotary piston engine
JPS5932641B2 (en) rotary piston machine
KR930003807B1 (en) Rotary engine
JPS63138181A (en) Scroll compressor
JP2023166307A (en) Perfect circle rotary engine