JPH07150597A - Position and posture display method for construction machine - Google Patents

Position and posture display method for construction machine

Info

Publication number
JPH07150597A
JPH07150597A JP30142293A JP30142293A JPH07150597A JP H07150597 A JPH07150597 A JP H07150597A JP 30142293 A JP30142293 A JP 30142293A JP 30142293 A JP30142293 A JP 30142293A JP H07150597 A JPH07150597 A JP H07150597A
Authority
JP
Japan
Prior art keywords
construction machine
vehicle body
data
fixed station
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30142293A
Other languages
Japanese (ja)
Other versions
JP2866289B2 (en
Inventor
Takashi Okada
喬 岡田
Shigeo Kitahara
成郎 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP5301422A priority Critical patent/JP2866289B2/en
Publication of JPH07150597A publication Critical patent/JPH07150597A/en
Application granted granted Critical
Publication of JP2866289B2 publication Critical patent/JP2866289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Component Parts Of Construction Machinery (AREA)

Abstract

PURPOSE:To display a position and a posture of a construction machine in real time by measuring accurately the position of the construction machine of remote control, and seizing the whole shape position of a car body. CONSTITUTION:Global positioning system antenna 13 and receiver 14 and a magnetic azimuth sensor 20 are mounted on a construction machine 11. A position of the antenna 13 is detected by receiving a radio wave from an artificial satellite, and the direction of a car body is detected, and these data are transmitted to a fixed station 12 by a radio transmitter 21. In the fixed station 12, operation on the whole shape position containing the advancing direction of the construction machine 11 is performed by a computer 23 according to the transmitted data, and a position and a posture of the construction machine 11 is displayed on a monitor 24 in real time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建設機械の位置及び姿勢
表示方法に関するものであり、特に、遠隔操縦の建設機
械の位置及び姿勢をコンピュータを利用して表示する方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of displaying the position and orientation of a construction machine, and more particularly to a method of displaying the position and orientation of a remotely controlled construction machine using a computer.

【0002】[0002]

【従来の技術】建設機械を遠隔操縦によって運転する場
合は、当該建設機械の位置及び姿勢を固定局で正しく把
握する必要がある。移動する自動車等の位置を計測する
方法としては、自動追尾形のトータルステーションを使
用して、ターゲットの位置をリアルタイムに計測する方
法が知られている。また、近年になって、人工衛星を利
用したグローバル・ポジショニング・システム(以下
「GPS」という)により、移動中の自動車の位置をリ
アルタイムに計測する方法も多用されつつある。
2. Description of the Related Art When operating a construction machine by remote control, it is necessary to correctly grasp the position and orientation of the construction machine by a fixed station. As a method of measuring the position of a moving automobile or the like, a method of measuring the position of a target in real time using an automatic tracking type total station is known. Further, in recent years, a method of measuring the position of a moving automobile in real time by a global positioning system (hereinafter referred to as “GPS”) using an artificial satellite has been widely used.

【0003】[0003]

【発明が解決しようとする課題】前述した自動追尾形の
トータルステーションやGPSによる位置計測方法は、
リアルタイムで自動車の位置を計測することができる。
然し、計測した1点の座標のみでは、自動車の全体形状
位置を把握することはできない。特に、遠隔操縦の建設
機械に於いては、当該建設機械の1点の座標が判明して
も、車体やアクチュエータの姿勢が不明であると遠隔操
作を行うことができない。
The above-mentioned automatic tracking type total station and the position measuring method by GPS are as follows.
The position of the car can be measured in real time.
However, it is not possible to grasp the entire shape position of the automobile only by measuring the coordinates of one point. In particular, in a remote-controlled construction machine, even if the coordinates of one point of the construction machine are known, the remote control cannot be performed if the postures of the vehicle body and the actuator are unknown.

【0004】建設機械の車体全体やアクチュエータの各
位置を計測するためには、GPSの受信機を前記車体や
アクチュエータの各位置に配置すればよいが、コスト高
になるため現実的ではない。そこで、遠隔操縦の建設機
械の位置を正確に計測するとともに車体の全体形状位置
を把握し、該建設機械の位置及び姿勢をリアルタイムに
表示するために解決すべき技術的課題が生じてくるので
あり、本発明はこの課題を解決することを目的とする。
In order to measure the positions of the entire vehicle body of the construction machine and the actuators, GPS receivers may be arranged at the respective positions of the vehicle body and the actuators, but this is not practical because of the high cost. Therefore, there arises a technical problem to be solved in order to accurately measure the position of a remotely controlled construction machine, grasp the overall shape position of the vehicle body, and display the position and orientation of the construction machine in real time. The present invention aims to solve this problem.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するために提案されたものであり、遠隔操縦の建設機械
にGPSの受信機と磁気方位センサまたはジャイロコン
パスを搭載し、該受信機の位置及び車体の方向を検出し
てそのデータを無線装置にて固定局へ送信し、固定局で
は無線装置にて前記データを受信し、該データに基づき
制御部にて建設機械の各部位の位置及び姿勢を演算して
表示部に表示することを特徴とする建設機械の位置及び
姿勢表示方法、及び、遠隔操縦の建設機械の車体及び各
アクチュエータに傾斜センサを設け、車体とアクチュエ
ータとの相対位置を検出できるようにしたことを特徴と
する建設機械の位置及び姿勢表示方法を提供するもので
ある。
SUMMARY OF THE INVENTION The present invention has been proposed in order to achieve the above-mentioned object. A remote control construction machine is equipped with a GPS receiver and a magnetic bearing sensor or a gyro compass, and the receiver is provided. Position and the direction of the vehicle body are detected, and the data is transmitted to the fixed station by the wireless device, and the fixed station receives the data by the wireless device, and the control unit based on the data detects each part of the construction machine. A method for displaying the position and orientation of a construction machine, characterized in that the position and orientation are calculated and displayed on a display unit, and a tilt sensor is provided on the vehicle body and each actuator of a remote-controlled construction machine, and the relative position between the vehicle body and the actuator. A method for displaying the position and orientation of a construction machine, which is characterized in that the position can be detected.

【0006】[0006]

【作用】遠隔操縦されている建設機械は、GPSの受信
機にて人工衛星からの電波を受信し、車体に搭載した該
受信機の位置を検出する。これと同時に、磁気方位セン
サまたはジャイロコンパスにより車体の方向を検出し、
夫々のデータを無線装置にて固定局へ送信する。
The construction machine which is remotely controlled receives the radio wave from the artificial satellite by the GPS receiver and detects the position of the receiver mounted on the vehicle body. At the same time, the direction of the vehicle body is detected by a magnetic direction sensor or a gyro compass,
Each data is transmitted to the fixed station by the wireless device.

【0007】固定局では無線装置にて前記データを受信
し、該データを制御部へ送る。また、前記GPSの受信
機に対する車体の四隅をはじめとする車体各位置の相対
座標を予め計測し、このデータを制御部に記録してお
く。そして、之等のデータと無線装置にて受信したデー
タとに基づき、制御部にて車体の進行方向を含めた全体
形状位置を演算し、表示部に建設機械の位置及び姿勢を
表示する。
In the fixed station, the wireless device receives the data and sends the data to the control unit. Further, the relative coordinates of each position of the vehicle body including the four corners of the vehicle body with respect to the GPS receiver are measured in advance, and this data is recorded in the control unit. Then, based on these data and the data received by the wireless device, the control unit calculates the overall shape position including the traveling direction of the vehicle body, and displays the position and orientation of the construction machine on the display unit.

【0008】また、例えばパワーショベル等アクチュエ
ータの作動によって全体形状位置が変化する建設機械に
於いては、車体及び各アクチュエータに傾斜センサを設
けて、車体とアクチュエータとの相対位置を検出する。
Further, in a construction machine such as a power shovel in which the overall shape position is changed by the operation of an actuator, an inclination sensor is provided in the vehicle body and each actuator to detect the relative position between the vehicle body and the actuator.

【0009】[0009]

【実施例】以下、本発明の一実施例を図面に従って詳述
する。図1に於いて、符号11は遠隔操縦の建設機械で
あり、12は固定局である。該建設機械11にはGPS
のアンテナ13及び受信機14を搭載してあり、この受
信機14にて約22000km上空の米国の人工衛星(現
在24個の衛星が使用可能)の電波を受信し、コード情
報をコンピュータ15にて解析することにより、前記G
PSのアンテナ13の位置AO を三次元座標(xO ,y
O ,zO )のデータとしてリアルタイムに検出する。
An embodiment of the present invention will be described in detail below with reference to the drawings. In FIG. 1, reference numeral 11 is a remote-controlled construction machine, and 12 is a fixed station. GPS for the construction machine 11
Is equipped with an antenna 13 and a receiver 14, and the receiver 14 receives the radio waves of an American artificial satellite (currently 24 satellites are available) over approximately 22000 km, and the computer 15 receives the code information. By analyzing,
The position A O of the PS antenna 13 is converted into three-dimensional coordinates (x O , y
O , z O ) data is detected in real time.

【0010】本実施例では、後述するキネマティック測
量法を使用するため、建設機械11に搭載した受信機1
4とは別個に、地上に他のGPSのアンテナ16及び受
信機17を設置してある。該受信機17にて受信した人
工衛星の電波信号は、無線送信機18により建設機械1
1へ送られ、建設機械11に搭載した無線受信機19に
よって受信される。そして、複数のGPSの受信機1
4,17にて受信したコード情報に基づき、コンピュー
タ15によって該建設機械11に搭載したGPSのアン
テナ13の正確な3次元座標を検出する。
In this embodiment, since the kinematic survey method described later is used, the receiver 1 mounted on the construction machine 11 is used.
In addition to 4, the other GPS antenna 16 and receiver 17 are installed on the ground. The radio signal of the artificial satellite received by the receiver 17 is transmitted by the wireless transmitter 18 to the construction machine 1
1 and is received by the wireless receiver 19 mounted on the construction machine 11. And a plurality of GPS receivers 1
Based on the code information received at 4 and 17, the computer 15 detects the accurate three-dimensional coordinates of the GPS antenna 13 mounted on the construction machine 11.

【0011】また、該建設機械11には磁気方位センサ
20またはジャイロコンパス(図示せず)を搭載し、こ
の磁気方位センサ20の回転角に基づいて該建設機械1
1の車体の方位角(進行方向)を検出する。ここで、磁
気方位センサ20の回転角をθ、地球磁界の水平分力を
t とすれば、磁気方位センサ20から出力されるx成
分:Sx とy成分:Sy は次式で表される。
A magnetic direction sensor 20 or a gyrocompass (not shown) is mounted on the construction machine 11, and the construction machine 1 is based on the rotation angle of the magnetic direction sensor 20.
The azimuth angle (travel direction) of the vehicle body 1 is detected. Here, if the rotation angle of the magnetic azimuth sensor 20 is θ and the horizontal component of the earth's magnetic field is H t , the x component: S x and the y component: S y output from the magnetic azimuth sensor 20 are expressed by the following equations. To be done.

【0012】[0012]

【数1】 [Equation 1]

【0013】上記x成分:Sx とy成分:Sy をコンピ
ュータ15へ入力することにより、次式で表される建設
機械11の車体の方位角θ(磁気方位センサの回転角)
をリアルタイムに検出する。
By inputting the x component: S x and the y component: S y into the computer 15, the azimuth θ of the vehicle body of the construction machine 11 represented by the following equation (rotational angle of the magnetic azimuth sensor)
Is detected in real time.

【0014】[0014]

【数2】 [Equation 2]

【0015】前記GPSのアンテナ13の位置データA
O (xO ,yO ,zO )と、車体の方位角データθは、
無線送信機21にて固定局12へ送信される。一方、固
定局12に設けられた無線受信機22にて、前記建設機
械11から送られたデータを受信し、このデータを制御
部であるコンピュータ23にて処理する。該コンピュー
タ23のメモリには、予め前記建設機械11の車体の幾
何学的形状データと、前記GPSのアンテナ13に対す
る車体の四隅をはじめとする車体各部の相対座標データ
を記録してある。そして、建設機械11から送られたG
PSのアンテナ13の位置データAO のx,y座標に基
づき、図2(a)に示すように、車体が磁北へ向いてい
るときの車体の四隅位置A1 ,A2 ,A3 ,A4のx,
y座標を演算する。
Position data A of the GPS antenna 13
O (x O , y O , z O ) and the azimuth data θ of the vehicle body are
It is transmitted to the fixed station 12 by the wireless transmitter 21. On the other hand, the wireless receiver 22 provided in the fixed station 12 receives the data sent from the construction machine 11, and the computer 23 as a control unit processes the data. In the memory of the computer 23, the geometrical shape data of the vehicle body of the construction machine 11 and the relative coordinate data of each portion of the vehicle body including the four corners of the vehicle body with respect to the GPS antenna 13 are recorded in advance. And G sent from the construction machine 11
Based on the x and y coordinates of the position data A O of the PS antenna 13, as shown in FIG. 2A, the four corner positions A 1 , A 2 , A 3 , A of the vehicle body when facing the magnetic north. 4 x,
Calculate the y coordinate.

【0016】次に、建設機械11から送られた車体の方
位角データθに基づき、図2(b)に示すように、車体
が方位角θ方向に向いているときの車体の四隅位置
11,A 21,A31,A41のx,y座標を演算する。車体
が方位角θ方向へ向いているときには、A11は、AO
中心に回転角θだけA1 が回転した位置となり、A11
x,y座標(x11,y11)は次式によって求められる。
Next, the body sent from the construction machine 11
Based on the position angle data θ, as shown in FIG.
Positions of the vehicle body when the vehicle is facing in the azimuth θ direction
A11, A twenty one, A31, A41The x, y coordinates of are calculated. Car body
Is in the azimuth θ direction, A11Is AOTo
Rotation angle θ at center A1Becomes the rotated position, and A11of
x, y coordinates (x11, Y11) Is calculated by the following equation.

【0017】[0017]

【数3】 [Equation 3]

【0018】これと同様にして、A21,A31,A41
x,y座標を求め、これを元にして車体の外形を表示部
であるモニタ24に表示させる。そして、建設機械11
が方位角θ方向へ移動して、GPSのアンテナ13の位
置データがAO (xO ,yO )からA01(x01,y01
に変わったとき、車体の四隅位置A12,A22,A32,A
42は、アンテナ13の移動座標に相当する分だけ移動す
る。例えば、A12のx,y座標(x12,y12)は次式に
よって求められる。
Similarly, x, y coordinates of A 21 , A 31 , and A 41 are obtained, and the outer shape of the vehicle body is displayed on the monitor 24 which is a display unit based on the obtained x and y coordinates. And construction machine 11
Moves in the azimuth θ direction, and the position data of the GPS antenna 13 is changed from A O (x O , y O ) to A 01 (x 01 , y 01 ).
When changing to, the four corner positions of the car body A 12 , A 22 , A 32 , A
42 moves by an amount corresponding to the moving coordinates of the antenna 13. For example, the x, y coordinates (x 12 , y 12 ) of A 12 are obtained by the following equation.

【0019】[0019]

【数4】 [Equation 4]

【0020】これと同様にして、A22,A32,A42
x,y座標を求め、車体が移動した後の外形をモニタ2
4に表示させる。斯くして、建設機械11から送信され
てくるデータに基づき、前記コンピュータ23が車体の
進行方向を含めた全体形状位置を演算し、建設機械11
の位置及び姿勢をリアルタイムにモニタ24へ表示する
ことができる。従って、例えば図3に示すように、遠隔
操縦のパワーショベル25とダンプトラック26とを同
時にモニタ24へ表示し、パワーショベル25の旋回状
態の確認とダンプトラック26の荷台位置の確認を並行
して行うことにより、遠隔操縦の建設機械を組み合わせ
た共同作業の制御を容易且つ確実に為すことができる。
また、一定距離以内に接近した他の機械のオペレータに
対して、警告を発生して事故を未然に防止することがで
きる。
In the same manner as above, the x and y coordinates of A 22 , A 32 and A 42 are obtained, and the outer shape of the body after the vehicle body is moved is monitored by the monitor 2.
Display on 4. Thus, the computer 23 calculates the overall shape position including the traveling direction of the vehicle body based on the data transmitted from the construction machine 11, and the construction machine 11
The position and orientation of the can be displayed on the monitor 24 in real time. Therefore, for example, as shown in FIG. 3, the remotely operated power shovel 25 and the dump truck 26 are simultaneously displayed on the monitor 24, and the turning state of the power shovel 25 and the loading platform position of the dump truck 26 are checked in parallel. By doing so, it is possible to easily and surely control the joint work in which the remotely controlled construction machine is combined.
Further, it is possible to prevent an accident by issuing a warning to the operator of another machine approaching within a certain distance.

【0021】ここで、GPSに於ける計測精度について
説明すれば、建設機械にGPSの受信機を搭載し、該受
信機1台のみにて位置計測を行う場合(単独計測法)に
は、20〜100mの誤差を生じることがある。これに
対して、複数の受信機により2点以上で単独計測を行
い、既知点側の補正量を未知点の計測演算に利用するデ
ファレンシャル計測法では、既知点側の補正量を未知点
側へ転送することにより、ほぼリアルタイムで計測結果
を得ることができ、計測精度は3〜5m程度となる。更
に、キネマティック測量法では、複数のGPS受信機を
用いて電波信号の位相測定により相対測位を行い、複数
の受信機のうち1点を既知点に固定し、他の既知点から
スタートして各計測点にて停止して受信する。このキネ
マティック測量法を用いた場合は、1〜2cmの計測精度
を得ることができ、前述した複数の建設機械の共同作業
に於いても、ほぼリアルタイムにて極めて高精度の位置
表示を行うことができる。
Here, the measurement accuracy in GPS will be explained. When a GPS receiver is mounted on a construction machine and position measurement is performed by only one of the receivers (independent measurement method), 20 An error of -100 m may occur. On the other hand, in the differential measurement method in which a plurality of receivers perform independent measurement at two or more points and use the correction amount on the known point side for measurement calculation of the unknown point, the correction amount on the known point side is transferred to the unknown point side. By transferring, the measurement result can be obtained in almost real time, and the measurement accuracy is about 3 to 5 m. Furthermore, in the kinematic survey method, relative positioning is performed by measuring the phase of a radio signal using a plurality of GPS receivers, one of the plurality of receivers is fixed to a known point, and the other known point is started. Stop at each measurement point and receive. When this kinematic survey method is used, measurement accuracy of 1 to 2 cm can be obtained, and even in the joint work of a plurality of construction machines described above, extremely accurate position display can be performed in near real time. You can

【0022】尚、本実施例では、GPSの受信機により
人工衛星からの電波を受信して、建設機械の位置を検出
しているが、このほか、地上の固定局に自動追尾形のト
ータルステーションを設置し、建設機械にプリズムミラ
ー等のターゲットを搭載して、該トータルステーション
にて建設機械の位置をリアルタイムに計測することも可
能である。
In this embodiment, the GPS receiver receives the radio waves from the artificial satellites to detect the position of the construction machine, but in addition to this, an automatic tracking type total station is installed in the fixed station on the ground. It is also possible to install and mount a target such as a prism mirror on the construction machine and measure the position of the construction machine in real time at the total station.

【0023】図4及び図5は、遠隔操縦のパワーショベ
ル25の車体及び各アクチュエータに傾斜センサを設け
た実施例を示したものである。車体に搭載したGPSの
アンテナ13の位置を原点PO と定め、ブーム27、ア
ーム28、バケット29の夫々の関節部中心位置を
1 、P2 、P3 とし、バケット29の先端部中心位置
をP4 とすれば、PO 乃至P4 は同一平面(X−Z平
面)上に存在する。ブーム27、アーム28等の傾斜角
を計測するため、X−Z平面上に夫々傾斜センサ30,
31,32,33を設ける。更に、車体のローリング角
を計測するように、車体に傾斜センサ34を設ける。
4 and 5 show an embodiment in which a tilt sensor is provided on the vehicle body and each actuator of the power shovel 25 for remote control. The position of the GPS antenna 13 mounted on the vehicle body is defined as the origin P O , the center positions of the joints of the boom 27, the arm 28, and the bucket 29 are set to P 1 , P 2 , and P 3, and the center position of the tip of the bucket 29 is set. if the and P 4, P O to P 4 are present on the same plane (X-Z plane). In order to measure the tilt angle of the boom 27, the arm 28, etc., the tilt sensor 30, respectively on the XZ plane.
31, 32, 33 are provided. Further, a tilt sensor 34 is provided on the vehicle body so as to measure the rolling angle of the vehicle body.

【0024】いま、原点PO (xO ,yO ,zO )から
1 (x1 ,y1 ,z1 )までの距離をL1 とし、P1
からP2 (x2 ,y2 ,z2 )までの距離をL2 、P2
からP3 (x3 ,y3 ,z3 )までの距離をL3 、P3
からP4 (x4 ,y4 ,z4)までの距離をL4 とす
る。また、線分PO 1 のx軸に対する傾斜角をθO
し、各傾斜計31,32,33にて計測したブーム2
7、アーム28、バケット29の傾斜角をθ1 、θ2
θ3 とする。ここで、車体にX軸を中心としたローリン
グがない場合には、図6に示すように、バケット29の
先端部P4 のx,z座標は次式で表される。
Let L 1 be the distance from the origin P O (x O , y O , z O ) to P 1 (x 1 , y 1 , z 1 ), and P 1
From P 2 (x 2 , y 2 , z 2 ) to L 2 , P 2
To P 3 (x 3 , y 3 , z 3 ) from L 3 and P 3
To P 4 (x 4 , y 4 , z 4 ) is L 4 . The inclination angle of the line segment P O P 1 with respect to the x-axis is θ O, and the boom 2 measured by each of the inclinometers 31, 32, and 33.
7, the inclination angles of the arm 28 and the bucket 29 are θ 1 , θ 2 ,
θ 3 Here, when the vehicle body does not have rolling around the X axis, as shown in FIG. 6, the x and z coordinates of the tip end portion P 4 of the bucket 29 are expressed by the following equations.

【0025】[0025]

【数5】 [Equation 5]

【0026】一方、車体がローリングしている場合は、
X−Z平面をX軸を中心に回転したものとみれば、前記
各傾斜角θO 乃至θ3 は変化しない。即ち、前記PO
至P 4 の各x座標値は変化せず、各点のy座標及びz座
標について補正すればよい。図7に示すように、ローリ
ング角がφであれば、P4 (x4 ,y4 ,z4 )はx座
標はそのままでP41(x4 ,y41,z41)の位置へ移動
する。従って、移動後のP41のx,y,z座標は次式で
表される。
On the other hand, when the vehicle body is rolling,
Assuming that the XZ plane is rotated around the X axis,
Each tilt angle θOThrough θ3Does not change. That is, the PONo
To P FourEach x coordinate value of does not change, and the y coordinate and z coordinate of each point
Correct the mark. As shown in FIG.
If the angle is φ, then PFour(XFour, YFour, ZFour) Is x seat
The mark remains P41(XFour, Y41, Z41) Position
To do. Therefore, P after moving41X, y, z coordinates of
expressed.

【0027】[0027]

【数6】 [Equation 6]

【0028】斯くして、作業によって刻々と姿勢が変化
する各アクチュエータと、車体に搭載したGPSのアン
テナ13との相対位置をリアルタイムに把握することが
でき、パワーショベルとダンプトラックとの共同作業等
に於ける作業性が著しく向上できる。尚、本発明は、本
発明の精神を逸脱しない限り種々の改変を為すことがで
き、そして、本発明が該改変されたものに及ぶことは当
然である。
In this way, the relative position between each actuator whose posture changes momentarily by work and the GPS antenna 13 mounted on the vehicle body can be grasped in real time, and the joint work between the power shovel and the dump truck, etc. The workability in can be significantly improved. The present invention can be variously modified without departing from the spirit of the present invention, and it goes without saying that the present invention extends to the modified one.

【0029】[0029]

【発明の効果】本発明は上記実施例に詳述したように、
GPSの受信機にて受信した位置データと、磁気方位セ
ンサにて検出した方位角データを無線装置にて固定局へ
送ることにより、固定局では之等のデータを制御部にて
演算し、建設機械の位置及び姿勢を表示部へリアルタイ
ムに表示できる。従って、建設機械の遠隔操縦を正確に
行うことができる。
The present invention, as described in detail in the above embodiment,
The position data received by the GPS receiver and the azimuth angle data detected by the magnetic azimuth sensor are sent to the fixed station by the wireless device, so that the fixed station calculates the data and the like in the control unit and constructs it. The position and orientation of the machine can be displayed on the display in real time. Therefore, the remote control of the construction machine can be accurately performed.

【0030】また、建設機械の車体及び各アクチュエー
タに傾斜センサを設けた場合には、作業によって姿勢が
変化するアクチュエータと車体との相対位置がリアルタ
イムに検出でき、他の建設機械との共同作業に於いて
も、双方の機械の位置及び姿勢を極めて正確に表示する
ことができる。斯くして、遠隔操縦に於ける作業効率並
びに作業精度の向上に寄与できる等、諸種の効果を奏す
る発明である。
When a tilt sensor is provided on the vehicle body and each actuator of the construction machine, the relative position between the actuator and the vehicle body whose posture changes due to the work can be detected in real time, and it is possible to collaborate with other construction machines. Even in this case, the positions and attitudes of both machines can be displayed extremely accurately. Thus, the invention has various effects such as contributing to improvement of work efficiency and work accuracy in remote control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示し、建設機械の位置及び
姿勢表示装置の解説図。
FIG. 1 is an explanatory diagram of a position and orientation display device of a construction machine according to an embodiment of the present invention.

【図2】(a)は建設機械が磁北を向いているときの車
体四隅の座標を示す解説図。(b)は建設機械が磁北か
らずれた方向を向いているときの車体四隅の座標を示す
解説図。
FIG. 2A is an explanatory diagram showing coordinates of four corners of the vehicle body when the construction machine is facing magnetic north. (B) is an explanatory view showing the coordinates of the four corners of the vehicle body when the construction machine is facing away from magnetic north.

【図3】(a)(b)(c)は複数の建設機械の共同作
業の手順をモニタへ表示した例を示す解説図。
3 (a), (b), and (c) are explanatory views showing an example in which a procedure of joint work of a plurality of construction machines is displayed on a monitor.

【図4】建設機械の車体及びアクチュエータを示す斜視
図。
FIG. 4 is a perspective view showing a vehicle body and an actuator of the construction machine.

【図5】建設機械の車体及びアクチュエータに傾斜セン
サを設けた例を示す解説図。
FIG. 5 is an explanatory diagram showing an example in which a tilt sensor is provided on a vehicle body and an actuator of a construction machine.

【図6】建設機械にローリングがない状態でのバケット
先端部の座標を求める解説図。
FIG. 6 is an explanatory diagram for obtaining the coordinates of the bucket tip portion when the construction machine has no rolling.

【図7】建設機械にローリングがある状態でのバケット
先端部の座標を求める解説図。
FIG. 7 is an explanatory diagram for obtaining the coordinates of the bucket tip portion when the construction machine has rolling.

【符号の説明】 11 建設機械 12 固定局 13,16 GPSのアンテナ 14,17 GPSの受信機 15,23 コンピュータ 18,21 無線送信機 19,22 無線受信機 20 磁気方位センサ 24 モニタ 27 ブーム 28 アーム 29 バケット 30,31,32,33,34 傾斜センサ[Explanation of Codes] 11 Construction Machinery 12 Fixed Station 13,16 GPS Antenna 14,17 GPS Receiver 15,23 Computer 18,21 Wireless Transmitter 19,22 Wireless Receiver 20 Magnetic Direction Sensor 24 Monitor 27 Boom 28 Arm 29 bucket 30, 31, 32, 33, 34 tilt sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 遠隔操縦の建設機械にグローバル・ポジ
ショニング・システムの受信機と磁気方位センサまたは
ジャイロコンパスを搭載し、該受信機の位置及び車体の
方向を検出してそのデータを無線装置にて固定局へ送信
し、固定局では無線装置にて前記データを受信し、該デ
ータに基づき制御部にて建設機械の各部位の位置及び姿
勢を演算して表示部に表示することを特徴とする建設機
械の位置及び姿勢表示方法。
1. A remote-controlled construction machine equipped with a receiver of a global positioning system and a magnetic direction sensor or a gyro compass, and detecting the position of the receiver and the direction of the vehicle body, and transmitting the data by a wireless device. It is characterized in that the data is transmitted to a fixed station, and the fixed station receives the data with a wireless device, and the controller calculates the position and orientation of each part of the construction machine based on the data and displays the calculated position and orientation on the display. Position and posture display method for construction machinery.
【請求項2】 遠隔操縦の建設機械の車体及び各アクチ
ュエータに傾斜センサを設け、車体とアクチュエータと
の相対位置を検出できるようにしたことを特徴とする請
求項1記載の建設機械の位置及び姿勢表示方法。
2. The position and orientation of the construction machine according to claim 1, wherein an inclination sensor is provided on the vehicle body and each actuator of the remotely controlled construction machine so that the relative position between the vehicle body and the actuator can be detected. Display method.
JP5301422A 1993-12-01 1993-12-01 Display method of position and attitude of construction machinery Expired - Fee Related JP2866289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5301422A JP2866289B2 (en) 1993-12-01 1993-12-01 Display method of position and attitude of construction machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5301422A JP2866289B2 (en) 1993-12-01 1993-12-01 Display method of position and attitude of construction machinery

Publications (2)

Publication Number Publication Date
JPH07150597A true JPH07150597A (en) 1995-06-13
JP2866289B2 JP2866289B2 (en) 1999-03-08

Family

ID=17896690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5301422A Expired - Fee Related JP2866289B2 (en) 1993-12-01 1993-12-01 Display method of position and attitude of construction machinery

Country Status (1)

Country Link
JP (1) JP2866289B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813537A (en) * 1994-06-23 1996-01-16 Mitsubishi Heavy Ind Ltd Blade turning angle detecting method
WO1997046767A1 (en) * 1996-06-03 1997-12-11 Siemens Aktiengesellschaft Method and arrangement for monitoring the working range when an item of machinery is moving
JPH11350525A (en) * 1998-06-11 1999-12-21 Fujikura Ltd Position measuring device of earthmoving machine or position measuring device of cable embedded machine in bottom of sea or water
JP2000226188A (en) * 1999-02-03 2000-08-15 Kajima Corp Monitoring method for movable part-mounted mobile body and equipment thereof
JP2002004261A (en) * 2000-04-20 2002-01-09 Shimizu Corp Management system for compacting embankment
JP2002070082A (en) * 2000-08-29 2002-03-08 Topcon Corp Construction equipment control system
JP2002181539A (en) * 2000-12-14 2002-06-26 Topcon Corp Position detection method and apparatus using gps in construction machine for civil engineering
JP2002181538A (en) * 2000-12-14 2002-06-26 Topcon Corp Worked end position detector using gps
JP2002310652A (en) * 2001-04-18 2002-10-23 Hitachi Constr Mach Co Ltd Position measuring system for traveling construction machine
JP2005029338A (en) * 2003-07-11 2005-02-03 Ohbayashi Corp Operation monitoring system and method for construction machinery
JP2005227086A (en) * 2004-02-12 2005-08-25 Denso Corp Vehicle specific position computing device and vehicle direction specifying device
JP2006125187A (en) * 2004-10-21 2006-05-18 Deere & Co Coordinated linkage system for work vehicle
JP2007162223A (en) * 2005-12-09 2007-06-28 Taisei Corp Construction management system and construction management method
JP2008510992A (en) * 2004-08-26 2008-04-10 キャタピラー トリンブル コントロール テクノロジーズ、 エルエルシー Method and system for performing non-contact determination of instrument position
JP2009085003A (en) * 2007-10-02 2009-04-23 Volvo Construction Equipment Ab Image display system of construction machine with leveling means
JP2011058269A (en) * 2009-09-10 2011-03-24 Caterpillar Sarl Position management device of work machine
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2017032353A (en) * 2015-07-30 2017-02-09 三菱電機株式会社 Positioning device and positioning method
JP2018021351A (en) * 2016-08-02 2018-02-08 株式会社小松製作所 Construction management system, working machine and construction management method
WO2018164077A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring position correction amount for bulldozer blade
WO2018164078A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring center of rotation of rotating member in construction work machinery
US10458099B2 (en) 2004-08-26 2019-10-29 Caterpillar Trimble Control Technologies Llc Auto recognition of at least one standoff target to determine position information for a mobile machine
JP2020166540A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Field management system
JP2022067404A (en) * 2020-10-20 2022-05-06 株式会社シーティーエス Paving/leveling and rolling compaction management system
WO2024062781A1 (en) * 2022-09-22 2024-03-28 株式会社トプコン Computing device, computing method, and program

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813537A (en) * 1994-06-23 1996-01-16 Mitsubishi Heavy Ind Ltd Blade turning angle detecting method
WO1997046767A1 (en) * 1996-06-03 1997-12-11 Siemens Aktiengesellschaft Method and arrangement for monitoring the working range when an item of machinery is moving
JPH11350525A (en) * 1998-06-11 1999-12-21 Fujikura Ltd Position measuring device of earthmoving machine or position measuring device of cable embedded machine in bottom of sea or water
US9650763B2 (en) 1998-11-27 2017-05-16 Caterpillar Trimble Control Technologies Llc Methodss for performing non-contact based determination of the position of an implement
US9481983B2 (en) 1998-11-27 2016-11-01 Caterpillar Trimble Control Technologies Llc Performing non-contact based determination of the position of an implement
US9422692B2 (en) 1998-11-27 2016-08-23 Caterpillar Trimble Control Technologies Llc Systems for performing non-contact based determination of the position of an implement
US8478492B2 (en) 1998-11-27 2013-07-02 Caterpillar Trimble Control Technologies, Inc. Method and system for performing non-contact based determination of the position of an implement
JP2000226188A (en) * 1999-02-03 2000-08-15 Kajima Corp Monitoring method for movable part-mounted mobile body and equipment thereof
JP2002004261A (en) * 2000-04-20 2002-01-09 Shimizu Corp Management system for compacting embankment
JP4526670B2 (en) * 2000-08-29 2010-08-18 株式会社トプコン Construction machine control system
JP2002070082A (en) * 2000-08-29 2002-03-08 Topcon Corp Construction equipment control system
JP2002181538A (en) * 2000-12-14 2002-06-26 Topcon Corp Worked end position detector using gps
JP2002181539A (en) * 2000-12-14 2002-06-26 Topcon Corp Position detection method and apparatus using gps in construction machine for civil engineering
JP2002310652A (en) * 2001-04-18 2002-10-23 Hitachi Constr Mach Co Ltd Position measuring system for traveling construction machine
JP2005029338A (en) * 2003-07-11 2005-02-03 Ohbayashi Corp Operation monitoring system and method for construction machinery
JP2005227086A (en) * 2004-02-12 2005-08-25 Denso Corp Vehicle specific position computing device and vehicle direction specifying device
JP2008510992A (en) * 2004-08-26 2008-04-10 キャタピラー トリンブル コントロール テクノロジーズ、 エルエルシー Method and system for performing non-contact determination of instrument position
US10458099B2 (en) 2004-08-26 2019-10-29 Caterpillar Trimble Control Technologies Llc Auto recognition of at least one standoff target to determine position information for a mobile machine
JP2006125187A (en) * 2004-10-21 2006-05-18 Deere & Co Coordinated linkage system for work vehicle
JP2007162223A (en) * 2005-12-09 2007-06-28 Taisei Corp Construction management system and construction management method
JP2009085003A (en) * 2007-10-02 2009-04-23 Volvo Construction Equipment Ab Image display system of construction machine with leveling means
JP2011058269A (en) * 2009-09-10 2011-03-24 Caterpillar Sarl Position management device of work machine
JP2012026113A (en) * 2010-07-21 2012-02-09 Taisei Corp Top-of-slope compaction management device
JP2017032353A (en) * 2015-07-30 2017-02-09 三菱電機株式会社 Positioning device and positioning method
JP2018021351A (en) * 2016-08-02 2018-02-08 株式会社小松製作所 Construction management system, working machine and construction management method
WO2018164077A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring position correction amount for bulldozer blade
WO2018164078A1 (en) * 2017-03-06 2018-09-13 株式会社トプコン Method for acquiring center of rotation of rotating member in construction work machinery
JP2018146407A (en) * 2017-03-06 2018-09-20 株式会社トプコン Acquisition method of rotation center of rotary member in construction work machine
JP2018145693A (en) * 2017-03-06 2018-09-20 株式会社トプコン Method for acquiring earth removing plate position correction amount
JP2020166540A (en) * 2019-03-29 2020-10-08 日立建機株式会社 Field management system
WO2020202896A1 (en) * 2019-03-29 2020-10-08 日立建機株式会社 Site management system
KR20210056350A (en) * 2019-03-29 2021-05-18 히다치 겡키 가부시키 가이샤 On-site management system
JP2022067404A (en) * 2020-10-20 2022-05-06 株式会社シーティーエス Paving/leveling and rolling compaction management system
WO2024062781A1 (en) * 2022-09-22 2024-03-28 株式会社トプコン Computing device, computing method, and program

Also Published As

Publication number Publication date
JP2866289B2 (en) 1999-03-08

Similar Documents

Publication Publication Date Title
JP2866289B2 (en) Display method of position and attitude of construction machinery
US6112145A (en) Method and apparatus for controlling the spatial orientation of the blade on an earthmoving machine
JP3049053B1 (en) Automated guide and measurement device and method for measuring and navigating a movable platform
US6480148B1 (en) Method and apparatus for navigation guidance
US7831362B2 (en) Position measuring system for working machine
JP4212121B2 (en) Exploration method and exploration device provided with radio navigation device
JP2007147588A (en) Position measuring system for working machine
JP2003064725A (en) Unmanned mechanical earth work system
JP2023503021A (en) Rotation Tracking with Swing Sensor
US6266628B1 (en) Surveying system with an inertial measuring device
JPH08304092A (en) Method and system for detecting position of moving body
JP7419119B2 (en) working machine
JP2002340556A (en) Position-measuring system for travelling construction machine, position-measuring computer and position- measuring program
Benz et al. CIOT: Constraint-Enhanced Inertial-Odometric Tracking for Articulated Dump Trucks in GNSS-Denied Mining Environments
JP2916625B1 (en) Vehicle attitude detection device
KR20020085663A (en) Real-time excavation system of excavator
JP3247143B2 (en) Positioning / posture surveying device for moving objects
JP2916708B2 (en) Current position measurement device for moving objects
JP3118173B2 (en) Geodetic system
CN110736451A (en) Bad visual environment unmanned aerial vehicle detection system based on ultrasonic waves and detection method thereof
JP2005300347A (en) Satellite automatic tracking device to be mounted on mobile body
JP7039746B1 (en) Work machine
JP2603068B2 (en) Measuring device for vehicle position and attitude angle
JPH08166240A (en) Method of remote surveying dangerous zone
JP2786309B2 (en) Vehicle position detection device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees