JPH07150368A - Cast iron parts having heat insulating covering layer - Google Patents

Cast iron parts having heat insulating covering layer

Info

Publication number
JPH07150368A
JPH07150368A JP29816093A JP29816093A JPH07150368A JP H07150368 A JPH07150368 A JP H07150368A JP 29816093 A JP29816093 A JP 29816093A JP 29816093 A JP29816093 A JP 29816093A JP H07150368 A JPH07150368 A JP H07150368A
Authority
JP
Japan
Prior art keywords
cast iron
layer
powder
sintered
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29816093A
Other languages
Japanese (ja)
Other versions
JP2964858B2 (en
Inventor
Hiroshi Tamura
央 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP29816093A priority Critical patent/JP2964858B2/en
Publication of JPH07150368A publication Critical patent/JPH07150368A/en
Application granted granted Critical
Publication of JP2964858B2 publication Critical patent/JP2964858B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide cast iron parts having heat insulating covering layers which decrease the pores in sintered layers of metallic powder in particular and are improved in oxidation resistance as the covering layers to be formed on the surfaces of ferrous members. CONSTITUTION:The sintered layers 1 consisting of the ferrous alloy powder contg. 10 to 90wt.% Fe are formed on the surfaces of the cast iron embers 4 of the cast iron parts having the heat insulating covering layers. The pores 2 of the sintered layers 1 are internally impregnated with a glassy material 3 having a m.p. of 700 to 850 deg.C at >=50% of the entire part of the pores. Further, ceramic hollow bodies are dispersed in the sintered layers. The sintered layers have the heat insulating covering layers which form closed holes in the sintered layers by packing of the oxide of metallic powder formed by mixing metallic powders of at least >=1 kinds among Cr, Zr, Ti, Si, Mn, Nb and V and heating the mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄系部材の表面に形成
する被膜層に関し、特に金属粉末の焼結層内の気孔を減
少し、耐酸化性を改善した断熱被膜層を有する鋳鉄製部
品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating layer formed on the surface of an iron-based member, and particularly to cast iron having a heat-insulating coating layer with reduced porosity in the sintered layer of metal powder and improved oxidation resistance. Regarding parts.

【0002】[0002]

【従来の技術】鉄系部材は高温に繰り返し使用される場
合には、断熱および耐酸化性を付与するために表面処理
がされている。この内、被膜処理としてはセラミックを
主体としたものが多い。しかし、金属とこのセラミック
との接合強度は充分ではなく、特に、自動車部品のよう
な長時間にわたって高温環境下で使用される部材におい
ては、表面の被膜層と母材の間に発生する下地酸化の現
象によって、界面での接合強度の低下が生じ、ついには
被膜層の剥離にいたることになる。
2. Description of the Related Art Iron-based members are surface-treated to provide heat insulation and oxidation resistance when they are repeatedly used at high temperatures. Of these, most of the coating treatments are mainly ceramics. However, the bonding strength between metal and this ceramic is not sufficient, and especially for members used for a long time in a high temperature environment such as automobile parts, the underlayer oxidation generated between the surface coating layer and the base material. This phenomenon causes a decrease in the bonding strength at the interface and eventually leads to peeling of the coating layer.

【0003】一般に、金属母材とセラミックの接合にお
いて、セラミックのポーラス性によって接合強度が問題
であるために、機械的な方法によって溶融時に応力を負
荷し、その封止作用を利用して界面の強度を向上させる
ことがなされている。この方法においても、両者の濡れ
性には限界があり十分な強度を得ることは難しい。さら
に、他の化学的な方法によって、濡れ性の改善を図ろう
としても、化学反応に付随するガス等と母材との関係に
おいて、接合強度への寄与を十分大きくすることは困難
となる。(例えば、材料工学辞典、p2463, vol. 4, 198
6)
Generally, in the joining of a metal base material and a ceramic, since the joining strength is a problem due to the porosity of the ceramic, stress is applied at the time of melting by a mechanical method, and the sealing action is utilized to form the interface. It has been made to improve strength. Even in this method, it is difficult to obtain sufficient strength because the wettability of both is limited. Further, even if an attempt is made to improve the wettability by another chemical method, it is difficult to sufficiently increase the contribution to the bonding strength in the relationship between the base material and the gas accompanying the chemical reaction. (For example, Material Engineering Dictionary, p2463, vol. 4, 198
6)

【0004】さらに、特開昭61─163282号公報
には、セラミックと水ガラスをバインダーとしてスラリ
ー状として、これを金属部材に塗布してセラミック被膜
を形成する方法が開示されている。また、特開平3─1
6969号公報に、予め表面に酸化鉄の被膜層を形成す
る方法が開示れているが、これにおいても十分な接合強
度は得られない問題がある。
Further, JP-A-61-163282 discloses a method of forming a ceramic coating by applying a slurry of ceramic and water glass as a binder and applying the slurry to a metal member. In addition, Japanese Patent Laid-Open No. 3-1
Japanese Patent No. 6969 discloses a method of forming a coating layer of iron oxide on the surface in advance, but this also has a problem that sufficient bonding strength cannot be obtained.

【0005】本発明者等は特許出願した特願平4─28
1600号において、鉄系合金の粉末からなる焼結層を
形成し、この表面にセラミック被膜層を形成する方法を
提案した。これにより、十分な接合強度が得られるが、
気孔の存在によって母材表面での酸化の発生がある。ま
た、使用環境によって高温下では、焼結層上にセラミッ
ク皮膜を形成した場合には、焼結層とセラミック被膜と
の熱膨張率の違いによる応力の作用があり、前記酸化の
進行と、内部応力の発生に基づいて、それぞれ被膜剥離
に繋がる可能性があり、十分な接合強度を維持するとは
言えない。さらに、鉄系部材と表面被膜層との界面の酸
化を防止して、その接合強度を向上し、さらに必ずしも
セラミック被膜を形成せずとも、十分な断熱性と耐酸化
性とを発現する被膜層の形成技術が望まれている。
The present inventors have filed a patent application for Japanese Patent Application No. 4-28.
No. 1600 proposed a method of forming a sintered layer made of iron-based alloy powder and forming a ceramic coating layer on the surface thereof. As a result, sufficient bonding strength can be obtained,
Oxidation occurs on the surface of the base material due to the presence of pores. Further, depending on the operating environment, when a ceramic coating is formed on the sintered layer at a high temperature, there is a stress action due to the difference in the coefficient of thermal expansion between the sintered layer and the ceramic coating. The occurrence of stress may lead to peeling of the coating film, and it cannot be said that sufficient bonding strength is maintained. Furthermore, a coating layer that prevents oxidation at the interface between the iron-based member and the surface coating layer to improve the bonding strength thereof, and that exhibits sufficient heat insulation and oxidation resistance without necessarily forming a ceramic coating. Forming technology is desired.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
鉄系部材、特に鋳鉄製部品の表面にFeを含有した鉄系
合金粉末による粉末層を形成するプロセスと、これを加
熱して焼結層を形成するプロセスによって構成されるセ
ラミック被膜層の形成方法において、さらに部材表面で
の酸化によるセラミックとの接合強度低下を防止するた
めに、多孔体である焼結層の気孔を封止して、それらを
封鎖孔となし母材表面酸化の進行を抑止することを可能
とする断熱被膜層を備えた鋳鉄製部品を提供することで
ある。本発明の別の目的は、前記酸化を防止することに
よって、さらに必ずしもセラミック被膜を形成せずと
も、十分な断熱性と耐酸化性とを発現する被膜層を提供
することである。
An object of the present invention is to provide a process for forming a powder layer of iron-based alloy powder containing Fe on the surface of the iron-based member, particularly a cast iron part, and heating and baking the powder layer. In the method of forming a ceramic coating layer constituted by the process of forming a bonding layer, the pores of the sintered layer, which is a porous body, are sealed in order to prevent a decrease in bonding strength with the ceramic due to oxidation on the surface of the member. And to provide a cast iron part provided with a heat-insulating coating layer that makes it possible to suppress the progress of oxidation of the base material surface without forming a blocking hole. Another object of the present invention is to provide a coating layer that exhibits sufficient heat insulation and oxidation resistance by preventing the above-mentioned oxidation and without necessarily forming a ceramic coating.

【0007】[0007]

【課題を解決するための手段】上述の目的が、断熱被膜
層を備えた鋳鉄製部品であって、鋳鉄部材表面に10〜
90重量%のFeを含有した鉄系合金粉末からなる焼結
層が形成されてなり、該焼結層の気孔内に、融点が70
0〜850℃のガラス質物質が気孔全体に対して50%
以上含浸されていることを特徴とする断熱被膜層を備え
た鋳鉄製部品によって達成される。また、断熱被膜層を
備えた鋳鉄製部品であって、鋳鉄部材表面に10〜90
重量%のFeを含有した鉄系合金の粉末からなる焼結層
が形成されてなり、該焼結層にはセラミック中空体が分
散されていることを特徴とする断熱被膜層を備えた鋳鉄
製部品によっても達成される。
Means for Solving the Problems The above-mentioned object is a cast iron part having a heat-insulating coating layer, which has 10 to 10
A sintered layer composed of an iron-based alloy powder containing 90% by weight of Fe is formed, and the melting point is 70 in the pores of the sintered layer.
Vitreous substance at 0-850 ℃ is 50% of the total pores
This is achieved by a cast iron part having a heat insulating coating layer characterized by being impregnated as described above. Moreover, it is a cast iron part provided with a heat insulation coating layer, and the surface of the cast iron member is from 10 to 90.
A cast iron having a heat-insulating coating layer characterized in that a sintered layer made of an iron-based alloy powder containing wt% Fe is formed, and a hollow ceramic body is dispersed in the sintered layer. It is also achieved by parts.

【0008】さらに、断熱被膜層を備えた鋳鉄製部品で
あって、鋳鉄部材表面に10〜90重量%のFeを含有
した鉄系合金の粉末からなる焼結層が形成されてなり、
該焼結層はCr、Zr、Ti、Si、Mn、Nb、Vの
少なくとも1種以上の金属粉末が混合され、加熱により
生成された該金属粉末の酸化物の充填によって、該焼結
層に閉鎖孔を形成してなることを特徴とする断熱被膜層
を備えた鋳鉄製部品によっても達成される。
Further, a cast iron part having a heat insulating coating layer, wherein a sintered layer made of an iron-based alloy powder containing 10 to 90% by weight of Fe is formed on the surface of the cast iron member,
The sintered layer is formed by mixing at least one metal powder of Cr, Zr, Ti, Si, Mn, Nb, and V and filling the oxide of the metal powder generated by heating. It is also achieved by a cast iron part provided with a heat-insulating coating layer characterized by forming closed holes.

【0009】以下に本発明の限定理由について詳述す
る。本発明の鉄系金属粉末の組成のFeを10〜90重
量%に限定するが、これはFeが10%未満では焼結性
および接合強度が低くなり、90%超では耐酸化性を満
足しないためである。
The reasons for limitation of the present invention will be described in detail below. Fe in the composition of the iron-based metal powder of the present invention is limited to 10 to 90% by weight, but if Fe is less than 10%, the sinterability and bonding strength will be low, and if it exceeds 90%, the oxidation resistance will not be satisfied. This is because.

【0010】さらに本発明では、金属層内に含浸するガ
ラス質物質の融点(ガラス質物質は明確な融点を有しな
いが、ガラス質物質が軟化を開始する「軟化点」と同意
語として用いる)が850℃よりも高い場合には、気孔
内に存在するガラス質物質と金属粉末との間に、微小な
亀裂が発生し、十分な酸素遮断効果が得られない。ま
た、700℃よりも融点が低いとガラス質物質の粘度が
低下して気孔内から流失し、効果を発現しないことにな
る。本発明の第一発明の範囲内の融点を持つ場合、気孔
内にガラス質物質が適度の粘度で溶融し、粒子間の隙間
を充填する効果が得られる。
Further, in the present invention, the melting point of the vitreous substance impregnated in the metal layer (the vitreous substance does not have a definite melting point, but is used synonymously with the "softening point" at which the vitreous substance begins to soften). When the temperature is higher than 850 ° C., minute cracks occur between the vitreous substance present in the pores and the metal powder, and a sufficient oxygen blocking effect cannot be obtained. Further, if the melting point is lower than 700 ° C., the viscosity of the vitreous substance is lowered and the vitreous substance is washed away from the pores, and the effect is not exhibited. When the melting point is within the range of the first invention of the present invention, the vitreous substance is melted in the pores with an appropriate viscosity, and the effect of filling the gaps between the particles can be obtained.

【0011】また、本発明は、含浸量を気孔体積の50
%以上と限定しているが、これ以下では粒子間を充填し
て、隙間を埋める効果が十分に得られないためである。
また、本発明のガラス質物質は、ケイ酸とアルカリ(N
2 O、Li2 O、K2 O)からなる二成分ガラスが好
ましい。なお、通常のガラスは融点が1000℃以上で
あり本発明の範囲外となる。これはアルカリを含有する
ことにより、融点を700〜850℃に調整することが
可能となり、前記二成分ガラスは常温では、乾燥すると
水溶性を示し容易に含浸することができることによる。
また、融点が同程度の700〜850℃である金属合金
等を用いると金属層と反応し、ガラスの融点が変化する
傾向にあるが、前記ガラスは金属との反応性が乏しく安
定した状態を維持できるためである。
Further, according to the present invention, the impregnation amount is set to 50 of the pore volume.
This is because the content is limited to at least%, but if it is less than this, the effect of filling the spaces between the particles and filling the gaps cannot be sufficiently obtained.
Further, the vitreous material of the present invention contains silicic acid and alkali (N
A two-component glass composed of a 2 O, Li 2 O, K 2 O) is preferable. Note that the melting point of ordinary glass is 1000 ° C. or higher, which is outside the scope of the present invention. This is because the melting point can be adjusted to 700 to 850 ° C. by containing an alkali, and the two-component glass at room temperature exhibits water solubility when dried and can be easily impregnated.
Further, when a metal alloy or the like having a melting point of 700 to 850 ° C. having a similar degree is used, it tends to react with the metal layer and change the melting point of the glass, but the glass has a poor reactivity with the metal and is stable. This is because it can be maintained.

【0012】本発明の第二発明では、前記第一発明と同
様の理由で鉄系合金粉末の組成として、Feを10〜9
0重量%に限定するものである。一方、セラミック中空
体の組成としては、融点が使用温度である1200℃以
上であり、内部が中空になっている球であれば良く、組
成を限定するものではないが、現状では、技術的および
工業的には例えば、Al2 3 、SiO2 およびAl2
3 とSiO2 からなるセラミックである。平均粒径
(外径)は鉄系合金粉末よりも粒径が大きく、かつ2m
m以下が好ましい。
In the second invention of the present invention, for the same reason as in the first invention, the composition of the iron-based alloy powder is 10 to 9% Fe.
It is limited to 0% by weight. On the other hand, the composition of the ceramic hollow body is not limited as long as it is a sphere having a melting point of 1200 ° C. or higher, which is a use temperature, and a hollow inside, and the composition is not limited. Industrially, for example, Al 2 O 3 , SiO 2 and Al 2
It is a ceramic composed of O 3 and SiO 2 . The average particle size (outer diameter) is larger than that of iron-based alloy powder and is 2m
m or less is preferable.

【0013】この粒径が鉄系合金粉末以上となると焼結
性および接合強度が低く、2mm以上では、膜厚上限が
2mmであり、被膜から露出し、成膜できなくなる。こ
のセラミック中空体の混合比は、鉄系合金粉末/(鉄系
合金粉末+セラミック中空体)が体積比で20〜70%
が適正な範囲である。これが20%未満では焼結性およ
び接合強度が低く、70%超では断熱性が十分でない。
さらに、成膜を得る方法として、鉄系合金粉末とセラミ
ック中空体およびブタノール等の有機溶媒からなるスラ
リーを鋳鉄部材に塗布し、これを焼成しても良い。この
時、スラリー溶媒は焼結に何ら寄与しないので、アルコ
ール類、水のいずれでも良い。
If the particle size is more than the iron-based alloy powder, the sinterability and the bonding strength are low, and if the particle size is 2 mm or more, the upper limit of the film thickness is 2 mm, and the film is exposed and cannot be formed. The mixing ratio of the ceramic hollow body is iron-based alloy powder / (iron-based alloy powder + ceramic hollow body) in a volume ratio of 20 to 70%.
Is an appropriate range. If it is less than 20%, the sinterability and bonding strength are low, and if it exceeds 70%, the heat insulating property is insufficient.
Further, as a method for obtaining a film, a cast iron member may be coated with a slurry composed of an iron-based alloy powder, a ceramic hollow body, and an organic solvent such as butanol, and fired. At this time, since the slurry solvent does not contribute to the sintering at all, either alcohols or water may be used.

【0014】但し、作業性を考慮するとブタノールが好
ましい。本発明の焼結条件は、焼結温度は700〜12
00℃であり、これは700℃未満では焼結性および接
合強度が低く、かつ1200℃超では金属母材が熱歪み
を生じるため、成膜できない。なお、焼結雰囲気条件は
酸素濃度が5%以下が好ましく、酸素濃度が5%以上で
は鉄系合金粉末が酸化し、焼結性および接合強度が低下
する。また、膜厚は0.3〜2.0mmが適正であり、
0.3mm未満では断熱性が低く、2.0mm超では焼
結性および接合強度が低くなる。
However, butanol is preferable in consideration of workability. The sintering condition of the present invention is that the sintering temperature is 700 to 12
The temperature is 00 ° C., which is lower than 700 ° C., the sinterability and the bonding strength are low, and the temperature higher than 1200 ° C. causes thermal strain in the metal base material, so that the film cannot be formed. The sintering atmosphere condition is preferably an oxygen concentration of 5% or less, and when the oxygen concentration is 5% or more, the iron-based alloy powder is oxidized and the sinterability and the bonding strength are reduced. In addition, a film thickness of 0.3 to 2.0 mm is appropriate,
If it is less than 0.3 mm, the heat insulating property is low, and if it exceeds 2.0 mm, the sinterability and the bonding strength are low.

【0015】本発明の第三発明においても、鉄系合金粉
末の組成としてFeを10〜90重量%に限定するが、
これは10重量%未満では焼結性および接合強度が低下
し、90重量%を越えると、耐酸化性が低下するからで
ある。すなわち、金属層の空隙は、Crの効果により防
げるが、金属粉末自身の耐酸化性が低下し、この粉末内
の粒界等を酸素が移動し、結果として、母材が酸化を起
こす。また、平均粒径は50μm以下が適正である。粒
径が50μm超では焼結性および接合強度が低下する。
次に、微小金属粉末についての要件として、鉄系合金粉
末より優先的に酸化されることが必要であり、さらに微
小金属粉末の酸化物が緻密体となること、微小金属粉末
およびこの酸化物の融点が1000℃以上であることが
必要な要件である。
Also in the third invention of the present invention, Fe is limited to 10 to 90% by weight as the composition of the iron-based alloy powder.
This is because if it is less than 10% by weight, the sinterability and the bonding strength are lowered, and if it exceeds 90% by weight, the oxidation resistance is lowered. That is, the voids in the metal layer can be prevented by the effect of Cr, but the oxidation resistance of the metal powder itself is reduced, oxygen is moved through grain boundaries and the like in this powder, and as a result, the base material is oxidized. Further, it is appropriate that the average particle diameter is 50 μm or less. If the particle size exceeds 50 μm, the sinterability and the bonding strength will decrease.
Next, as a requirement for the fine metal powder, it is necessary to be preferentially oxidized over the iron-based alloy powder, and the oxide of the fine metal powder should be a dense body. It is a necessary requirement that the melting point be 1000 ° C or higher.

【0016】また、その平均粒径は鉄系合金粉末の平均
粒径よりも小さいこと、すなわち50μm未満であるこ
とが合わせて必要なことである。もしも、鉄系合金粉末
の平均粒径より大きい時には、鉄系合金粉末の焼結性お
よび接合性を阻害する。また、その混合比は、Crの場
合では、Cr粉末の体積総量/(Cr粉末の体積総量+
鉄系合金粉末の体積総量)が20〜50%が必要であ
る。もしも、これが20%未満の時は、被膜の耐酸化性
は空気遮断性が低いため十分でなく、50%超では鉄系
合金粉末の焼結性および接合性を阻害する。
It is also necessary that the average particle size is smaller than the average particle size of the iron-based alloy powder, that is, less than 50 μm. If it is larger than the average particle size of the iron-based alloy powder, the sinterability and bondability of the iron-based alloy powder are impaired. In the case of Cr, the mixing ratio is the total volume of Cr powder / (the total volume of Cr powder +
The total volume of iron-based alloy powder) is required to be 20 to 50%. If it is less than 20%, the oxidation resistance of the coating is insufficient due to its low air barrier property, and if it exceeds 50%, it impairs the sinterability and bondability of the iron-based alloy powder.

【0017】[0017]

【作用】本発明は、金属層内に融点が700〜850℃
であるガラス系物質を含浸することを第一の特徴として
いる。一般に鋳鉄部材は、700℃以上の温度では酸化
量が増加し、特に800℃から著しく酸化する特徴を有
している。この温度条件を勘案して、前記焼結層の気孔
内に特定融点のガラス質物質を含浸させることにより、
酸化量の増加する条件下では、ガラス質物質が適度な粘
度となり気孔の隙間を充填することによって、酸化を防
止することができ、かつ気孔の存在によって断熱性も備
えるものである。
The present invention has a melting point of 700 to 850 ° C. in the metal layer.
The first feature is to impregnate the glass material. Generally, a cast iron member has a feature that the oxidation amount increases at a temperature of 700 ° C. or higher, and in particular, it is significantly oxidized from 800 ° C. Taking this temperature condition into consideration, by impregnating a glassy substance having a specific melting point in the pores of the sintered layer,
Under the condition that the amount of oxidation increases, the vitreous substance has an appropriate viscosity and fills the pore gaps, so that the oxidation can be prevented, and the existence of the pores also provides the heat insulating property.

【0018】これをガラス質物質に限定したのは焼結層
に対して濡れ性が良いという観点に基づいており、この
濡れ性が悪いと隙間が生じ、酸化の防止が不充分とな
る。さらに、断熱性を向上させるためにセラミック被膜
を形成してもよい。また、本発明は、前記焼結層にセラ
ミック中空体を分散させことによって断熱性を付与する
ことが可能であり、セラミック被膜層の形成が必ずしも
必要でなくなり、熱膨張率の相違に起因する内部応力の
発生がなく、被膜層の剥離を防止することが可能とな
る。
The reason why this is limited to the vitreous substance is that it has good wettability with respect to the sintered layer, and if this wettability is poor, a gap is created and oxidation is insufficiently prevented. Further, a ceramic coating may be formed to improve heat insulation. Further, according to the present invention, it is possible to impart a heat insulating property by dispersing the ceramic hollow body in the sintered layer, the formation of the ceramic coating layer is not necessarily required, and the internal due to the difference in the coefficient of thermal expansion is increased. It is possible to prevent peeling of the coating layer without generating stress.

【0019】さらに、前記特定金属からなる粉末を焼結
層に混合しておくことにより、鋳鉄部材の使用時、ある
いは付加的な酸化処理により金属粉末が酸化して酸化物
となり、この酸化反応時の体積変化(膨張)により焼結
層の封孔がなされ、鋳鉄の酸化を防止することができ
る。
Furthermore, by mixing the powder made of the above-mentioned specific metal in the sintered layer, the metal powder is oxidized into an oxide by the use of the cast iron member or by an additional oxidation treatment, and during this oxidation reaction. Due to the volume change (expansion), the sintered layer is sealed, and the cast iron can be prevented from being oxidized.

【0020】[0020]

【実施例】以下、添付図面を参照して、本発明の実施態
様例および比較例によって本発明を詳細に説明する。
EXAMPLES The present invention will be described in detail below with reference to the accompanying drawings by way of example embodiments and comparative examples of the present invention.

【0021】実施例1 本発明の第一発明を自動車用鋳鉄製エキゾーストマニホ
ールド(以下Exマニと略す)に実施した。先ず、Ex
マニの内面をショットブラストにて粗面化し、FeNi
(Fe−50重量%Ni)合金粉(粒度10〜20μ
m)に蒸留水を加えて、攪拌しスラリー状とする。この
際の粘土は1000〜4000cpsに調整する。この
スラリーを鋳鉄製Exマニ内部に流し込み、膜厚が10
0μmとなるように塗布する。塗布後これを200℃で
乾燥し、これを真空中または不活性ガス中にて昇温し、
900℃にて5Hr保持する。
Example 1 The first invention of the present invention was carried out on an exhaust manifold made of cast iron for automobiles (hereinafter abbreviated as Ex manifold). First, Ex
The inner surface of the manifold was roughened by shot blasting and FeNi
(Fe-50 wt% Ni) alloy powder (particle size 10 to 20μ
Distilled water is added to m) and stirred to form a slurry. The clay at this time is adjusted to 1000 to 4000 cps. The slurry was poured into a cast iron Ex manifold to obtain a film thickness of 10
Apply so that the thickness becomes 0 μm. After coating, this is dried at 200 ° C., and this is heated in vacuum or in an inert gas,
Hold at 900 ° C. for 5 hours.

【0022】その後、炉冷することにより金属層が形成
される。ガラス質物質としてケイ酸塩ガラスのSiO2
─Na2 O(水ガラス)を用い、市販の水ガラス3号溶
液(75%SiO2 ─25%Na2 O)に蒸留水を加え
濃度を25重量%まで希釈する。この溶液内に処理した
Exマニを浸漬し、これを真空中に置いて金属層内に水
ガラスを含浸させる。その後、300℃で乾燥し重量を
測定し、気孔体積(予め測定する)に対して含浸の程度
を調べ、前記ガラス質の含浸工程を繰り返し、気孔全体
積に対して50%以上まで含浸を行った。Exマニの場
合には、前記含浸工程を5回繰り返すことにより、気孔
体積の60%まで含浸が可能となる。その後、ZrO2
等を骨材としたセラミックスラリーを塗布し、500℃
で焼成し、断熱被膜を構成した。図1および図2は本実
施例の成膜後の模式図である。図1は鋳鉄部材4の表面
に鉄系合金粉末を焼結させた金属層1を形成し、その気
孔内2にガラス質物質3を含浸させたものである。図2
は図1にさらに、上部にセラミック5を被覆した断熱被
膜を形成したものを示す。
Then, the metal layer is formed by furnace cooling. SiO 2 of silicate glass as a glassy substance
Using Na 2 O (water glass), distilled water is added to a commercially available water glass No. 3 solution (75% SiO 2 -25% Na 2 O) to dilute the concentration to 25% by weight. The treated Ex-manifold is dipped in this solution and placed in a vacuum to impregnate the metal layer with water glass. Then, it is dried at 300 ° C., the weight is measured, the degree of impregnation is examined with respect to the pore volume (preliminarily measured), and the glassy impregnation step is repeated to impregnate up to 50% or more of the total pore volume. It was In the case of Ex manifold, the impregnation can be performed up to 60% of the pore volume by repeating the impregnation step 5 times. Then ZrO 2
Apply ceramic slurry using the above as an aggregate, 500 ℃
Was fired to form a heat insulating coating. FIG. 1 and FIG. 2 are schematic views after the film formation of this embodiment. In FIG. 1, a metal layer 1 obtained by sintering an iron-based alloy powder is formed on the surface of a cast iron member 4, and the vitreous substance 3 is impregnated in the pores 2 of the metal layer 1. Figure 2
FIG. 1 shows a structure in which a heat insulating coating having a ceramic 5 coated thereon is further formed.

【0023】前記工程で作成したExマニおよび前記含
浸工程のない従来品を850℃の大気中に保持し、金属
層と母材間の酸化状態を切断観察した。その結果を図7
に示す。図7に示すように従来品は母材が著しく酸化し
ているのに対して本発明品は母材酸化を防いでいること
が分かる。表1にガラス成分、含浸量およびガラス融点
を変化させた際の、耐酸化性能をまとめて示した。ここ
では、耐酸化性の指標として大気中850℃、200時
間保持後の母材界面部の酸化スケール厚さを示してい
る。表1より本発明の範囲内では耐酸化性が優れている
ことが分かる。
The Ex manifold manufactured in the above process and the conventional product without the impregnation process were held in the atmosphere at 850 ° C., and the oxidation state between the metal layer and the base material was cut and observed. The result is shown in Fig. 7.
Shown in. As shown in FIG. 7, it can be seen that the base material of the conventional product is remarkably oxidized, whereas the product of the present invention prevents the base material from being oxidized. Table 1 collectively shows the oxidation resistance performance when the glass component, the impregnation amount and the glass melting point were changed. Here, as an index of oxidation resistance, the oxide scale thickness of the base material interface portion after holding at 850 ° C. in the atmosphere for 200 hours is shown. It can be seen from Table 1 that the oxidation resistance is excellent within the range of the present invention.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例2 本実施例においては、第二発明をExマニに実施したも
のである。その作成工程は、50wt.%Fe−50wt.%N
i粉末(平均粒径10μm)とアルミナ製中空体(平均
粒径50μm)を金属粉/(金属粉+アルミナ中空体)
が50vol.%となるように混合した。この混合粉末1部
にブタノールを1部加え、十分に攪拌し原料スラリーを
得た。このスラリーをExマニの内面に塗布し、余剰の
スラリーを除去後、80℃の乾燥器で2時間乾燥させ
た。
Embodiment 2 In this embodiment, the second invention is applied to an Ex manifold. The manufacturing process is 50 wt.% Fe-50 wt.% N
i powder (average particle size 10 μm) and alumina hollow body (average particle size 50 μm) metal powder / (metal powder + alumina hollow body)
Was mixed so as to be 50 vol.%. To 1 part of this mixed powder, 1 part of butanol was added and sufficiently stirred to obtain a raw material slurry. This slurry was applied to the inner surface of the Ex manifold, the excess slurry was removed, and then dried in a dryer at 80 ° C. for 2 hours.

【0026】その後、アルゴン雰囲気、900℃で5時
間保持し成膜した。成膜後の断面組織の模式図を図3に
示す。また、比較のために従来のセラミックコーティン
グの成膜後の模式図を図4に示す。図4では、セラミッ
ク粉末8およびセラミック中空体6は、なんら接合に寄
与しておらず、無機質結合剤9でコーティングと母材金
属とを接合していた。そのため、接合強度が低く、冷熱
サイクルが生じた時などには、コーティングの剥離が生
じることがあった。図3に示すごとく、本実施例では鉄
系金属粉末は焼結され焼結金属層7を形成するととも
に、セラミック中空体6を固めると同時に、鋳鉄部材4
とも拡散接合するため、従来のセラミック被膜に比較し
て高い接合強度を得ることができる。
After that, the film was formed by holding it at 900 ° C. for 5 hours in an argon atmosphere. A schematic diagram of the cross-sectional structure after film formation is shown in FIG. Further, for comparison, a schematic diagram after the conventional ceramic coating is formed is shown in FIG. In FIG. 4, the ceramic powder 8 and the ceramic hollow body 6 did not contribute to the bonding at all, and the coating and the base metal were bonded with the inorganic binder 9. Therefore, the bonding strength is low, and the coating may peel off when a cooling / heating cycle occurs. As shown in FIG. 3, in this embodiment, the iron-based metal powder is sintered to form the sintered metal layer 7, and the ceramic hollow body 6 is solidified, and at the same time, the cast iron member 4 is formed.
Since both are diffusion bonded, higher bonding strength can be obtained as compared with the conventional ceramic coating.

【0027】また、接合界面をEPMAライン分析を行
ったところ、Fe、Ni元素の拡散が認められた。同様
の工程にて金属粉末組成および粒径、アルミナ製中空球
粒径、両材料の混合比、焼結温度を表2のように変えて
成膜を行った。比較例として、Al2 3 粉末(粒径2
0μm)10部、Al2 3 中空球(粒径50μm)1
0部、水ガラス結合剤(水ガラス2号)20部を混合
し、塗布後、500℃で膜厚0.5mmの成膜した。
Further, when an EPMA line analysis was performed on the bonded interface, diffusion of Fe and Ni elements was recognized. In the same process, the film formation was performed by changing the metal powder composition and particle diameter, the alumina hollow sphere particle diameter, the mixing ratio of both materials, and the sintering temperature as shown in Table 2. As a comparative example, Al 2 O 3 powder (particle size 2
0 μm) 10 parts, Al 2 O 3 hollow spheres (particle size 50 μm) 1
0 part and 20 parts of a water glass binder (water glass No. 2) were mixed, and after coating, a film having a thickness of 0.5 mm was formed at 500 ° C.

【0028】上記のように作成した排気管の性能を以下
の方法で調査した。その結果を表2〜4にまとめて示
す。断熱性評価は2000ccの4気筒ガソリンエンジ
ンに上記Exマニを組み込み、4000rpmの回転数
で30分運転した。その時の被膜上部と被膜下部の温度
差を熱電対で測定し、これを断熱温度とした。それ故、
この温度が大きい程、断熱性に優れていると言える。ま
た、密着性(接合性)評価については、上記排気管より
テストピースを切り出し、剪断密着測定法により、接合
性を評価した。表2〜4より本発明の範囲内では密着強
度および断熱性が優れていることが分かる。
The performance of the exhaust pipe produced as described above was investigated by the following method. The results are summarized in Tables 2-4. The heat insulation was evaluated by incorporating the Ex manifold into a 2000 cc 4-cylinder gasoline engine and operating it at a rotational speed of 4000 rpm for 30 minutes. The temperature difference between the upper part of the coating and the lower part of the coating at that time was measured with a thermocouple, and this was used as the adiabatic temperature. Therefore,
It can be said that the higher this temperature is, the more excellent the heat insulating property is. Regarding the evaluation of adhesion (bondability), a test piece was cut out from the exhaust pipe and the bondability was evaluated by a shear adhesion measurement method. From Tables 2 to 4, it can be seen that the adhesion strength and the heat insulating property are excellent within the range of the present invention.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】実施例3 以下、本発明の第三発明をExマニに適用した実施例に
ついて説明する。50wt.%Fe−50wt.%Ni粉末(平
均粒径10μm)と純度95%のCr粉末(平均粒径2
μm)をCr粉末の体積総量/(Cr粉末の体積総量+
鉄系合金粉末の体積総量)が30%となるように混合し
た。(重量比では33wt.%)この混合粉末100部に対
して、10部のブタノールを混合し、十分に攪拌し原料
スラリーを得た。このスラリーをExマニの内面に塗布
し、余剰のスラリーを除去後、80℃の乾燥器で2時間
乾燥させた。その後、アルゴン雰囲気、900℃で5時
間保持し焼成した。焼成後の断面組織の模式図を図5に
示す。鉄系合金粉末10は相互に焼結しており、かつ母
材の鋳鉄部材4とも拡散によって強固に接合されてい
る。本実施例では、その空隙(気孔)には、微少金属粉
末11としてCr粉末が観察される。なお膜厚は、50
0μmであった。上記Exマニを大気雰囲気で850℃
に10時間保持した。
Embodiment 3 An embodiment in which the third invention of the present invention is applied to an Ex manifold will be described below. 50 wt.% Fe-50 wt.% Ni powder (average particle size 10 μm) and Cr powder with 95% purity (average particle size 2
μm) is the total volume of Cr powder / (total volume of Cr powder +
The iron-based alloy powder was mixed so that the total volume of the powder was 30%. (33 wt.% In weight ratio) 10 parts of butanol was mixed with 100 parts of this mixed powder and sufficiently stirred to obtain a raw material slurry. This slurry was applied to the inner surface of the Ex manifold, the excess slurry was removed, and then dried in a dryer at 80 ° C. for 2 hours. Then, it was baked by holding at 900 ° C. for 5 hours in an argon atmosphere. A schematic diagram of the cross-sectional structure after firing is shown in FIG. The iron-based alloy powders 10 are mutually sintered and firmly bonded to the cast iron member 4 of the base material by diffusion. In this embodiment, Cr powder is observed as the minute metal powder 11 in the voids (pores). The film thickness is 50
It was 0 μm. The Ex manifold is heated to 850 ° C. in the atmosphere.
Hold for 10 hours.

【0033】その後テストピース(50x50x5)を
切り出し、断面組織の観察を行った。その組織模式図を
図6に示す。この図では鉄系合金粉末10の焼結層空隙
に存在する微少金属粉末11は体積膨張を起こし、鉄系
合金粉末10の焼結層空隙を埋める。これにより、母材
への酸素の通路が遮断され、母材の酸化を防ぐことにな
る。本実施例では、被膜内の開口気孔(オープンポア)
に位置するCr粉末は、酸化されその体積を膨張し、気
孔を塞いでいる。一方、閉口気孔(クローズポア)に位
置するCr粉末は酸化されることなく、Crのままで存
在している。このように、開口気孔をCrの酸化膨張で
遮断することにより、空気(酸素)は、母材に供給され
ず、母材酸化を防ぐことになる。この結果を表5のNo.
39に示す。
Thereafter, a test piece (50 × 50 × 5) was cut out and the cross-sectional structure was observed. A schematic diagram of the structure is shown in FIG. In this figure, the minute metal powder 11 existing in the sintered layer voids of the iron-based alloy powder 10 causes volume expansion to fill the sintered layer voids of the iron-based alloy powder 10. This blocks the passage of oxygen to the base material and prevents the base material from oxidizing. In this example, open pores (open pores) in the coating film
The Cr powder located at is oxidized and expands its volume to close the pores. On the other hand, the Cr powder located in the closed pores (close pores) remains as Cr without being oxidized. In this way, by blocking the open pores by the oxidation expansion of Cr, air (oxygen) is not supplied to the base material, and base material oxidation is prevented. The results are shown in Table 5 No.
39.

【0034】[0034]

【表5】 [Table 5]

【0035】実施例4 50wt.%Fe−50wt.%Ni粉末(平均粒径10μm)
と純度95%のCr粉末(平均粒径2μm)をCr粉末
の体積総量/(Cr粉末の体積総量+鉄系合金粉末の体
積総量)が30%となるように混合した。(重量比では
33wt.%)この混合粉末の体積総量50に対してAl2
3 製中空球(粒径50μm)の体積が50となるよう
混合した。(重量換算すると粉末100部に対して、A
2 3中空球8部)この混合品100部に対して、1
0部のブタノールを混合し、十分に攪拌し原料スラリー
を得た。
Example 4 50 wt.% Fe-50 wt.% Ni powder (average particle size 10 μm)
And Cr powder having a purity of 95% (average particle diameter 2 μm) were mixed so that the total volume of Cr powder / (total volume of Cr powder + total volume of iron-based alloy powder) was 30%. (33 wt.% In weight ratio) Al 2 to the total volume 50 of this mixed powder
The O 3 hollow spheres (particle size 50 μm) were mixed so that the volume was 50. (Converted to 100 parts by weight of powder, A
l 2 O 3 hollow sphere 8 parts) 1 part to 100 parts of this mixture
0 part of butanol was mixed and sufficiently stirred to obtain a raw material slurry.

【0036】このスラリーをExマニの内面に塗布し、
余剰のスラリーを除去後、80℃の乾燥器で2時間乾燥
させた。その後、アルゴン雰囲気、900℃で5時間保
持し焼成した。上記Exマニを大気雰囲気で850℃に
10時間保持した。その後テストピース(50x50x
5)を切り出し、断面組織の観察を行った。その結果、
被膜内の開口気孔(オープンポア)に位置するCr粉末
は、酸化されその体積を膨張し、気孔を塞いでいる。こ
の時、膜厚は500μmであった。上記Exマニを20
00ccのガソリンエンジンに組み込み、4000rp
mの回転数で30分運転した。その時の被膜上部と被膜
下部の温度差を熱電対で測定し、これを断熱温度とし
た。比較として実施例3で作製したExマニ(中空球な
し)も評価した。
The slurry was applied to the inner surface of the Ex manifold,
After removing the excess slurry, it was dried in an oven at 80 ° C. for 2 hours. Then, it was baked by holding at 900 ° C. for 5 hours in an argon atmosphere. The Ex manifold was held at 850 ° C. for 10 hours in the air atmosphere. Then test piece (50x50x
5) was cut out and the cross-sectional structure was observed. as a result,
The Cr powder located in the open pores (open pores) in the coating film is oxidized and its volume expands to close the pores. At this time, the film thickness was 500 μm. 20 Ex Mani
Installed in a 00cc gasoline engine, 4000rp
It was operated for 30 minutes at a rotation speed of m. The temperature difference between the upper part of the coating and the lower part of the coating at that time was measured with a thermocouple, and this was used as the adiabatic temperature. For comparison, the Ex manifold (without hollow spheres) manufactured in Example 3 was also evaluated.

【0037】なお、両者とも膜厚が500μmで同一で
あることを確認し、評価をおこなった。その結果、中空
球無添加品(実施例3)は断熱温度5℃であったのに対
して、中空球添加品(実施例4)は断熱温度40℃であ
った。この結果より、中空球を添加することによって、
断熱性も付与できることが確認できた。この結果を表5
のNo.40に示す。
It was confirmed that both films had the same film thickness of 500 μm and were evaluated. As a result, the hollow sphere-free product (Example 3) had an adiabatic temperature of 5 ° C, whereas the hollow sphere-added product (Example 4) had an adiabatic temperature of 40 ° C. From this result, by adding hollow spheres,
It was confirmed that heat insulation can also be imparted. The results are shown in Table 5.
No. 40 of.

【0038】実施例5 50wt.%Fe−50wt.%Ni粉末(平均粒径10μm)
と純度95%のCr粉末(平均粒径2μm)をCr粉末
の体積総量/(Cr粉末の体積総量+鉄系合金粉末の体
積総量)が30%となるように混合した。(重量比では
33wt.%)この混合粉末100部に対して、20部のブ
タノールを混合し、十分に攪拌し原料スラリーを得た。
このスラリーをExマニの内面に塗布し、余剰のスラリ
ーを除去後、80℃の乾燥器で2時間乾燥させた。その
後、アルゴン雰囲気、900℃で5時間保持し焼成し
た。
Example 5 50 wt.% Fe-50 wt.% Ni powder (average particle size 10 μm)
And Cr powder having a purity of 95% (average particle diameter 2 μm) were mixed so that the total volume of Cr powder / (total volume of Cr powder + total volume of iron-based alloy powder) was 30%. (Weight ratio: 33 wt.%) To 100 parts of this mixed powder, 20 parts of butanol was mixed and sufficiently stirred to obtain a raw material slurry.
This slurry was applied to the inner surface of the Ex manifold, the excess slurry was removed, and then dried in a dryer at 80 ° C. for 2 hours. Then, it was baked by holding at 900 ° C. for 5 hours in an argon atmosphere.

【0039】その際、焼成後に膜厚を測定したところ、
100μmであった。このFeNi−Cr層上にセラミ
ックスをコーティングし、断熱性を付与する。Al2
3 粉末(粒径20μm以下)100部に水ガラス1号
(濃度30wt.%)溶液50部ヲ加え、十分に攪拌し、原
料塗料を得た。この塗料(スラリー)を上記工程で作製
したFeNiコーティング済Exマニ内面に流し込み、
塗布し、余剰のスラリーを除去後、80℃の乾燥器で1
時間乾燥させた。
At that time, when the film thickness was measured after firing,
It was 100 μm. Ceramics is coated on the FeNi-Cr layer to provide heat insulation. Al 2 O
To 100 parts of 3 powders (particle size 20 μm or less), 50 parts of water glass No. 1 (concentration 30 wt.%) Solution was added, and sufficiently stirred to obtain a raw material coating material. This paint (slurry) is poured onto the inner surface of the FeNi-coated Ex manifold manufactured in the above step,
After coating and removing the excess slurry, use a dryer at 80 ° C for 1
Allowed to dry for hours.

【0040】その後、大気雰囲気、300℃で5時間保
持し焼成した。焼成後、膜厚を測定したところ、500
μm(セラミック層400μm、FeNiCr層100
μm)であった。上記Exマニを大気雰囲気で850℃
に5時間保持し、FeNiCr層の酸化処理を行った。
本実施例ではこの酸化処理を最後に行ったが,これはセ
ラミックスラリー塗布時に、スラリーがFeNiCr層
にしみ込み、密着強度を向上させる効果がある。酸化処
理をセラミックスラリー塗布前におこなった場合、Fe
NiCr層が封孔し、このしみ込みを阻害する場合があ
るためである。
Then, it was baked by holding it at 300 ° C. for 5 hours in the air atmosphere. After firing, the film thickness was measured and found to be 500
μm (ceramic layer 400 μm, FeNiCr layer 100
μm). The Ex manifold is heated to 850 ° C. in the atmosphere.
Then, the FeNiCr layer was oxidized for 5 hours.
In this example, this oxidation treatment was performed last, but this has the effect of allowing the slurry to soak into the FeNiCr layer during coating of the ceramic slurry and improving the adhesion strength. If the oxidation treatment is performed before applying the ceramic slurry, Fe
This is because the NiCr layer may seal the pores and hinder this penetration.

【0041】また、本実施例ではセラミックスラリー溶
媒としてアルカリ性である水ガラス溶液を用いたが、リ
ン酸アルミナ溶液のような酸性溶媒の場合、この溶媒が
FeNiCr層の気孔内を通じて侵入し、鉄基母材を腐
食する場合がある。このような場合には、酸化処理後に
セラミック層のコーティングを行うことによって溶媒腐
食も防止可能である。上記Exマニを2000ccのガ
ソリンエンジンに組み込み、4000rpmの回転数で
30分運転した。
Further, in this embodiment, an alkaline water glass solution was used as the ceramic slurry solvent, but in the case of an acidic solvent such as an alumina phosphate solution, this solvent penetrates through the pores of the FeNiCr layer, and the iron group May corrode the base material. In such a case, solvent corrosion can also be prevented by coating the ceramic layer after the oxidation treatment. The Ex manifold was installed in a 2000 cc gasoline engine and operated at a rotation speed of 4000 rpm for 30 minutes.

【0042】その時の被膜上部と被膜下部の温度差を熱
電対で測定し、これを断熱性を評価した。その結果、断
熱温度は40℃であり、中空球添加品(実施例4)と同
等の断熱性を有することが分かった。この結果を表5の
No.41に示す。
The temperature difference between the upper part of the coating and the lower part of the coating at that time was measured with a thermocouple to evaluate the heat insulating property. As a result, the adiabatic temperature was 40 ° C., and it was found that the adiabatic temperature was equivalent to that of the hollow sphere-added product (Example 4). This result is shown in Table 5.
No. 41 shows.

【0043】実施例6 鉄系合金粉末の組成、粒径および微小金属粉末の組成、
粒径を変更し、実施例3と同様な工程でExマニを作製
し、耐酸化性能および接合強度を評価した。これらを表
6〜7のNo.44以降にまとめて示す。この表におい
て、耐酸化性評価方法は上記Exマニからテストピース
(50x50x5)を切り出し、大気雰囲気、850℃
で保持し、母材の酸化具合を切断観察によって調査し
た。
Example 6 Composition of iron-based alloy powder, particle size and composition of fine metal powder,
Ex Manifolds were prepared in the same steps as in Example 3 while changing the particle size, and the oxidation resistance and the bonding strength were evaluated. These are shown collectively in Nos. 44 and after of Tables 6 to 7. In this table, the oxidation resistance evaluation method is that a test piece (50x50x5) is cut out from the Ex mani
And the state of oxidation of the base material was examined by cutting observation.

【0044】保持時間は、最高200時間とし、0〜5
0時間までの10時間毎に調査し、50〜200時間ま
での50時間毎に調査した。母材界面近傍が10μm以
上酸化した時間を耐酸化性の指標とし、この時間が大き
いほど耐酸化性が優れていると考えられる。接合強度測
定方法は上記Exマニからテストピース(50x50x
5)を切り出し、剪断により接合強度を測定した。
The holding time is 200 hours at the maximum, and 0 to 5
The investigation was conducted every 10 hours until 0 hour, and every 50 hours from 50 to 200 hours. The time when the vicinity of the base material interface is oxidized by 10 μm or more is used as an index of oxidation resistance, and it is considered that the longer this time is, the better the oxidation resistance is. The measuring method for the bonding strength is from the above-mentioned Ex manifold to a test piece (50x50x
5) was cut out and the joint strength was measured by shearing.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【発明の効果】本発明は鉄系部材の表面に、ガラス質物
質を含浸することによって耐酸化性に優れる鉄系合金の
焼結層を被膜層として形成するもので、熱膨張率大き
く、かつ弾性率が小さいため、高温での使用の際に発生
する熱応力は小さくて済む。さらに最表面に接合性に優
れるセラミック被膜を形成可能とし、冷熱サイクルの使
用環境における被膜寿命を顕著に延ばすことができる。
INDUSTRIAL APPLICABILITY The present invention forms a sintered layer of an iron-based alloy having excellent oxidation resistance as a coating layer by impregnating a glassy substance on the surface of an iron-based member, and has a large coefficient of thermal expansion and Since the elastic modulus is small, the thermal stress generated during use at high temperature can be small. Further, it is possible to form a ceramic coating having excellent bonding properties on the outermost surface, and it is possible to significantly extend the coating life in a use environment of a cooling / heating cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属焼結層にガラス質物質を含浸
した被膜層の断面組織の模式図である。
FIG. 1 is a schematic diagram of a cross-sectional structure of a coating layer obtained by impregnating a sintered metal layer with a glassy substance according to the present invention.

【図2】本発明に係る金属焼結層の表面にさらにセラミ
ック層を被膜した断面組織の模式図である。
FIG. 2 is a schematic diagram of a cross-sectional structure in which the surface of a metal sintered layer according to the present invention is further coated with a ceramic layer.

【図3】本発明に係る金属焼結層にセラミック中空球を
含む被膜層の断面組織の模式図である。
FIG. 3 is a schematic view of a cross-sectional structure of a coating layer containing ceramic hollow spheres in a metal sintered layer according to the present invention.

【図4】従来のセラミック被膜層の断面組織の模式図で
ある。
FIG. 4 is a schematic diagram of a cross-sectional structure of a conventional ceramic coating layer.

【図5】本発明に係る金属焼結層に金属粉末および微少
金属粉末を混合した被膜層の断面組織の模式図である。
FIG. 5 is a schematic view of a cross-sectional structure of a coating layer in which a metal powder and a fine metal powder are mixed in a metal sintered layer according to the present invention.

【図6】本発明に係る金属焼結層に金属粉末および微少
金属粉末を混合した被膜層の使用により、酸化が進行し
た被膜層の断面組織の模式図である。
FIG. 6 is a schematic diagram of a cross-sectional structure of a coating layer in which oxidation has progressed by using a coating layer in which a metal powder and a minute metal powder are mixed in a metal sintered layer according to the present invention.

【図7】本発明および従来の耐酸化性を比較して示す図
である。
FIG. 7 is a diagram showing a comparison between the present invention and conventional oxidation resistance.

【符号の説明】[Explanation of symbols]

1…金属焼結層 2…気孔 3…ガラス質物質 4…鋳鉄母材 5…セラミック層 6…セラミック中空球 7…金属焼結層 8…セラミック粉末 9…無機質結合剤 10…鉄系金属粉末 11…金属微粉 12…金属酸化物 13…閉口気孔 DESCRIPTION OF SYMBOLS 1 ... Sintered metal layer 2 ... Porosity 3 ... Vitreous substance 4 ... Cast iron base material 5 ... Ceramic layer 6 ... Ceramic hollow sphere 7 ... Sintered metal layer 8 ... Ceramic powder 9 ... Inorganic binder 10 ... Iron-based metal powder 11 ... fine metal powder 12 ... metal oxide 13 ... closed pores

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 断熱被膜層を備えた鋳鉄製部品であっ
て、鋳鉄部材表面に10〜90重量%のFeを含有した
鉄系合金粉末からなる焼結層が形成されてなり、該焼結
層の気孔内に、融点が700〜850℃のガラス質物質
が気孔全体に対して50%以上含浸されていることを特
徴とする断熱被膜層を備えた鋳鉄製部品。
1. A cast iron part having a heat insulating coating layer, comprising a cast iron member having a surface on which a sintered layer made of an iron-based alloy powder containing 10 to 90% by weight of Fe is formed. A cast iron component provided with a heat-insulating coating layer characterized in that the vitreous substance having a melting point of 700 to 850 ° C. is impregnated in the pores of the layer by 50% or more with respect to the entire pores.
【請求項2】 断熱被膜層を備えた鋳鉄製部品であっ
て、鋳鉄部材表面に10〜90重量%のFeを含有した
鉄系合金の粉末からなる焼結層が形成されてなり、該焼
結層にはセラミック中空体が分散されていることを特徴
とする断熱被膜層を備えた鋳鉄製部品。
2. A cast iron part having a heat insulating coating layer, wherein a sintered layer made of an iron-based alloy powder containing 10 to 90% by weight of Fe is formed on the surface of the cast iron member, A cast iron part provided with a heat insulating coating layer, characterized in that a ceramic hollow body is dispersed in the tie layer.
【請求項3】 断熱被膜層を備えた鋳鉄製部品であっ
て、鋳鉄部材表面に10〜90重量%のFeを含有した
鉄系合金の粉末からなる焼結層が形成されてなり、該焼
結層はCr、Zr、Ti、Si、Mn、Nb、Vの少な
くとも1種以上の金属粉末が混合され、加熱により生成
された該金属粉末の酸化物の充填によって、該焼結層に
閉鎖孔を形成してなることを特徴とする断熱被膜層を備
えた鋳鉄製部品。
3. A cast iron part provided with a heat insulation coating layer, wherein a sintered layer made of an iron-based alloy powder containing 10 to 90% by weight of Fe is formed on the surface of the cast iron member, and the sintered product The binder layer is a mixture of at least one metal powder of Cr, Zr, Ti, Si, Mn, Nb, and V, and is filled with an oxide of the metal powder generated by heating, thereby forming closed pores in the sintered layer. A cast iron part provided with a heat-insulating coating layer.
JP29816093A 1993-11-29 1993-11-29 Cast iron parts with thermal barrier coating Expired - Lifetime JP2964858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29816093A JP2964858B2 (en) 1993-11-29 1993-11-29 Cast iron parts with thermal barrier coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29816093A JP2964858B2 (en) 1993-11-29 1993-11-29 Cast iron parts with thermal barrier coating

Publications (2)

Publication Number Publication Date
JPH07150368A true JPH07150368A (en) 1995-06-13
JP2964858B2 JP2964858B2 (en) 1999-10-18

Family

ID=17855979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29816093A Expired - Lifetime JP2964858B2 (en) 1993-11-29 1993-11-29 Cast iron parts with thermal barrier coating

Country Status (1)

Country Link
JP (1) JP2964858B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050699A (en) * 2006-08-23 2008-03-06 Siemens Ag Component with coating system
JP2020012413A (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050699A (en) * 2006-08-23 2008-03-06 Siemens Ag Component with coating system
JP2020012413A (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Manufacturing method of piston for internal combustion engine
WO2020017192A1 (en) * 2018-07-18 2020-01-23 日立オートモティブシステムズ株式会社 Method for manufacturing internal-combustion engine piston

Also Published As

Publication number Publication date
JP2964858B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
JP5112681B2 (en) Environmental barrier coating of parts and turbine engine parts
US4567103A (en) Carbonaceous articles having oxidation prohibitive coatings thereon
US5011529A (en) Cured surfaces and a process of curing
JPS606910B2 (en) metal-ceramics joint
JP2002511834A (en) Ceramic material containing a layer that reacts preferentially with oxygen
US4975314A (en) Ceramic coating bonded to metal member
JP2007197307A5 (en)
EP0202314A1 (en) Oxidation-inhibited carbon-carbon composites.
JPH10259070A (en) Glass-impregnated fiber-reinforced ceramics and production thereof
US5167988A (en) Ceramic coating bonded to iron member
JP2964858B2 (en) Cast iron parts with thermal barrier coating
JP6716296B2 (en) Porous composite material
JP2004155598A (en) High temperature oxidation resistant carbonaceous shaped article and method of producing the same
CN112144011B (en) Method for preparing antioxidation coating on surface of molybdenum and molybdenum alloy protection tube
JPH08501266A (en) Ceramic composites used especially at temperatures above 1400 ° C
JPH0250994B2 (en)
JPH02225383A (en) Bonded ceramics and iron parts and production thereof
JP3039269B2 (en) Method of forming thermal insulation film
JPH0424142B2 (en)
JP2585548B2 (en) Hermetic ceramic coating and method for producing the same
JP2988156B2 (en) Method of forming ceramic coating on iron-based members
JPH0449515B2 (en)
JPH02258983A (en) Ceramic-metal joined body and production thereof
JP4658523B2 (en) Oxidation-resistant composite material
JP3116753B2 (en) Thermal insulation film and method of forming the same