JPH0714982A - Semiconductor integrated circuit device and its manufacture - Google Patents

Semiconductor integrated circuit device and its manufacture

Info

Publication number
JPH0714982A
JPH0714982A JP14885293A JP14885293A JPH0714982A JP H0714982 A JPH0714982 A JP H0714982A JP 14885293 A JP14885293 A JP 14885293A JP 14885293 A JP14885293 A JP 14885293A JP H0714982 A JPH0714982 A JP H0714982A
Authority
JP
Japan
Prior art keywords
integrated circuit
circuit device
semiconductor integrated
substrate
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14885293A
Other languages
Japanese (ja)
Inventor
Katsutada Horiuchi
勝忠 堀内
Norio Hasegawa
昇雄 長谷川
Takahide Ikeda
隆英 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14885293A priority Critical patent/JPH0714982A/en
Publication of JPH0714982A publication Critical patent/JPH0714982A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high-performance and high-density large scale integrated circuit device with excellent yield by accurately aligning and laminating semiconductor layers whereupon a plurality of semiconductor integrated circuits are formed. CONSTITUTION:A semiconductor integrated circuit device layer is formed by laminating a flat quartz substrate 30, which permeates ultraviolet rays, on the major surface of the semiconductor integrated circuit device formed on a semiconductor substrate with adhesive 20 and by thinning the layer. The thin layer and a separately prepared semiconductor substrate 11 mounted with a semiconductor integrated circuit device are aligned and laminated by high- accuracy using ultraviolet rays. An aligning device provided with a mechanism which corrects pattern deformation caused by film forming process, etc., in the whole area of the semiconductor substrate and allows correct aligning is used. After the second lamination, the first adhesive is melted so as to release the quartz substrate and a laminated semiconductor integrated circuit device is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSOI(シリコンオンイ
ンシュレータ)基板を用いて超高集積化された半導体集
積回路装置とその製造方法、並びにその製造装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly integrated semiconductor integrated circuit device using an SOI (silicon on insulator) substrate, a method of manufacturing the same, and a manufacturing apparatus thereof.

【0002】[0002]

【従来の技術】半導体装置が形成された単結晶半導体基
板の上に絶縁膜を形成し、該絶縁膜を介して非晶質半導
体薄膜を堆積し、該半導体基板を結晶核としてレーザー
アニール等により該半導体薄膜を単結晶化させてから該
半導体薄膜に半導体装置を製造する手法が特開昭62−
203359号に開示されている。この方法により製造
された半導体装置の断面図を図27に示す。図におい
て、第2の半導体集積回路層202の単結晶化が全領域
で実現できれば半導体装置としての理想的な構造である
積層構造半導体装置が製造できる。上記手法の長所は第
1の半導体集積回路層201と整合させて第2の半導体
集積回路層202への半導体装置の製造、及び第1の半
導体集積回路層201との層間配線205が可能であ
り、構造上からは微細化に適していることである。な
お、ここで203は絶縁層、211は第1層の配線層、
221は第2層の配線層、212は第1層の活性領域、
222は第2層の活性領域、213は第1層のゲート電
極を表す。
2. Description of the Related Art An insulating film is formed on a single crystal semiconductor substrate on which a semiconductor device is formed, an amorphous semiconductor thin film is deposited through the insulating film, and the semiconductor substrate is used as a crystal nucleus by laser annealing or the like. A method for producing a semiconductor device on the semiconductor thin film after monocrystallizing the semiconductor thin film is disclosed in JP-A-62-
No. 203359. FIG. 27 shows a sectional view of a semiconductor device manufactured by this method. In the figure, if single crystallization of the second semiconductor integrated circuit layer 202 can be realized in the entire region, a laminated structure semiconductor device having an ideal structure as a semiconductor device can be manufactured. The advantage of the above method is that it is possible to manufacture a semiconductor device on the second semiconductor integrated circuit layer 202 by matching with the first semiconductor integrated circuit layer 201 and to form an interlayer wiring 205 with the first semiconductor integrated circuit layer 201. However, the structure is suitable for miniaturization. Here, 203 is an insulating layer, 211 is a first wiring layer,
221 is a wiring layer of the second layer, 212 is an active region of the first layer,
222 denotes an active region of the second layer, and 213 denotes a gate electrode of the first layer.

【0003】しかしながら非晶質膜にレーザー又は電子
線照射等を施し、単結晶化する手法では単結晶化は結晶
核領域の極近傍に限られ、結晶核領域から離れた絶縁膜
203上の第2の半導体集積回路層202は多結晶化さ
れるだけであり、大規模で高性能な半導体装置を該第2
の半導体集積回路層202全面にわたり製造することは
困難である。更に上記手法に於いては第2の半導体集積
回路層202への再結晶化熱処理はもとより第2の半導
体集積回路層202への半導体装置製造時の高温熱処理
が第1の半導体集積回路層201にも施されることは避
けられない。従って、第1の半導体集積回路層201内
の拡散層不純物分布を急峻なまま保持することが困難と
なり超微細な半導体装置を第1の半導体集積回路層20
1に構成することは困難である。上記欠点はメモリセル
アレーのごとく消費電力がそれほど大きくなく、かつ同
一アクセス速度の素子を大容量化する目的のため積層化
せんとする要求を満たす上で最大の問題点となる。積層
半導体装置間でアクセス速度を同じく構成するためには
素子形状はもとより同一熱処理条件の基に製造され、同
一特性を有することが必要条件であるが上記従来製造方
法に基づく限り第1の半導体集積回路層201が余分な
高温熱処理工程を被ることは免れない。
However, in the method of performing single crystallization by irradiating the amorphous film with laser or electron beam, the single crystallization is limited to the very vicinity of the crystal nucleus region, and the single crystal on the insulating film 203 separated from the crystal nucleus region. The second semiconductor integrated circuit layer 202 is only polycrystallized, and a large-scale and high-performance semiconductor device is
It is difficult to manufacture all over the semiconductor integrated circuit layer 202. Further, in the above method, not only the recrystallization heat treatment for the second semiconductor integrated circuit layer 202 but also the high temperature heat treatment for manufacturing the semiconductor device for the second semiconductor integrated circuit layer 202 is performed for the first semiconductor integrated circuit layer 201. It is inevitable that it will be given. Therefore, it becomes difficult to keep the diffusion layer impurity distribution in the first semiconductor integrated circuit layer 201 as steep, and an ultrafine semiconductor device is provided in the first semiconductor integrated circuit layer 20.
It is difficult to configure it as 1. The above-mentioned drawback is the biggest problem in satisfying the requirement of stacking for the purpose of increasing the capacity of elements having the same access speed, which is not so large in power consumption as the memory cell array. In order to configure the access speeds of the stacked semiconductor devices to be the same, it is necessary that the stacked semiconductor devices are manufactured under the same heat treatment condition as well as the element shape and have the same characteristics. The circuit layer 201 is inevitably subjected to an extra high temperature heat treatment process.

【0004】半導体薄膜の結晶性を確保するために半導
体装置または半導体集積回路装置が構成された二枚の単
結晶半導体基板を接着させ、一方を研磨等により薄膜化
させる手法が例えばワイ.ハヤシ他、「ファブリケイシ
ョンオブ スリージメンジョナル アイシ ユウジング
カミュレイテブリイ ボンデッドアイシ(キュウビッ
ク)テクノロジ」(Y.Hayashi, et al.,"Fabrication of
Three-DimensionalIC Using Cumulatively Bonded IC
(CUBIC) Technology" 1990 Symposium on VLSI Tech.,
p 95 (1990))に開示されている。この方法で製造された
半導体装置の断面図を図1に示す。図1において、2は
素子間分離絶縁膜、90から92は半導体装置と接続さ
れた電極、94、95は表面保護絶縁膜である。絶縁性
接着剤96および99とその開孔97、及び金属プール
93は第2の半導体基板101側に構成され、金属バン
プ98は第1の半導体基板100側に構成されている。
In order to secure the crystallinity of the semiconductor thin film, two single crystal semiconductor substrates having a semiconductor device or a semiconductor integrated circuit device are bonded and one of them is thinned by polishing or the like. Hayashi et al. "Y. Hayashi, et al.," Fabrication of
Three-Dimensional IC Using Cumulatively Bonded IC
(CUBIC) Technology "1990 Symposium on VLSI Tech.,
p 95 (1990)). A cross-sectional view of a semiconductor device manufactured by this method is shown in FIG. In FIG. 1, 2 is an element isolation insulating film, 90 to 92 are electrodes connected to a semiconductor device, and 94 and 95 are surface protective insulating films. The insulating adhesives 96 and 99, their openings 97, and the metal pool 93 are formed on the second semiconductor substrate 101 side, and the metal bumps 98 are formed on the first semiconductor substrate 100 side.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、第1の半導体基板100と第2の半導体基板101
の各々に構成されている半導体装置は金属プール93と
金属バンプ98により電気的に接続されるが、半導体装
置製造に用いる半導体基板100又は101は500μ
m以上の厚さと紫外又は可視光に対して透過できないほ
ど厚いため開孔97と金属バンプ98間の位置合せはよ
り波長が長く、半導体基板を透過可能な赤外線を用いて
行われていた。従って、位置合せ精度に難点があり、数
μm以下のパターン合せは困難であった。即ち、超高集
積高密度半導体装置の積層化のごとく、1μm以下のパ
ターン間接続を目指すことは製品化の観点から不可能で
あった。
In the above-mentioned prior art, the first semiconductor substrate 100 and the second semiconductor substrate 101 are used.
The semiconductor device configured in each of the above is electrically connected by the metal pool 93 and the metal bump 98, but the semiconductor substrate 100 or 101 used for manufacturing the semiconductor device is 500 μm.
Since the thickness of m or more and the thickness that is too thick to transmit ultraviolet or visible light, the alignment between the opening 97 and the metal bump 98 has a longer wavelength, and infrared rays that can pass through the semiconductor substrate have been used. Therefore, there is a problem in alignment accuracy, and it is difficult to align a pattern of several μm or less. That is, it is impossible from the viewpoint of commercialization to aim at the pattern-to-pattern connection of 1 μm or less, as in the case of stacking ultra-highly integrated high-density semiconductor devices.

【0006】本発明の目的は高性能で超高密度な集積回
路装置を歩留り良く廉価で提供することにある。また本
発明の他の目的は半導体装置製造における位置合せ精度
を飛躍的に改善し、縦方向にも超高精度で大規模半導体
集積回路層を積層化することのできる半導体装置の製造
方法を提供することである。本発明の他の目的はSOI
基板を従来の10から100倍の高精度で位置合せが可
能な基板貼合せ装置を提供する事にある。
An object of the present invention is to provide a high-performance and ultra-high-density integrated circuit device at a high yield and at a low price. Another object of the present invention is to provide a semiconductor device manufacturing method capable of dramatically improving alignment accuracy in semiconductor device manufacturing and stacking large-scale semiconductor integrated circuit layers in the vertical direction with ultra-high accuracy. It is to be. Another object of the present invention is SOI.
An object of the present invention is to provide a substrate bonding apparatus capable of aligning a substrate with a precision of 10 to 100 times that of a conventional one.

【0007】[0007]

【課題を解決するための手段】上記目的は以下により達
成される。第1の半導体集積回路装置が製造された第1
の半導体基板を第1の接着剤を用いて別の基板と接着さ
せる。第1の半導体基板を裏面側から研削及び研磨など
で薄化させて第1の半導体集積回路装置層を形成し、こ
れを透明石英基板に第2の接着剤を用いて接着する。こ
の状態より第1の接着剤の溶媒で第1の接着剤のみを溶
かし第1の半導体集積回路装置層を透明石英基板に転写
させる。上記第1の半導体集積回路装置層を別途製造し
た第2の半導体集積回路装置又は半導体集積回路装置層
とを厳密な位置合せを施し、第3の接着剤を用いて接着
させる。上記の位置合せは第1の半導体集積回路装置層
が数μm以下と十分に薄く構成されておれば石英基板は
紫外線に対して透過率で50%以上であり、十分に透過
できるので紫外線を光源とする高精度のマスク合わせ装
置を用いることができる。なお、第2の接着剤の溶媒は
第3の接着剤を溶かさない性質の材料で構成すれば良
い。
The above objects are achieved by the following. A first semiconductor integrated circuit device manufactured by the first
This semiconductor substrate is bonded to another substrate using the first adhesive. The first semiconductor substrate is thinned from the back surface side by grinding and polishing to form a first semiconductor integrated circuit device layer, which is bonded to a transparent quartz substrate using a second adhesive. From this state, only the first adhesive is dissolved in the solvent of the first adhesive to transfer the first semiconductor integrated circuit device layer to the transparent quartz substrate. The first semiconductor integrated circuit device layer is strictly aligned with the second semiconductor integrated circuit device or the semiconductor integrated circuit device layer, which is separately manufactured, and is bonded using the third adhesive. In the above alignment, if the first semiconductor integrated circuit device layer is made thin enough to have a thickness of several μm or less, the quartz substrate has a transmittance of 50% or more with respect to ultraviolet rays, and since the quartz substrate can sufficiently transmit the ultraviolet rays, It is possible to use a high precision mask aligning device. The solvent for the second adhesive may be made of a material that does not dissolve the third adhesive.

【0008】薄膜化された半導体集積回路装置層を他の
半導体集積回路装置又は半導体集積回路装置層と接着さ
せるときに考慮せねばならぬことは半導体基板上への成
膜の連続により膜中の真性応力や熱応力のために10c
m当たり1μm程度、初期のパターンから大きく歪み、
半導体集積回路装置間の精密な位置合せを困難にするこ
とである。上記のパターン歪を補正して精密な位置合せ
と接着を施すために、本発明においては第1の手法とし
て位置合せを施すべき半導体集積回路装置が接着された
一方または両方の基板に外力を印加し、歪みを補正する
手法を用いた。また他の手法として、断面構造として同
一成膜構成の半導体集積回路装置同士を接着させる手法
を採用した。この場合、成膜により生じる歪量は何れの
半導体集積回路装置においても同程度であり、歪による
位置合せ不良は解消される。上記手法で接着させた半導
体集積回路装置層同士をさらに接着させる場合もさらに
接着する各々の層における断面構成を同一にして実施し
た。
What must be taken into consideration when adhering the thinned semiconductor integrated circuit device layer to another semiconductor integrated circuit device or a semiconductor integrated circuit device layer is that the film formation in the film is caused by continuous film formation on the semiconductor substrate. 10c for intrinsic and thermal stress
About 1 μm per m, a large distortion from the initial pattern,
This is to make precise alignment between semiconductor integrated circuit devices difficult. In order to correct the above pattern distortion and perform precise alignment and adhesion, the first method of the present invention is to apply an external force to one or both substrates to which the semiconductor integrated circuit device to be aligned is adhered. Then, the method of correcting the distortion was used. As another method, a method of adhering semiconductor integrated circuit devices having the same film-forming structure as the sectional structure is adopted. In this case, the amount of strain generated by film formation is the same in any semiconductor integrated circuit device, and the misalignment due to strain is eliminated. When the semiconductor integrated circuit device layers adhered by the above method were further adhered, the cross-sectional structures of the respective layers to be adhered were made the same.

【0009】[0009]

【作用】本発明によれば超微細半導体集積回路装置を製
造するのと同様に紫外線を光源とした高精度マスク位置
合せ装置が利用できるので従来の半導体集積回路装置を
製造するのと同様な高精度で半導体集積回路装置の積層
化が可能となる。従って本発明手法を用いることにより
従来の半導体装置の製造装置のままでさらに超高集積な
半導体集積回路装置を実現することができる。ここにお
いて、製造工程を分割し、良品の半導体層のみを積層し
て半導体集積回路装置を完成できるため、従来のごとき
一貫製造にくらべて製造不良を大幅に低減することがで
きる。すなわち、超高集積な半導体集積回路装置を廉価
に提供することができる。更に積層化すべき半導体層の
各々に半導体集積回路装置の構成素子を区別して構成
し、積層化で一体化により完成された半導体集積回路装
置とすることも可能となるため各々の半導体層を作り置
き、所望時期に所望の組合せで積層化できる。従って、
需要にすばやく対応することが新たに可能となる。ま
た、相補型トランジスタへの適用のごとく、半導体層伝
導型の場所的変換等の工程をも省略でき、製造工程数を
低減することができる。本発明によれば同一半導体装置
領域を有する半導体集積回路装置の積層化において、不
良半導体装置部分が存在しても不良部分を非選択にし、
別層の半導体装置部分を選択する構成にすることにより
良品の半導体集積回路装置として動作させることができ
る。即ち、半導体集積回路装置の大面積化に伴って増大
する良品歩留りの低下を積層化構成により大幅に改善す
ることができる。その他本発明に基づけば構成素子の完
全分離が可能であり、相補型トランジスタにおける寄生
バイポーラ効果、即ち、ラッチアップ現象のごとき隣接
素子間干渉や、α線照射に基づく誤動作等の不良をもほ
ぼ完全に解消することができる。本発明によれば熱処理
工程を同じくし、同一特性を有する複数の半導体集積回
路装置を積層化により超大容量化できる。
According to the present invention, a high-precision mask alignment device using an ultraviolet light source can be used as in the case of manufacturing an ultra-fine semiconductor integrated circuit device, so that it is as high as a conventional semiconductor integrated circuit device. It is possible to stack semiconductor integrated circuit devices with high accuracy. Therefore, by using the method of the present invention, it is possible to realize a semiconductor integrated circuit device having a higher degree of integration with the conventional semiconductor device manufacturing apparatus. Here, since the manufacturing process can be divided and only the good semiconductor layers can be laminated to complete the semiconductor integrated circuit device, manufacturing defects can be significantly reduced as compared with the conventional integrated manufacturing. That is, it is possible to provide a highly integrated semiconductor integrated circuit device at a low price. Further, since it is possible to separately configure the constituent elements of the semiconductor integrated circuit device in each of the semiconductor layers to be stacked and to complete the integrated semiconductor device by stacking, it is possible to make each semiconductor layer in advance. It is possible to laminate in a desired combination at a desired time. Therefore,
It will be possible to quickly respond to demand. Further, as in the case of application to the complementary transistor, it is possible to omit the steps such as the semiconductor layer conduction type location conversion, and the number of manufacturing steps can be reduced. According to the present invention, in stacking semiconductor integrated circuit devices having the same semiconductor device region, even if there is a defective semiconductor device portion, the defective portion is deselected,
By selecting a semiconductor device portion on another layer, it can be operated as a good semiconductor integrated circuit device. That is, the decrease in the yield of non-defective products, which increases as the area of the semiconductor integrated circuit device increases, can be greatly improved by the stacked structure. Others According to the present invention, the constituent elements can be completely separated, and the parasitic bipolar effect in the complementary transistor, that is, the interference between adjacent elements such as a latch-up phenomenon and the malfunction such as malfunction due to α-ray irradiation are almost completely eliminated. Can be resolved. According to the present invention, a plurality of semiconductor integrated circuit devices having the same characteristics can be stacked by using the same heat treatment process to increase the capacity.

【0010】[0010]

【実施例】以下、本発明を実施例によりさらに詳細に説
明する。説明の都合上、図面をもって説明するが、要部
が拡大して示されているので注意を要する。また説明を
簡略にするため、各部の材質、半導体層の導電型、およ
び製造条件を規定して述べるが、本発明は材質、半導体
層の導電型、および製造条件は実施例に限定されないこ
とは勿論である。
EXAMPLES The present invention will now be described in more detail with reference to examples. For convenience of description, the description will be made with reference to the drawings, but attention must be paid because the main part is shown enlarged. In order to simplify the description, the material of each part, the conductivity type of the semiconductor layer, and the manufacturing conditions will be defined and described, but the present invention is not limited to the material, the conductivity type of the semiconductor layer, and the manufacturing conditions. Of course.

【0011】(実施例1)図2から図5は本発明による
半導体集積回路装置の第1の実施例を製造工程順に示し
た断面図である。面方位(100)、抵抗率50Ωc
m、直径12.5cm、p導電型なる単結晶シリコン
(Si)基板1の主表面に公知の手法を用いて200n
m厚の熱酸化膜を所望箇所に選択的に形成して素子間分
離絶縁膜2とした。続いて所望活性領域の基板表面に6
nm厚のSi熱酸化膜を形成してゲート絶縁膜3として
から所望領域のゲート絶縁膜を選択的に除去してから多
結晶Si膜とタングステン珪化膜の積層堆積膜によるゲ
ート電極4および配線電極9を形成した。更にゲート電
極4をマスクにしてN型低抵抗拡散層6、7、8を形成
してから電極保護絶縁膜10を全面的に堆積した(図
2)。
(Embodiment 1) FIGS. 2 to 5 are sectional views showing a first embodiment of a semiconductor integrated circuit device according to the present invention in the order of manufacturing steps. Plane orientation (100), resistivity 50Ωc
m, diameter 12.5 cm, p conductive type single crystal silicon (Si) substrate 200 using a known method on the main surface of 200 n
An m-thick thermal oxide film was selectively formed at a desired location to form the element isolation insulating film 2. Then, 6 on the substrate surface of the desired active region
A gate insulating film 3 having a thickness of nm is formed to form a gate insulating film 3 and then the gate insulating film in a desired region is selectively removed. 9 was formed. Further, the N-type low resistance diffusion layers 6, 7 and 8 were formed using the gate electrode 4 as a mask, and then the electrode protective insulating film 10 was deposited over the entire surface (FIG. 2).

【0012】図2の状態より溶融させたワックス20を
電極保護絶縁膜10上に全面塗布し、透明石英基板30
に接着させた。続いてSi基板1の裏面側から高精度研
削装置により10μm厚まで研削し、さらに機械的・化
学的研磨を施して素子間分離絶縁膜2の裏面で規定され
る面までSi基板1を薄化させた。上記研磨は回転円板
上に設けられた研磨布にSi基板を1.9x104Pa
の圧力で押しつけ、エチレンジアミン・ピロカテコール
が添加された研磨液を供給しながら行ったが研磨の進行
に伴って露出される素子間分離絶縁膜2の研磨速度はS
iに比べて極めて遅く、1/104倍以下であった。従
って、上記の研磨により単結晶Si基板1は完全に平坦
化され、素子間分離絶縁膜2で互いに絶縁された約10
0nm厚の単結晶超薄膜Siが得られた。しかる後、研
磨面に保護絶縁膜16を形成した(図3)。
The wax 20 melted from the state shown in FIG. 2 is applied on the entire surface of the electrode protection insulating film 10 to form a transparent quartz substrate 30.
Glued to. Then, the back side of the Si substrate 1 is ground to a thickness of 10 μm by a high precision grinding machine, and further mechanical / chemical polishing is performed to thin the Si substrate 1 to the surface defined by the back surface of the element isolation insulating film 2. Let For the polishing, a Si substrate is placed on a polishing cloth provided on a rotating disk and the substrate is 1.9 × 10 4 Pa.
The polishing was performed while supplying the polishing liquid to which ethylenediamine / pyrocatechol was added under the pressure of, and the polishing speed of the inter-element isolation insulating film 2 exposed as the polishing progressed was S
It was much slower than i and was 1/10 4 times or less. Therefore, the single-crystal Si substrate 1 is completely flattened by the above polishing, and the single-crystal Si substrate 1 is insulated from each other by the element isolation insulating film 2.
A single crystal ultra-thin film Si having a thickness of 0 nm was obtained. After that, a protective insulating film 16 was formed on the polished surface (FIG. 3).

【0013】図3の状態において、別途準備しておいた
図2の状態まで製造した第2のSi基板11の主表面と
前記保護絶縁膜16とを後述の位置合せ装置を用いて正
確な位置合せを行った後、フッ素系樹脂を接着層21と
して貼合せた。接着層21の厚さは約2μmであった。
しかる後、第2のSi基板11を100℃に加熱し、ワ
ックス20を溶解させ、石英基板30から剥離し、残置
されたワックスをアセトンで洗浄除去した。上記のワッ
クス除去工程はフッ素系樹脂よりなる接着層21には何
の影響も与えない(図4)。
In the state shown in FIG. 3, the main surface of the second Si substrate 11 prepared separately up to the state shown in FIG. 2 and the protective insulating film 16 are accurately positioned by using an aligning device described later. After the matching, a fluorine-based resin was bonded as the adhesive layer 21. The thickness of the adhesive layer 21 was about 2 μm.
After that, the second Si substrate 11 was heated to 100 ° C. to dissolve the wax 20, peeled from the quartz substrate 30, and the remaining wax was washed and removed with acetone. The above wax removing step has no influence on the adhesive layer 21 made of a fluororesin (FIG. 4).

【0014】この状態より超薄膜Si層1に構成された
端子電極9、素子間分離絶縁膜2、接着層21、及びS
i基板11上の電極保護絶縁膜等を貫通し、Si基板1
1上の端子電極15に到達する開孔を設けてから開孔へ
の選択金属堆積を施すことにより接続配線17を形成し
た。さらに、所望回路構成に基づいた配線18を施して
半導体集積回路装置を完成させた(図5)。
From this state, the terminal electrode 9 formed on the ultrathin Si layer 1, the element isolation insulating film 2, the adhesive layer 21, and the S
The Si substrate 1 is penetrated through the electrode protection insulating film and the like on the i substrate 11.
The connection wiring 17 was formed by providing an opening reaching the terminal electrode 15 on the first electrode and then depositing a selective metal in the opening. Further, the wiring 18 based on the desired circuit configuration is provided to complete the semiconductor integrated circuit device (FIG. 5).

【0015】上記製造方法に基づいて製造された半導体
集積回路装置においては従来の積層型半導体集積回路装
置に比べて構成される半導体層間の位置合せ精度を±
0.5μmと10倍に向上することができた。これによ
り、開孔幅0.5μm、端子電極15の幅として1.5
μmで層間を接続することができ、層間接続のためのバ
ンプ及びプール形成に要していた領域を要することな
く、基本回路単位を積層方向に直接構成できるまでに高
集積化することができ回路設計の自由度を大幅に向上す
ることができた。本実施例における積層方向の飛躍的位
置合せ精度向上は超薄膜からなる透明な半導体集積回路
装置層と透明石英が紫外線を透過できるため接着すべき
下地の半導体集積回路装置と高精度で位置合せが可能と
なったことに基づく。
In the semiconductor integrated circuit device manufactured according to the above-described manufacturing method, the alignment accuracy between the semiconductor layers formed is ± as compared with the conventional stacked semiconductor integrated circuit device.
It could be improved to 0.5 μm, which is 10 times. As a result, the opening width is 0.5 μm and the width of the terminal electrode 15 is 1.5 μm.
Since the layers can be connected by μm, the area required for forming bumps and pools for connecting the layers is not needed, and the basic circuit unit can be directly integrated in the stacking direction to achieve high integration. We were able to greatly improve the degree of freedom in design. The dramatic improvement in the alignment accuracy in the stacking direction in this embodiment is achieved by highly accurate alignment with the underlying semiconductor integrated circuit device to be bonded because the transparent semiconductor integrated circuit device layer made of an ultrathin film and transparent quartz can transmit ultraviolet rays. Based on what is possible.

【0016】本実施例に基づく半導体集積回路装置とし
てメモリセルアレーよりなる半導体集積回路装置層の積
層化を実施したが、各半導体集積回路装置層は同一熱処
理の製造工程で製造され、アクセス速度等の機能も各層
間で異ならず実質同一の特性が得られ、同一平面上に同
一容量のメモリセルアレーを構成した従来半導体集積回
路装置に比べて良品率の向上と最大配線長さの短縮によ
る動作速度の向上が達成された。
As the semiconductor integrated circuit device according to the present embodiment, the semiconductor integrated circuit device layers made of the memory cell array were laminated. Each semiconductor integrated circuit device layer was manufactured by the same heat treatment manufacturing process, and the access speed etc. The same characteristics can be obtained regardless of the layers, and the operation by improving the non-defective rate and shortening the maximum wiring length compared to the conventional semiconductor integrated circuit device in which the memory cell array of the same capacity is formed on the same plane. Speed improvements have been achieved.

【0017】なお、半導体集積回路装置の一般的な特性
としては伝達遅延時間を用いることができる。
The transmission delay time can be used as a general characteristic of the semiconductor integrated circuit device.

【0018】(実施例2)図6から図8は本発明の第2
の実施例による半導体集積回路装置を製造工程順に示し
た断面図である。前記実施例1に基づいて電極保護絶縁
膜10まで製造したSi基板1に3μm厚の多結晶Si
膜22を堆積してからその表面を平均二乗粗さが0.3
nm以下になるごとく機械研磨を施し、平坦化させた。
この状態から前記実施例1に従って透明石英板30に溶
融したワックス20により接着させ、Si基板1裏面か
ら薄化により素子間分離絶縁膜2の裏面で規定される単
結晶超薄膜Siを形成とその裏面への保護絶縁膜12の
形成を行った(図6)。
(Embodiment 2) FIGS. 6 to 8 show a second embodiment of the present invention.
FIG. 6 is a cross-sectional view showing the semiconductor integrated circuit device according to the example in the order of manufacturing steps. On the Si substrate 1 manufactured up to the electrode protection insulating film 10 according to the first embodiment, polycrystalline Si having a thickness of 3 μm is formed.
After the film 22 is deposited, its surface has a mean square roughness of 0.3.
Mechanical polishing was performed so that the thickness became less than nm, and the surface was flattened.
From this state, the transparent quartz plate 30 is adhered to the transparent quartz plate 30 by the melted wax 20 according to the first embodiment, and the back surface of the Si substrate 1 is thinned to form a single crystal ultra-thin film Si defined on the back surface of the inter-element isolation insulating film 2. The protective insulating film 12 was formed on the back surface (FIG. 6).

【0019】図6の状態において、図6と同様の製法に
より厚い多結晶Si膜24の堆積とその表面の平坦化研
磨まで別途製造した単結晶Si基板11の主表面と前記
保護絶縁膜12とを後述の位置合せ装置を用いて正確な
位置合せを行った後、フッ素系樹脂を接着層23として
貼合せた。接着層23の厚さは約0.5μmであった
(図7)。
In the state of FIG. 6, the main surface of the single-crystal Si substrate 11 and the protective insulating film 12 which are separately manufactured up to the deposition of the thick polycrystalline Si film 24 and the flattening polishing of the surface by the same manufacturing method as in FIG. After performing accurate alignment using the alignment device described later, a fluororesin was bonded as the adhesive layer 23. The thickness of the adhesive layer 23 was about 0.5 μm (FIG. 7).

【0020】しかる後、第2のSi基板11を100℃
に加熱し、ワックス20を溶解させ、石英基板30から
剥離し、残置されたワックスのアセトンによる洗浄除去
と多結晶Si膜22の選択エッチングを施した。上記の
ワックス除去工程はフッ素系樹脂よりなる接着層23に
は何の影響も与えない。次に単結晶超薄膜Si層1に構
成された電極配線9上において、電極配線9、接着層2
3、及びSi基板11上の電極保護絶縁膜等を貫通し、
Si基板11上の電極配線15に到達する開孔を設けて
から開孔側壁への絶縁化処理をほどこしてから開孔への
金属膜の堆積とパターン形成を施すことにより接続配線
17を形成した。さらに、所望回路構成に基づいた配線
18を施して半導体集積回路装置を完成させた(図
8)。
Thereafter, the second Si substrate 11 is heated to 100 ° C.
Then, the wax 20 was melted and peeled from the quartz substrate 30, and the remaining wax was removed by washing with acetone and the polycrystalline Si film 22 was selectively etched. The above wax removing step has no influence on the adhesive layer 23 made of a fluororesin. Next, on the electrode wiring 9 formed on the single crystal ultra-thin film Si layer 1, the electrode wiring 9 and the adhesive layer 2 are formed.
3 and penetrates the electrode protective insulating film and the like on the Si substrate 11,
The connection wiring 17 is formed by providing an opening reaching the electrode wiring 15 on the Si substrate 11, performing insulation treatment on the side wall of the opening, and then depositing and patterning a metal film on the opening. . Further, the wiring 18 based on the desired circuit configuration is provided to complete the semiconductor integrated circuit device (FIG. 8).

【0021】上記製造方法に基づいて製造された半導体
集積回路装置においては従来の積層型半導体集積回路装
置に比べて構成される半導体層間の位置合せ精度を±
0.3μmと20倍に向上することができた。これによ
り、開孔幅0.4μm、電極配線15及び17の幅とし
て1.0μmで層間を接続することができ、層間接続の
ためのバンプ及びプール形成に要していた領域を要する
ことなく、基本回路単位を積層方向に直接構成できるま
でに高集積化することができ回路設計の自由度を大幅に
向上することができた。本実施例における積層方向の飛
躍的位置合せ精度向上は超薄膜からなる透明な半導体集
積回路装置層と透明石英が紫外線を透過できるため接着
すべき下地の半導体集積回路装置と高精度で位置合せが
可能となったことに基づく。更に、前記実施例1の場合
に比べてさらに位置合せ精度が向上できたのは貼合せる
べき表面の凹凸を極端に平坦化したことにより接着層2
3を薄く構成しても気泡の発生なしで貼合せが可能とな
ったためと考えられる。
In the semiconductor integrated circuit device manufactured based on the above manufacturing method, the alignment accuracy between the semiconductor layers formed is ±± compared with the conventional stacked semiconductor integrated circuit device.
It could be improved to 0.3 μm, which is 20 times. As a result, it is possible to connect the layers with an opening width of 0.4 μm and a width of the electrode wirings 15 and 17 of 1.0 μm, and a region for forming the bump and the pool for the interlayer connection is not required. The basic circuit unit can be highly integrated to the extent that it can be directly constructed in the stacking direction, and the degree of freedom in circuit design can be greatly improved. The dramatic improvement in the alignment accuracy in the stacking direction in this embodiment is achieved by highly accurate alignment with the underlying semiconductor integrated circuit device to be bonded because the transparent semiconductor integrated circuit device layer made of an ultrathin film and transparent quartz can transmit ultraviolet rays. Based on what is possible. Further, the alignment accuracy can be further improved as compared with the case of the first embodiment, because the unevenness of the surfaces to be bonded is extremely flattened, and thus the adhesive layer 2
It is considered that the lamination was possible without generating bubbles even when 3 was made thin.

【0022】(実施例3)図9から図11は本発明の第
3の実施例による半導体集積回路装置を製造工程順に示
した断面図である。前記実施例2に基づいて厚い多結晶
Si膜24表面の平坦化研磨までを施した単結晶Si基
板1をワックス25で別途準備された鏡面Si基板40
に貼合せた。しかる後、単結晶Si基板1の裏面側から
薄化し、素子間分離絶縁膜2裏面で膜厚が規定されるご
とく前記実施例1に基づいて超薄膜単結晶Si層を形成
した(図9)。
(Embodiment 3) FIGS. 9 to 11 are sectional views showing a semiconductor integrated circuit device according to a third embodiment of the present invention in the order of manufacturing steps. A single-crystal Si substrate 1 on which the surface of the thick polycrystalline Si film 24 has been flattened and polished according to the second embodiment is prepared separately with a wax 25.
Pasted on. After that, the single crystal Si substrate 1 was thinned from the back surface side, and an ultrathin film single crystal Si layer was formed based on Example 1 so that the film thickness was defined on the back surface of the element isolation insulating film 2 (FIG. 9). .

【0023】図9の状態まで製造した超薄膜単結晶Si
層1の裏面側に水溶性接着剤であるポリビニルアルコー
ル膜26を塗布し、透明石英基板30に貼合せた。しか
る後、鏡面Si基板40を100℃に加熱し、ワックス
25を溶解させて石英基板30から剥離し、残置された
ワックスをアセトンにより洗浄除去した。アセトン洗浄
において、ポリビニルアルコール膜26は何等影響を受
けない(図10)。
Ultra-thin film single crystal Si manufactured up to the state of FIG.
A polyvinyl alcohol film 26, which is a water-soluble adhesive, was applied to the back side of the layer 1 and attached to a transparent quartz substrate 30. After that, the mirror surface Si substrate 40 was heated to 100 ° C., the wax 25 was melted and peeled from the quartz substrate 30, and the remaining wax was washed and removed with acetone. The polyvinyl alcohol film 26 is not affected by the acetone cleaning (FIG. 10).

【0024】前記実施例2に基づいて厚い多結晶Si膜
27表面の平坦化研磨までを施した別途準備の単結晶S
i基板11を図10の状態の超薄膜単結晶Si層1と多
結晶Si面同士で直接貼合せた。上記の貼合せにおいて
互いの位置合せは前記実施例2と同様に後述の精密位置
合せ装置に基づいて実施した。なお、単結晶Si基板1
1には前記実施例1に基づいてN型低抵抗拡散層6、
7、8を予め形成しておいた。上記の直接貼合せの後、
単結晶Si基板11を水中に浸すことにより水溶性接着
剤26を溶解して透明石英基板30から分離させ、接着
強度を向上するための熱処理を900℃、30分の条件
で施した。しかる後、単結晶超薄膜Si層1の表面にゲ
ート絶縁膜を形成してからゲート電極4が延在された素
子間分離絶縁膜2に開孔を施した。更にゲート電極4と
一致するごとく第2ゲート電極13を単結晶超薄膜Si
層1上に形成し、第2のゲート電極13をマスクにして
低抵抗拡散層61、62、63等を形成した。次に単結
晶超薄膜Si層1に構成された電極配線9上において、
電極配線9、多結晶Si層24、27及びSi基板11
上の電極保護絶縁膜等を貫通し、Si基板11上の電極
配線15に到達する開孔を設けてから開孔側壁の絶縁化
処理を施し、開孔への金属膜の堆積とパターン形成を施
すことにより接続配線17を形成した。さらに、所望回
路構成に基づいた配線18、および電極保護絶縁膜10
を形成して半導体集積回路装置を完成させた(図1
1)。
A separately prepared single crystal S obtained by performing flattening polishing on the surface of the thick polycrystalline Si film 27 according to the second embodiment.
The i substrate 11 was directly bonded to the ultrathin film single crystal Si layer 1 in the state of FIG. 10 and the polycrystalline Si surfaces. In the above-mentioned bonding, the mutual alignment was carried out on the basis of the precision alignment device described later as in the second embodiment. The single crystal Si substrate 1
1 is an N-type low resistance diffusion layer 6 based on the first embodiment,
7 and 8 were formed in advance. After the above direct bonding,
By immersing the single crystal Si substrate 11 in water, the water-soluble adhesive 26 was dissolved and separated from the transparent quartz substrate 30, and heat treatment for improving adhesive strength was performed at 900 ° C. for 30 minutes. After that, a gate insulating film was formed on the surface of the single crystal ultra-thin film Si layer 1, and then a hole was formed in the inter-element isolation insulating film 2 having the gate electrode 4 extended. Further, the second gate electrode 13 is formed into a single crystal ultra-thin film Si so as to match the gate electrode 4.
The low resistance diffusion layers 61, 62 and 63 were formed on the layer 1 and using the second gate electrode 13 as a mask. Next, on the electrode wiring 9 formed in the single crystal ultra-thin film Si layer 1,
Electrode wiring 9, polycrystalline Si layers 24 and 27, and Si substrate 11
After forming an opening penetrating the upper electrode protection insulating film and the like and reaching the electrode wiring 15 on the Si substrate 11, the side wall of the opening is insulated, and a metal film is deposited and a pattern is formed in the opening. By doing so, the connection wiring 17 was formed. Furthermore, the wiring 18 and the electrode protection insulating film 10 based on the desired circuit configuration
To form a semiconductor integrated circuit device (see FIG. 1).
1).

【0025】上記製造方法に基づいて製造された半導体
集積回路装置においては従来の積層型半導体集積回路装
置に比べて構成される半導体層間の位置合せ精度を±
0.3μmと20倍に向上することができた。これによ
り、層間接続のためのバンプ及びプール形成に要してい
た領域を要することなく、基本回路単位を積層方向に直
接構成できるまでに高集積化することができ回路設計の
自由度を大幅に向上することができた。本実施例におけ
る積層方向の飛躍的位置合せ精度向上は超薄膜からなる
透明な半導体集積回路装置層と透明石英が紫外線を透過
できるため接着すべき下地の半導体集積回路装置と高精
度で位置合せが可能となったことに基づく。
In the semiconductor integrated circuit device manufactured according to the above-described manufacturing method, the alignment accuracy between the semiconductor layers formed is ± as compared with the conventional stacked semiconductor integrated circuit device.
It could be improved to 0.3 μm, which is 20 times. As a result, the basic circuit units can be highly integrated to the extent that they can be directly configured in the stacking direction without the need for the areas required for forming bumps and pools for interlayer connection, and the degree of freedom in circuit design is greatly increased. I was able to improve. The dramatic improvement in the alignment accuracy in the stacking direction in this embodiment is achieved by highly accurate alignment with the underlying semiconductor integrated circuit device to be bonded because the transparent semiconductor integrated circuit device layer made of an ultrathin film and transparent quartz can transmit ultraviolet rays. Based on what is possible.

【0026】さらに、本実施例に基づく半導体集積回路
装置においては接着剤を用いずに直接貼合せる手法を用
いているため、積層化後にゲート電極13と拡散層61
から63等を製造することができる。従って、積層化す
る半導体集積回路装置層は電流制御を超薄膜Si層の上
下から行う構成が可能となり、従来構造トランジスタ構
造比で3倍以上の大電流化、即ち高速化が縦方向の超高
集積化と併せて可能となった。
Further, in the semiconductor integrated circuit device according to the present embodiment, since the method of directly laminating without using an adhesive is used, the gate electrode 13 and the diffusion layer 61 are laminated after lamination.
To 63 and the like can be manufactured. Therefore, the stacked semiconductor integrated circuit device layers can be configured such that current control is performed from above and below the ultra-thin Si layer, and the current becomes three times larger than that of the conventional structure transistor structure, that is, the speed is increased in the vertical direction. It became possible together with integration.

【0027】(実施例4)図12は本発明の第4の実施
例による半導体集積回路装置を示した断面図である。前
記実施例3において、半導体集積回路装置層1を貼合せ
るべき半導体基板11の代わりに前記実施例3に記載し
た手法に準じて製造した超薄膜の半導体集積回路装置層
1が直接貼合された半導体基板31を用いた。半導体集
積回路装置層1にはゲート電極19や他の電極などを予
め構成しておく。図9においては鏡面Si基板40と単
結晶Si基板1をワックス25により接着させたが本実
施例の半導体集積回路装置においては主表面に熱酸化膜
29が形成された鏡面Si基板31の主表面と単結晶S
i基板1上の平坦化研磨された多結晶Si膜28面とで
接着剤なしに直接貼合せた。その後、接着強度向上のた
めの熱処理を900℃、30分の条件で施してから単結
晶Si基板1の裏面側から薄化し、素子間分離絶縁膜2
底面で膜厚が規定される半導体集積回路装置層1を形成
した。しかる後、半導体集積回路装置層1の新規の主表
面にゲート絶縁膜の形成と素子間分離絶縁膜2領域にお
ける所望個所への開孔を施してからゲート電極5を含む
電極とゲート電極5と自己整合で低抵抗拡散層を形成し
た。続いて電極保護絶縁膜と厚い多結晶Si膜を全面に
堆積し、多結晶Si膜の表面を平坦に研磨した。上記手
法に基づいて製造した半導体基板31上の多結晶Si膜
表面と、石英基板30にポリビニルアルコールを接着剤
26として貼合せたゲート電極4などが構成された別途
準備の超薄膜半導体集積回路装置層1(図10)におけ
る多結晶Si面とを接着剤無しに直接貼合せた。上記の
貼合せ工程において、互いの超薄膜半導体集積回路装置
層間の位置合わせは前記実施例2または3と同様に後述
する精密位置合せ装置を用いて実施した。貼合せ工程の
終了後、ポリビニルアルコールによる接着剤26の除去
による透明石英板30の分離、接着強度向上の熱処理、
更には貼合せた単結晶超薄膜Si層に第2のゲート電極
13、拡散層などの形成を前記実施例3に従って施し
た。この状態から主表面に露出されている単結晶超薄膜
Si層に形成されている拡散層とその底部に構成された
多結晶Si層などを貫通し、埋込まれた単結晶超薄膜S
i層上の電極に達する開孔を施した。最後に多結晶Si
側面の絶縁化処理の後、開孔への金属膜の選択形成と所
望回路構成に基づく配線、及び電極保護絶縁膜を形成し
て半導体集積回路装置を完成させた(図12)。
(Embodiment 4) FIG. 12 is a sectional view showing a semiconductor integrated circuit device according to a fourth embodiment of the present invention. In Example 3, instead of the semiconductor substrate 11 to which the semiconductor integrated circuit device layer 1 was to be bonded, the ultrathin semiconductor integrated circuit device layer 1 manufactured according to the method described in Example 3 was directly bonded. The semiconductor substrate 31 was used. In the semiconductor integrated circuit device layer 1, the gate electrode 19 and other electrodes are preconfigured. In FIG. 9, the mirror surface Si substrate 40 and the single crystal Si substrate 1 are bonded by the wax 25. However, in the semiconductor integrated circuit device of this embodiment, the main surface of the mirror surface Si substrate 31 having the thermal oxide film 29 formed on the main surface. And single crystal S
It was directly bonded to the surface of the flattened and polished polycrystalline Si film 28 on the i substrate 1 without an adhesive. After that, heat treatment for improving the adhesive strength is performed at 900 ° C. for 30 minutes, and then thinned from the back surface side of the single crystal Si substrate 1 to form the inter-element isolation insulating film 2
A semiconductor integrated circuit device layer 1 whose thickness is regulated on the bottom surface was formed. Thereafter, a gate insulating film is formed on the new main surface of the semiconductor integrated circuit device layer 1 and an opening is formed at a desired position in the element isolation insulating film 2 region, and then the electrodes including the gate electrode 5 and the gate electrode 5 are formed. A low resistance diffusion layer was formed by self-alignment. Subsequently, an electrode protection insulating film and a thick polycrystalline Si film were deposited on the entire surface, and the surface of the polycrystalline Si film was polished flat. A separately prepared ultra-thin film semiconductor integrated circuit device including the polycrystalline Si film surface on the semiconductor substrate 31 manufactured based on the above-described method and the gate electrode 4 and the like on the quartz substrate 30 with polyvinyl alcohol bonded as the adhesive 26. The polycrystalline Si surface in layer 1 (FIG. 10) was directly bonded without an adhesive. In the above-mentioned bonding step, the alignment between the ultrathin film semiconductor integrated circuit device layers was carried out by using a precision alignment device described later as in the second or third embodiment. After the bonding step is completed, the transparent quartz plate 30 is separated by removing the adhesive 26 with polyvinyl alcohol, heat treatment for improving the adhesive strength,
Further, the second gate electrode 13, the diffusion layer and the like were formed on the bonded single crystal ultra-thin film Si layer according to the third embodiment. From this state, the single-crystal ultra-thin film S that has been embedded by penetrating the diffusion layer formed in the single-crystal ultra-thin film Si layer exposed on the main surface and the polycrystalline Si layer formed at the bottom of the diffusion layer
Apertures were made to reach the electrodes on the i-layer. Finally polycrystalline Si
After the insulating treatment on the side surface, a semiconductor integrated circuit device was completed by selectively forming a metal film in the opening, forming a wiring based on a desired circuit configuration, and an electrode protective insulating film (FIG. 12).

【0028】上記製造方法に基づいて製造された半導体
集積回路装置においては前記実施例3による半導体集積
回路装置と同様に従来の積層型半導体集積回路装置に比
べて構成される半導体層間の位置合せ精度を20倍以上
向上することができ、層間接続のためのバンプ及びプー
ル形成に要していた領域を削減しできた。これにより基
本回路単位を積層方向に構成できるまでに高集積化する
ことが可能となり、回路設計の自由度を大幅に向上する
ことができた。本実施例における積層方向の飛躍的位置
合せ精度の向上は超薄膜からなる透明な半導体集積回路
装置層と透明石英基板が紫外線をできるため接着すべき
下地の半導体集積回路装置と高精度で位置合せが可能と
なったことに基づく。
In the semiconductor integrated circuit device manufactured by the above-described manufacturing method, the alignment accuracy between the semiconductor layers formed in comparison with the conventional stacked semiconductor integrated circuit device is similar to that of the semiconductor integrated circuit device according to the third embodiment. Can be improved by 20 times or more, and the area required for forming bumps and pools for interlayer connection can be reduced. As a result, it was possible to achieve a high degree of integration before the basic circuit units could be formed in the stacking direction, and the degree of freedom in circuit design could be greatly improved. The dramatic improvement in the alignment accuracy in the stacking direction in this embodiment is achieved by highly accurate alignment with the underlying semiconductor integrated circuit device to be bonded because the transparent semiconductor integrated circuit device layer made of an ultrathin film and the transparent quartz substrate can emit ultraviolet rays. Based on the fact that

【0029】更に本実施例に基づく半導体集積回路装置
においては積層化された何れの半導体集積回路装置層も
接着剤を用いない直接貼合せによる手法に依ったため拡
散層形成等、高温熱処理を要する構造を積層貼合せ工程
の後に施すことか可能となった。これにより積層半導体
集積回路装置層の何れの層にも半導体層の上下に電流制
御のためのゲート電極を構成することが可能となり、前
記実施例3の半導体集積回路装置に比べても更に高速動
作が実現できた。即ち、従来構造の半導体集積回路装置
に比べて積層化による超高集積化と超高速化が同時に実
現できた。
Further, in the semiconductor integrated circuit device according to this embodiment, since all the laminated semiconductor integrated circuit device layers are formed by direct bonding without using an adhesive, a structure requiring high temperature heat treatment such as diffusion layer formation. Can be performed after the laminating step. As a result, it becomes possible to form gate electrodes for current control on the upper and lower sides of the semiconductor layer in any of the layers of the laminated semiconductor integrated circuit device, and the operation speed is higher than that of the semiconductor integrated circuit device of the third embodiment. Was realized. That is, as compared with the semiconductor integrated circuit device having the conventional structure, super-high integration and super-high speed by stacking can be realized at the same time.

【0030】(実施例5)図13は本発明の第5の実施
例による半導体集積回路装置を示した断面図である。前
記実施例4において、半導体基板31と直接貼合せるべ
き超薄膜半導体集積回路装置層1の形成に関し、半導体
基板31との貼合せ面を構成する多結晶Si膜28の堆
積に先立って接地電位を印加すべき端子部7上の電極保
護絶縁膜に所望の開孔を施してから全面に低抵抗多結晶
Si膜とタングステン(W)珪化膜の第一の積層膜42
を形成した。しかる後、全面に第2の電極保護絶縁膜を
堆積してから多結晶Si膜28の堆積とその平坦化研磨
等を前記実施例4に従って施した。また、前記実施例4
の製造工程においてゲート電極13の形成の後、上部の
超薄膜半導体集積回路装置層を貫通する開孔を施すにあ
たり、上部の超薄膜半導体集積回路装置層における接地
電位を印加すべき端子部において下地の超薄膜半導体集
積回路装置層を貫通し、積層膜42に達する開孔を施し
開孔部に接続用金属膜を埋め込んだ。更に前記実施例4
の製造工程において、上部の超薄膜半導体集積回路装置
層の主表面に電極保護絶縁膜41を堆積した後、電源電
位を印加すべき上部及び下部の超薄膜半導体集積回路装
置層の所望端子部62に開孔を施してから再び全面に低
抵抗多結晶Si膜とタングステン(W)珪化膜の第2の
積層膜43を形成した。最後に第1及び第2の積層膜、
42及び43に対して各々接地電位及び電源電位が印加
されるように所望箇所で接続させた(図13)。
(Fifth Embodiment) FIG. 13 is a sectional view showing a semiconductor integrated circuit device according to a fifth embodiment of the present invention. Regarding the formation of the ultrathin film semiconductor integrated circuit device layer 1 to be directly bonded to the semiconductor substrate 31 in the fourth embodiment, the ground potential is set prior to the deposition of the polycrystalline Si film 28 forming the bonding surface with the semiconductor substrate 31. After forming a desired opening in the electrode protective insulating film on the terminal portion 7 to be applied, a first laminated film 42 of a low resistance polycrystalline Si film and a tungsten (W) silicide film is formed on the entire surface.
Was formed. Then, after depositing the second electrode protection insulating film on the entire surface, the deposition of the polycrystalline Si film 28 and its flattening polishing and the like were performed according to the fourth embodiment. In addition, the above-mentioned Example 4
After forming the gate electrode 13 in the manufacturing process of 1., when forming an opening penetrating the upper ultra-thin film semiconductor integrated circuit device layer, a base is formed in a terminal portion to which a ground potential is applied in the upper ultra-thin film semiconductor integrated circuit device layer. An opening reaching the laminated film 42 was formed by penetrating the ultra-thin semiconductor integrated circuit device layer and the connecting metal film was embedded in the opening. Further, the above-mentioned Example 4
In the manufacturing process of step 1, after depositing the electrode protection insulating film 41 on the main surface of the upper ultra-thin film semiconductor integrated circuit device layer, the desired terminal portion 62 of the upper and lower ultra-thin film semiconductor integrated circuit device layers to which the power supply potential should be applied. Then, a second laminated film 43 of a low resistance polycrystalline Si film and a tungsten (W) silicide film was formed again on the entire surface. Finally, the first and second laminated films,
42 and 43 were connected at desired locations so that the ground potential and the power source potential were applied respectively (FIG. 13).

【0031】上記製造方法に基づいて製造された半導体
集積回路装置においては前記実施例4による半導体集積
回路装置における積層方向への超高集積化および超高速
化の特長を同様に有する。更に本実施例による半導体集
積回路装置においては前記実施例4に比べてもより高速
動作化が実現できた。本実施例の半導体集積回路装置で
はチップ上の何れの電源電圧印加端子、及び接地電位印
加端子とも半導体集積回路装置層の上下部にほぼ全領域
で面状に構成された導体層に接続されている。これによ
り電圧供給点から各端子までの層抵抗で接地抵抗及び電
源抵抗が規定され、従来半導体集積回路装置のごとく電
圧供給点から各端子までの引き回された配線の実効長及
び幅に基づく配線抵抗で規定される場合に比べて接地抵
抗及び電源抵抗を格段に低減出来た。接地抵抗及び電源
抵抗の低減効果は半導体集積回路装置の占有面積が大き
くなるほど有効である。
The semiconductor integrated circuit device manufactured by the above manufacturing method also has the features of ultra-high integration and ultra-high speed in the stacking direction of the semiconductor integrated circuit device according to the fourth embodiment. Further, in the semiconductor integrated circuit device according to the present embodiment, higher speed operation can be realized as compared with the fourth embodiment. In the semiconductor integrated circuit device of this embodiment, any of the power supply voltage applying terminals and the ground potential applying terminals on the chip are connected to a conductor layer formed in a planar shape over the entire upper and lower portions of the semiconductor integrated circuit device layer. There is. As a result, the ground resistance and the power supply resistance are defined by the layer resistance from the voltage supply point to each terminal, and the wiring is based on the effective length and width of the routed wiring from the voltage supply point to each terminal as in the conventional semiconductor integrated circuit device. The ground resistance and the power supply resistance were significantly reduced compared to the case where the resistance was specified. The effect of reducing the ground resistance and the power supply resistance is more effective as the area occupied by the semiconductor integrated circuit device increases.

【0032】(実施例6)前記実施例5において、半導
体基板31と多結晶Si膜28を介して直接貼合せる超
薄膜半導体集積回路装置層にはNチャネル型MOSトラ
ンジスタのみを、また該超薄膜半導体集積回路装置層の
上部に積層で構成する超薄膜半導体集積回路装置層には
Pチャネル型MOSトランジスタのみを構成して相補型
MOSトランジスタによる半導体集積回路装置を積層構
成で製造した。7は接地電位印加端子、62は電源電位
印加端子である。相補型MOSトランジスタのためのN
チャネル及びPチャネルトランジスタの接続は超薄膜間
の層間接続配線17によった。
(Sixth Embodiment) In the fifth embodiment, only the N-channel type MOS transistor is provided in the ultrathin film semiconductor integrated circuit device layer directly bonded to the semiconductor substrate 31 via the polycrystalline Si film 28, and the ultrathin film is used. An ultra thin film semiconductor integrated circuit device layer formed by stacking layers on the semiconductor integrated circuit device layer has only P-channel type MOS transistors, and a semiconductor integrated circuit device having complementary type MOS transistors is manufactured in a stacked structure. Reference numeral 7 is a ground potential application terminal, and 62 is a power supply potential application terminal. N for complementary MOS transistor
The connection between the channel and the P-channel transistor was made by the interlayer connection wiring 17 between the ultrathin films.

【0033】上記製造方法に基づいて製造された半導体
集積回路装置においてはNチャネル型MOSトランジス
タとPチャネル型MOSトランジスタとが別々の超薄膜
に構成されるので従来の相補型MOSトランジスタの構
成のごとく半導体基板を各導電型のトランジスタが構成
される領域(ウエル領域と称される)に分離する製造工
程、およびそのための占有領域が削減されるので製造原
価の低減、及び更なる高集積化が実現できた。また導電
型の異るトランジスタは層を別にして完全に分離されて
いのでラッチアップ現象等の隣接素子間の相互干渉も完
全に解消された。
In the semiconductor integrated circuit device manufactured according to the above manufacturing method, the N-channel type MOS transistor and the P-channel type MOS transistor are formed in separate ultra thin films, and therefore, like the conventional complementary MOS transistor configuration. A manufacturing process that separates the semiconductor substrate into regions (referred to as well regions) where transistors of each conductivity type are formed, and an occupied region for that are reduced, so that manufacturing cost is reduced and higher integration is realized. did it. In addition, since transistors of different conductivity types are completely separated by layers, mutual interference between adjacent elements such as latch-up phenomenon is completely eliminated.

【0034】(実施例7)図14から図15は本発明の
第7の実施例による半導体集積回路装置を製造工程順に
示した断面図である。P型低抵抗Si基板31の主表面
側から所望パターン形状の溝穴を形成し、その溝側壁に
薄い絶縁膜32を熱酸化により形成してから該溝穴を埋
めるごとく不純物が添加された低抵抗の多結晶Si膜3
3を全面に堆積した。しかる後、主表面が平坦になるご
とく機械的な研磨を施して多結晶Si膜33領域をSi
基板31から分離構成した(図14)。
(Embodiment 7) FIGS. 14 to 15 are sectional views showing a semiconductor integrated circuit device according to a seventh embodiment of the present invention in the order of manufacturing steps. A groove having a desired pattern shape is formed from the main surface side of the P-type low-resistance Si substrate 31, a thin insulating film 32 is formed on the side wall of the groove by thermal oxidation, and then a low impurity-doped layer is filled in to fill the groove. Polycrystalline Si film 3 for resistance
3 was deposited on the entire surface. After that, mechanical polishing is performed so that the main surface becomes flat and the polycrystalline Si film 33 region is made into Si.
It was separated from the substrate 31 (FIG. 14).

【0035】ここにおいて、別途準備したP導電型の単
結晶Si基板1に所望回路構成による素子間分離絶縁
膜、ゲート電極46および47、N型低抵抗拡散層、電
極保護絶縁膜等を形成してから前記実施例1に従って素
子間分離絶縁膜の底面で膜厚が規定される超薄膜単結晶
半導体集積回路装置層1を形成した。上記の超薄膜を前
記実施例1に基づいて図14まで製造したSi基板31
と正確な位置合せの基に接着した。接着はフロン系樹脂
の塗布膜を接着剤34として実施した。しかる後、位置
合せに用いた透明石英基板を除去してから所望拡散層領
域の超薄膜Si層と直下の接着剤層34に開孔を施し、
分離された多結晶Si膜33と所望拡散層領域を電気的
に接続する電極49を形成した。次に全面に電極保護絶
縁膜を堆積してから所望拡散層領域48との接続のため
の開孔とビット線を構成する配線電極14を形成し、一
容量素子と一トランジスタを基本単位とする半導体記憶
装置が形成された(図15)。
Here, an inter-element isolation insulating film, gate electrodes 46 and 47, an N-type low resistance diffusion layer, an electrode protective insulating film and the like having a desired circuit configuration are formed on a separately prepared P conductivity type single crystal Si substrate 1. Then, according to the first embodiment, the ultrathin single crystal semiconductor integrated circuit device layer 1 having the film thickness defined on the bottom surface of the element isolation insulating film was formed. The Si substrate 31 in which the above ultra thin film is manufactured up to FIG. 14 based on the first embodiment
And glued to the base for precise alignment. Adhesion was performed by using a fluorocarbon resin coating film as the adhesive 34. Then, after removing the transparent quartz substrate used for alignment, a hole is formed in the ultrathin film Si layer in the desired diffusion layer region and the adhesive layer 34 immediately below,
An electrode 49 for electrically connecting the separated polycrystalline Si film 33 and the desired diffusion layer region was formed. Next, an electrode protection insulating film is deposited on the entire surface, and then an opening for connecting to the desired diffusion layer region 48 and a wiring electrode 14 forming a bit line are formed, and one capacitance element and one transistor are used as a basic unit. A semiconductor memory device is formed (FIG. 15).

【0036】上記の製造方法に基づいて製造された半導
体集積回路装置において、容量素子が構成される半導体
基板と制御トランジスタが構成される半導体基板は個別
に製造された後、貼合せにより一体化されるため容量素
子の製造に関して製造工程上およびレイアウト上の制約
が大幅に緩和される。従って、Si基板31に形成する
溝の深さ、及びトランジスタ底面にまで拡張できる溝面
積を所望値に設定できるので十分に大きな容量値を記憶
容量素子部に実現することができた。これにより、α線
照射による誤動作を格段に解消することができた。
In the semiconductor integrated circuit device manufactured according to the above manufacturing method, the semiconductor substrate including the capacitive element and the semiconductor substrate including the control transistor are separately manufactured and then integrated by bonding. Therefore, restrictions on the manufacturing process and the layout in manufacturing the capacitive element are significantly eased. Therefore, since the depth of the groove formed in the Si substrate 31 and the groove area that can be extended to the bottom surface of the transistor can be set to desired values, a sufficiently large capacitance value can be realized in the storage capacitor element portion. As a result, the malfunction caused by the α-ray irradiation can be remarkably eliminated.

【0037】(実施例8)図16は本発明の第八の実施
例による半導体集積回路装置を示した断面図である。本
実施例では前記実施例7において、容量素子を構成する
べきSi基板31の代りに熱酸化膜36、該熱酸化膜3
6上の所望回路構成に従ってパターニングされた高融点
金属珪化膜37、及び該高融点金属珪化膜上に全面的に
堆積された低抵抗の多結晶Si膜38が主表面に構成さ
れた半導体基板35を用いた。高融点金属珪化膜37は
所望によりパターンイングを施さず全面的に構成したま
までも良い。ここにおいて容量素子のための溝形成は多
結晶Si膜38領域に施し、その加工表面への薄い絶縁
膜の形成の後、溝領域への低抵抗多結晶Si膜33の埋
込みを施した。しかる後、半導体基板35の主表面上の
多結晶Si膜33、36等を機械的研磨により平坦化し
てから前記実施例7に基づき平坦化面と超薄膜Si層と
の接着、及びその後の製造工程を続行して半導体集積回
路装置を製造した(図16)。
(Embodiment 8) FIG. 16 is a sectional view showing a semiconductor integrated circuit device according to an eighth embodiment of the present invention. In the present embodiment, the thermal oxide film 36 and the thermal oxide film 3 are used instead of the Si substrate 31 which constitutes the capacitive element in the seventh embodiment.
6, a semiconductor substrate 35 having a main surface formed with a refractory metal silicide film 37 patterned according to the desired circuit configuration and a low resistance polycrystalline Si film 38 entirely deposited on the refractory metal silicide film. Was used. If desired, the refractory metal silicide film 37 may be entirely formed without patterning. Here, the groove for the capacitive element was formed in the region of the polycrystalline Si film 38, and after forming the thin insulating film on the processed surface thereof, the low resistance polycrystalline Si film 33 was embedded in the region of the groove. After that, the polycrystalline Si films 33, 36, etc. on the main surface of the semiconductor substrate 35 are planarized by mechanical polishing, and then the planarized surface and the ultrathin Si layer are adhered to each other according to the seventh embodiment, and the subsequent fabrication. The process was continued to manufacture a semiconductor integrated circuit device (FIG. 16).

【0038】上記の製造方法に基づいて製造された半導
体集積回路装置においては容量素子の一方の電極を構成
する多結晶Si膜38は電気的に更に低抵抗な高融点金
属珪化膜37に接続され、プレート電位の印加に対し、
より高速に追随できた。これにより、記憶の読出し、書
込みの速度を実施例7の半導体集積回路装置に比べて更
に高速化することができた。
In the semiconductor integrated circuit device manufactured by the above manufacturing method, the polycrystalline Si film 38 forming one electrode of the capacitive element is electrically connected to the refractory metal silicide film 37 having a lower resistance. , For the application of plate potential,
I was able to follow faster. As a result, the memory read / write speed can be further increased as compared with the semiconductor integrated circuit device of the seventh embodiment.

【0039】(実施例9)図17は本発明の第9の実施
例による半導体集積回路装置を示した断面図である。本
実施例においては前記実施例2に基づいて半導体集積回
路装置の積層化を繰返して多層構成の半導体集積回路装
置を製造した。図17において、11は半導体支持基
板、50は第1の超薄膜Si層で主記憶装置を構成し
た。51、52、53は第2、第3及び第4の超薄膜S
i層で各々拡張記憶装置を構成した。
(Embodiment 9) FIG. 17 is a sectional view showing a semiconductor integrated circuit device according to a ninth embodiment of the present invention. In this embodiment, a semiconductor integrated circuit device having a multi-layer structure is manufactured by repeating stacking of the semiconductor integrated circuit device based on the second embodiment. In FIG. 17, 11 is a semiconductor support substrate, and 50 is a first ultra-thin film Si layer, which constitutes a main memory device. 51, 52 and 53 are second, third and fourth ultrathin films S
Each of the i layers has an extended storage device.

【0040】本実施例に基づく半導体集積回路装置にお
いては精密位置合せ多層構造による縦方向の高集積効果
により従来半導体集積回路装置における配線遅延に基づ
く演算処理時間の増加を大幅に低減することができた。
In the semiconductor integrated circuit device according to this embodiment, the increase in the operation processing time due to the wiring delay in the conventional semiconductor integrated circuit device can be greatly reduced due to the vertical high integration effect of the precision alignment multilayer structure. It was

【0041】(実施例10)本実施例においては前記実
施例9の51、52、53としてキャシュ記憶装置で構
成した。キャシュ記憶装置の構成半導体装置は超高速バ
イポーラ型トランジスタによった。主記憶装置50はM
OS型トランジスタで構成した。
(Embodiment 10) In this embodiment, cache memory devices are used as 51, 52 and 53 of the ninth embodiment. Structure of cache memory device The semiconductor device was an ultra-high speed bipolar transistor. Main memory 50 is M
It is composed of an OS type transistor.

【0042】本実施例に基づく半導体集積回路装置にお
いては精密位置合せ多層構造による縦方向の高集積効果
によりキャシュ記憶装置と主記憶装置間の記憶データの
やりとりが瞬時に可能となるため、大容量のキャシュ記
憶をそなえることができた。これにより記憶装置全体と
して見た場合の動作速度を大幅に向上でき、かつ大容量
の情報を蓄積することが可能となった。
In the semiconductor integrated circuit device according to the present embodiment, since the highly integrated vertical alignment effect of the precision alignment multilayer structure enables instant exchange of stored data between the cache memory device and the main memory device, it has a large capacity. I was able to provide the cash memory of. As a result, the operating speed of the storage device as a whole can be greatly improved and a large amount of information can be stored.

【0043】(実施例11)図18は本発明の第11の
実施例による半導体集積回路装置を示した断面図であ
る。本実施例においては前記実施例10に基づいて半導
体集積回路装置の積層化を繰返して多層構成の半導体集
積回路装置を製造した。図18において、54は中央処
理装置、50は主記憶装置、51から53は命令プロセ
ッサ、システム制御装置、入出力プロセッサ、拡張記憶
装置等でこれらを前記実施例2に基づいて複数層にわた
り積層化し、超高速計算機を構成する半導体集積回路装
置とした。
(Embodiment 11) FIG. 18 is a sectional view showing a semiconductor integrated circuit device according to an eleventh embodiment of the present invention. In this embodiment, based on the tenth embodiment, the semiconductor integrated circuit device is repeatedly laminated to manufacture a semiconductor integrated circuit device having a multilayer structure. In FIG. 18, reference numeral 54 is a central processing unit, 50 is a main storage device, 51 to 53 are instruction processors, system control devices, input / output processors, expansion storage devices, etc., which are laminated in a plurality of layers based on the second embodiment. , A semiconductor integrated circuit device that constitutes an ultra-high speed computer.

【0044】本実施例に基づく半導体集積回路装置にお
いては精密位置合せ多層構造による縦方向の高集積効果
により装置間接続長さが極端に短縮された。これにより
半導体装置等の組立てによる従来大型計算機に比べて1
秒間当たりの命令処理回数が大幅に増加できた。
In the semiconductor integrated circuit device according to the present embodiment, the inter-device connection length is extremely shortened due to the vertical highly integrated effect of the precision alignment multilayer structure. As a result, compared to a conventional large-scale computer that assembles semiconductor devices, etc.
The number of instruction processings per second could be greatly increased.

【0045】(実施例12)図19及び図20は本発明
の第12の実施例による半導体集積回路装置を示した断
面図である。本実施例の第1の手法を図19に、第2の
手法を図20に示す。図19は前記実施例2と同様な製
造方法に基づいて製造した本実施例の半導体集積回路装
置であるが、同一機能を有する半導体集積回路装置層を
上下整合させて積層構成した。更に、各半導体集積回路
装置層における所望単位回路ごとにその電流経路を制御
するトランジスタを直列に配置させた。55及び56は
隣接する各半導体集積回路装置層における該トランジス
タのゲート電極である。
(Embodiment 12) FIGS. 19 and 20 are sectional views showing a semiconductor integrated circuit device according to a twelfth embodiment of the present invention. FIG. 19 shows the first method of this embodiment, and FIG. 20 shows the second method. FIG. 19 shows a semiconductor integrated circuit device of the present embodiment manufactured by the same manufacturing method as that of the second embodiment, but the semiconductor integrated circuit device layers having the same function are vertically aligned and laminated. Further, a transistor for controlling the current path is arranged in series for each desired unit circuit in each semiconductor integrated circuit device layer. 55 and 56 are gate electrodes of the transistors in the adjacent semiconductor integrated circuit device layers.

【0046】本実施例に基づく半導体集積回路装置にお
いては半導体集積回路装置の大面積・大規模化に伴い低
下する良品歩留りを向上させることができた。即ち、積
層化された何れかの半導体集積回路装置層における所望
単位回路に不良が生じていた場合、不良回路に直列接続
されたトランジスタ(例えばゲート電極55で制御され
るトランジスタ)によりその経路を遮断し、接続配線電
極17を介して良品の所望単位回路側の経路のみを選択
するごとくトランジスタ(例えばゲート電極56で制御
されるトランジスタ)を導通させた。これにより、従来
は1箇所の不良回路の存在で半導体集積回路装置が不良
とされ、良品歩留りを大幅に低下させていた状況を大幅
に改善することができ、半導体集積回路装置の更なる大
面積・大規模化に路を開くことができた。なお、各半導
体集積回路装置層の不良箇所は各半導体集積回路装置層
を形成した段階で予め測定により確認してから積層化し
ている。
In the semiconductor integrated circuit device according to this embodiment, the yield of non-defective products, which is reduced as the area and size of the semiconductor integrated circuit device are increased, can be improved. That is, when a defect occurs in a desired unit circuit in any one of the stacked semiconductor integrated circuit device layers, the path is blocked by a transistor (for example, a transistor controlled by the gate electrode 55) serially connected to the defect circuit. Then, the transistor (for example, the transistor controlled by the gate electrode 56) is made conductive through the connection wiring electrode 17 so that only the path on the desired unit circuit side of a good product is selected. As a result, it is possible to significantly improve the situation in which the yield of non-defective products has been greatly reduced because the semiconductor integrated circuit device was made defective due to the presence of a defective circuit at one location in the past, and a larger area of the semiconductor integrated circuit device can be obtained.・ We were able to open the way to larger scale. It should be noted that the defective portion of each semiconductor integrated circuit device layer is stacked after being confirmed by measurement in advance at the stage of forming each semiconductor integrated circuit device layer.

【0047】本実施例の他の手法は図20に示される半
導体集積回路装置であり、前記実施例4に準じて同一機
能を有する半導体集積回路装置層を上下整合させて積層
構成した。前記実施例4との違いは各半導体集積回路装
置層の製造の後、その所望単位回路の不良部分を電気測
定により同定し、その不良単位回路(図20において例
えば上部半導体集積回路装置層の図示した領域)の電流
経路を微細に絞ったレーザー光線により溶融により断線
させ、電気的に開放状態の領域39とした。これにより
これにより図20の半導体集積回路装置において電流経
路は接続配線電極17を介して良品の所望単位回路側の
経路(図20において例えば下部半導体集積回路装置層
の図示した領域)を選択する構成が実現できた。即ち、
図19で断面を示した本実施例の他の手法の場合と同様
な不良単位回路部分の救済が可能となった。本手法にお
いては図19で示した半導体集積回路装置に比べて不良
単位回路救済に要する余分のトランジスタを必要とせ
ず、従って、占有面積の増大を防止でき、半導体集積回
路装置の大面積・大規模化を更に推し進めることが可能
となった。
Another method of this embodiment is the semiconductor integrated circuit device shown in FIG. 20, and the semiconductor integrated circuit device layers having the same function are vertically aligned and laminated according to the fourth embodiment. The difference from the fourth embodiment is that after manufacturing each semiconductor integrated circuit device layer, the defective portion of the desired unit circuit is identified by electrical measurement, and the defective unit circuit (for example, the upper semiconductor integrated circuit device layer in FIG. The current path of the region (1) is broken by melting with a laser beam that is finely squeezed to form an electrically open region 39. As a result, in the semiconductor integrated circuit device of FIG. 20, the current path selects a path on the desired unit circuit side of a non-defective product (for example, the area shown in the lower semiconductor integrated circuit device layer in FIG. 20) via the connection wiring electrode 17. Was realized. That is,
The defective unit circuit portion can be relieved in the same manner as in the case of the other method of the present embodiment whose cross section is shown in FIG. Compared to the semiconductor integrated circuit device shown in FIG. 19, this method does not require an extra transistor required for repairing a defective unit circuit, and therefore, it is possible to prevent the occupied area from increasing, and to increase the area and size of the semiconductor integrated circuit device. It has become possible to further promote the conversion.

【0048】(実施例13)図21と図22は本発明の
半導体集積回路装置の製造装置を示す概念図である。前
記各実施例の半導体集積回路装置は本実施例の製造装置
を用いて製造された。パターンが形成された2枚の半導
体基板又は半導体薄膜75および76を高精度で位置合
せし、互いに接着するためには成膜に基づく各々の半導
体基板又は半導体薄膜独自の伸縮及び歪等を互いに精度
良く整合するべく矯正する必要がある。図21におい
て、第1のステージ71上に第2のステージ72及び第
3のステージ73を配置している。ステージ72上に基
板75を、ステージ73上には基板76を真空吸着し
た。それぞれの基板はステージに相対的にプレアライメ
ントされた状態でステージ上に搬送される。基板の搬送
は通常方式の自動搬送機構を用いた。ステージ72およ
びステージ73はそれぞれ回転機構を有しており、ステ
ージの移動軸に基板上のチップ配列が平行になるように
合わせることができる。基板上には位置認識用のターゲ
ットマークが形成されており、ターゲットマークの位置
検出は位置検出光学系77、78で行う。この装置では
基板75に対して基板76を整合する構成となってい
る。検出光学系77、78で基板75及び基板76の相
対位置誤差を測定し、位置誤差が存在する場合、ステー
ジ73上の基板変形機構により基板76を変形させ、基
板75と相対的な位置誤差が無くなるように制御する。
ステージ73上には細分化された基板吸着ブロックが配
置されており、それぞれのブロック74はピエゾ素子に
より単独で移動ができるように構成されている。基板の
位置はステージマーク80及び81に対し相対的に認識
される。基板75と基板76はミラー反転した位置関係
となっており、双方の位置関係は位置認識部79からの
情報に基づいてコンピュータ制御系83でデータ処理さ
れる。そのデータを基板変形制御機構82で処理し、細
分化された基板吸着ブロック74を移動させ、基板76
を変形させる。この動作により基板75に対して基板7
6がミラー反転した状態で同一形状にすることができ
る。
(Embodiment 13) FIGS. 21 and 22 are conceptual views showing a semiconductor integrated circuit device manufacturing apparatus according to the present invention. The semiconductor integrated circuit device of each of the above-described embodiments was manufactured using the manufacturing apparatus of this embodiment. In order to accurately align and bond two semiconductor substrates or semiconductor thin films 75 and 76 on which patterns are formed to each other and to bond them to each other, the expansion and contraction and distortion of each semiconductor substrate or semiconductor thin film based on the film formation can be accurately performed. It needs to be corrected to get a good match. In FIG. 21, a second stage 72 and a third stage 73 are arranged on the first stage 71. The substrate 75 was vacuum-adsorbed on the stage 72, and the substrate 76 was vacuum-adsorbed on the stage 73. Each substrate is transported onto the stage while being pre-aligned relative to the stage. The substrate was transferred by using a normal type automatic transfer mechanism. The stage 72 and the stage 73 each have a rotation mechanism, and can be aligned so that the chip arrangement on the substrate is parallel to the movement axis of the stage. Target marks for position recognition are formed on the substrate, and the position detection optical systems 77 and 78 detect the positions of the target marks. In this device, the substrate 76 is aligned with the substrate 75. The relative position error between the substrate 75 and the substrate 76 is measured by the detection optical systems 77 and 78, and if there is a position error, the substrate deforming mechanism on the stage 73 deforms the substrate 76, and the relative position error with the substrate 75 is detected. Control it so that it disappears.
Subdivided substrate suction blocks are arranged on the stage 73, and each block 74 is configured to be independently movable by a piezo element. The position of the substrate is recognized relative to the stage marks 80 and 81. The substrate 75 and the substrate 76 have a mirror-reversed positional relationship, and the positional relationship between the two is processed by the computer control system 83 based on the information from the position recognition section 79. The substrate deformation control mechanism 82 processes the data, moves the subdivided substrate suction block 74, and moves the substrate 76.
Transform. By this operation, the substrate 7
The same shape can be obtained in a state where 6 is mirror-inverted.

【0049】次のステップでは図22に示すように基板
75をステージ72に固定した状態で鏡面反転し、基板
76の主表面と基板75の主表面が対向するように移動
する。移動機構は図示していないが通常のアーム式移動
機構を用いた。この状態でステージマーク80及び81
を位置検出光学系84を用いて位置検出する。このデー
タはコンピュータ制御系83でデータ処理される。この
データをステージ位置制御系85で処理し、ステージ7
3を移動機構86で移動し、ステージ72に相対的に位
置決めする。その後、ステージ72の上下移動機構によ
り基板72を下降させ、基板73と密着させることによ
り貼合せが完了する。貼合せを良好に行うため、ステー
ジ72は僅かな傾きが設定できるようになっている。上
記一連の動作により互いに異なった変形を有する基板7
5及び基板76を同一形状に矯正して貼合せることがで
きる。上記実施例において、基板76の変形機構には細
分化した基板吸着ブロック74をピエゾ素子により移動
する機構を用いたが他の手法に基づいてもよい。例えば
吸着ブロック74を熱変形板で移動する方式や、液体や
気体の圧力を利用して位置を変える方式など種々可能で
ある。即ち、本装置の特長は基板の形状を自在に変形で
きる機構を有することにある。なおここでは本装置の機
能を説明するため装置を細分化して説明したが図21及
び図22は同一装置内でも別装置で構成されていても本
実施例による製造装置の特徴は変わらない。また、本実
施例による製造装置の特徴に直接関係しない機構につい
ては説明を省略したが、通常の位置整合装置で必要な機
構は付加されている。例えば装置全体の温度制御機構、
ステージ位置測長機構、基板カセット・ツウ・カセット
搬送機構等がその例である。また、本装置の変形として
図22のように基板75の裏面からチップ配列の変形を
測定することも可能である。基板76の変形を測定する
場合はステージ72を検出の邪魔にならない位置に退避
させる必要がある。この場合、図21のステージ71は
不要となり、装置の小型化が達成できる。本実施例の製
造装置を用いる基板75または76としては半導体集積
回路装置が製造された通常の単結晶半導体基板に限定さ
れる必要はなく、前記実施例1等に記載したごとき支持
基板としての半導体基板上に接着剤で貼合せた単結晶超
薄膜Si膜に製造された半導体集積回路装置層であって
もよい。上記単結晶超薄膜Si膜は接着剤を用いない直
接貼合せによるものであってもよい。この場合、本実施
例に基づいた厳密な位置合せと密着および接着が半導体
集積回路装置層間で施された後、本実施例の製造装置か
ら基板75および76をはずしてから接着剤の溶媒中に
該基板を浸して、支持基板を外せばよい。接着剤を用い
ない直接貼合せの場合は支持基板を研削・研磨等で除去
する。
In the next step, as shown in FIG. 22, the substrate 75 is fixed to the stage 72, mirror-inverted, and moved so that the main surface of the substrate 76 and the main surface of the substrate 75 face each other. Although the moving mechanism is not shown, a normal arm type moving mechanism is used. In this state, the stage marks 80 and 81
Is detected using the position detection optical system 84. This data is processed by the computer control system 83. This data is processed by the stage position control system 85, and the stage 7
3 is moved by the moving mechanism 86 and positioned relatively to the stage 72. After that, the substrate 72 is lowered by the vertical movement mechanism of the stage 72 and brought into close contact with the substrate 73, whereby the bonding is completed. The stage 72 can be set to have a slight inclination in order to perform good bonding. The substrate 7 having different deformations by the above series of operations
5 and the substrate 76 can be corrected to the same shape and bonded. In the above-described embodiment, the mechanism for deforming the substrate 76 uses the mechanism for moving the subdivided substrate suction block 74 by the piezo element, but it may be based on another method. For example, various methods such as a method of moving the adsorption block 74 by a thermal deformation plate and a method of changing the position by utilizing the pressure of liquid or gas are possible. That is, the feature of this apparatus is that it has a mechanism capable of freely deforming the shape of the substrate. Note that the device is subdivided and described in order to explain the function of the present device, but the features of the manufacturing device according to the present embodiment are the same whether FIGS. 21 and 22 are configured in the same device or in different devices. Although the description of the mechanism that is not directly related to the features of the manufacturing apparatus according to the present embodiment is omitted, the mechanism necessary for the ordinary position alignment apparatus is added. For example, the temperature control mechanism of the entire device,
Examples include a stage position measuring mechanism and a substrate cassette / toe / cassette transport mechanism. As a modification of this device, it is also possible to measure the modification of the chip arrangement from the back surface of the substrate 75 as shown in FIG. When measuring the deformation of the substrate 76, it is necessary to retract the stage 72 to a position that does not interfere with the detection. In this case, the stage 71 of FIG. 21 is unnecessary, and the device can be downsized. The substrate 75 or 76 using the manufacturing apparatus of this embodiment need not be limited to a normal single crystal semiconductor substrate on which a semiconductor integrated circuit device is manufactured, but a semiconductor as a supporting substrate as described in the first embodiment and the like. It may be a semiconductor integrated circuit device layer manufactured on a single crystal ultra-thin film Si film that is bonded onto a substrate with an adhesive. The single crystal ultra-thin Si film may be formed by direct bonding without using an adhesive. In this case, after strict alignment, adhesion and adhesion based on the present embodiment are performed between the semiconductor integrated circuit device layers, the substrates 75 and 76 are removed from the manufacturing apparatus of the present embodiment and then placed in the solvent of the adhesive. The supporting substrate may be removed by immersing the substrate. In the case of direct bonding without using an adhesive, the supporting substrate is removed by grinding or polishing.

【0050】(実施例14)前記実施例13においては
図21に示すごとく、基板75及び76上の位置認識タ
ーゲットを用いた位置検出を各基板75及び76の主表
面を上にした状態で行った。本実施例では基板75及び
第2のステージ72を可視光、更には紫外光を透過でき
る構成にすることにより基板75をミラー反転した状
態、即ち図22に示すごとく基板75及び76がそのま
まできる状態で施した。第2のステージ72は省略し、
基板75と基板76上の位置認識用ターゲットマーク間
で識別してもよい。ここにおいて、基板76上の位置認
識用ターゲットマークは検出光学系77により基板75
を透過して識別される。本実施例によれば前記実施例1
3で用いたステージマーク80及び81による基板間の
位置合せ機構が省略でき、基板75及び76間のより直
接的な位置合せが可能となって装置の簡略化が実現でき
た。更に前記実施例13においては基板75と第2のス
テージ72と間で大幅な位置不整合が存在した場合、位
置認識が不可能となる欠点が生じるが、本実施例におい
ては基板75及び76間の大幅な位置不整合の存在は一
目瞭然であり、簡単に修正できる。
(Embodiment 14) In Embodiment 13, as shown in FIG. 21, the position detection using the position recognition targets on the substrates 75 and 76 is performed with the main surfaces of the substrates 75 and 76 facing up. It was In this embodiment, the substrate 75 and the second stage 72 are configured to transmit visible light and further ultraviolet light so that the substrate 75 is mirror-inverted, that is, the substrate 75 and 76 can be left as they are as shown in FIG. I gave it in. Omit the second stage 72,
You may distinguish between the position-recognition target marks on the board | substrate 75 and the board | substrate 76. Here, the target mark for position recognition on the substrate 76 is detected by the detection optical system 77.
To be identified. According to this embodiment, the first embodiment
The alignment mechanism between the substrates by the stage marks 80 and 81 used in No. 3 can be omitted, more direct alignment between the substrates 75 and 76 is possible, and the device can be simplified. Further, in the thirteenth embodiment, when there is a large positional misalignment between the substrate 75 and the second stage 72, there is a drawback that the position cannot be recognized, but in the present embodiment, between the substrates 75 and 76. The existence of a large misalignment of is obvious and can be easily corrected.

【0051】本実施例において、基板75及び第2のス
テージ72を紫外光が透過する構成にすることにより通
常のSi基板のごとく赤外光しか透過できない場合に比
べて、より短波長の検出光学系77が使用可能となる。
従って、より精密な位置検出が可能となる。紫外光に対
する透過特性と容易に入手できることを考慮すると第2
のステージ72は透明石英基板であることが望ましく、
基板75は該透明石英基板に(特に紫外光も透過可能な
フロン樹脂系の)薄い接着剤により貼合された単結晶S
i超薄膜の半導体集積回路装置層であることが望まし
い。ここにおいて、Si超薄膜の膜厚は紫外光透過の条
件から100nm以下であることが望ましい。本実施例
により精密な位置検出とその後の接着、及び超薄膜化等
の工程を施された基板75及び76は前記実施例1又は
2に基づいて該透明石英基板を除去し、超薄膜が形成さ
れる。
In this embodiment, the substrate 75 and the second stage 72 are configured to transmit ultraviolet light, so that the detection optics having a shorter wavelength can be detected as compared with the case where only infrared light can be transmitted like a normal Si substrate. System 77 is ready for use.
Therefore, more precise position detection becomes possible. Considering the transmission characteristics for ultraviolet light and easy availability,
The stage 72 of is preferably a transparent quartz substrate,
The substrate 75 is a single crystal S bonded to the transparent quartz substrate with a thin adhesive (especially a CFC resin that can also transmit ultraviolet light).
i It is desirable that the semiconductor integrated circuit device layer is an ultra-thin film. Here, the film thickness of the Si ultra-thin film is preferably 100 nm or less from the condition of transmitting ultraviolet light. Substrates 75 and 76 which have been subjected to steps such as precise position detection, subsequent adhesion, and ultra-thinning according to the present embodiment have the ultra-thin film formed by removing the transparent quartz substrate according to the first or second embodiment. To be done.

【0052】前記実施例13、及び14において、基板
75及び76間の精密な位置合せを阻害する要因は基板
75及び76の各々に構成する集積回路装置の製造に不
可欠の基板上成膜に基づく。即ち、基板上に形成する各
種絶縁膜や金属膜自身が有する内部応力や基板上成膜の
状態で施される各種熱処理により基板との熱膨張係数の
違いに基づき熱応力により半導体集積回路装置又は半導
体集積回路装置層か構成された基板は上に凸又は凹にな
るごとく反りを生じ、基板表面のパターンに歪み及び伸
縮をもたらす。上記のパターン歪み及び伸縮は基板周辺
領域において特に顕著となる。2枚の基板間の精密な位
置合せを行う段階において上記パターン歪み及び伸縮の
影響を大幅に緩和するには集積回路装置が製造された2
枚の基板の反りを同一に制御すれば解決できる。その一
手法として、2枚の基板が各々平面になるごとく構成す
る。具体的には前記実施例13、及び14において、ス
テージ72上に基板75を、ステージ73上には基板7
6を真空吸着したが、該真空吸着を表面が極めて平坦で
多数の吸引孔を有するステージにより該基板を強く吸着
することで実現できる。吸引孔の数を多く構成するほど
吸着基板はステージの形状に一致することができ、多孔
構成によるステージが望ましい。これにより精密な位置
合せを行う2枚の基板の主表面を平坦に保持し、パター
ン歪み及び伸縮を最小限に抑えることが可能となる。2
枚の基板の主表面におけるパターン歪み及び伸縮を同一
に制御する観点から該主表面は必ずしも平面である必要
はなく、パターン歪み及び伸縮が同一になるごとく所望
曲面に制御してもよい。
In Embodiments 13 and 14, the factor obstructing the precise alignment between the substrates 75 and 76 is due to the film formation on the substrate which is indispensable for the manufacture of the integrated circuit device formed on each of the substrates 75 and 76. . That is, the semiconductor integrated circuit device or the semiconductor integrated circuit device due to the thermal stress based on the difference in the thermal expansion coefficient from the substrate due to the internal stress of various insulating films formed on the substrate or the metal film itself or the various heat treatments performed in the state of film formation on the substrate. The substrate on which the semiconductor integrated circuit device layer is formed is warped as it is convex or concave, and the pattern on the substrate surface is distorted and expanded. The above-mentioned pattern distortion and expansion / contraction are particularly remarkable in the peripheral area of the substrate. An integrated circuit device was manufactured to significantly mitigate the effects of the pattern distortion and expansion and contraction in the step of performing precise alignment between two substrates.
The problem can be solved by controlling the warpage of the substrates to be the same. As one of the methods, the two substrates are configured so as to be flat. Specifically, in Examples 13 and 14, the substrate 75 was placed on the stage 72 and the substrate 7 was placed on the stage 73.
6 was vacuum-sucked, but the vacuum suction can be realized by strongly sucking the substrate with a stage having an extremely flat surface and having a large number of suction holes. The larger the number of suction holes, the more the suction substrate can conform to the shape of the stage, and the stage having a porous structure is desirable. This makes it possible to keep the main surfaces of the two substrates for precise alignment flat and minimize pattern distortion and expansion and contraction. Two
From the viewpoint of controlling the pattern distortion and expansion / contraction on the main surfaces of the substrates to be the same, the main surface is not necessarily a flat surface, and may be controlled to a desired curved surface so that the pattern distortion and expansion / contraction are the same.

【0053】(実施例15)図23は本発明の第15の
実施例による半導体集積回路装置の製造方法を示す断面
図である。本実施例においては2枚の基板間位置合せを
更に厳密ならしめる手法を追及した。前述したごとく、
基板表面に形成されたパターンの伸縮及び歪は集積回路
装置の製造過程で基板上に形成する各種絶縁膜及び金属
膜の膜厚と各種膜の形成後における熱処理履歴に大きく
依存する。従って、半導体基板上に形成された集積回路
装置のパターンに集積回路装置固有の伸縮及び歪が発生
することは謂ば不可避である。本実施例では上記状況を
踏まえた上で正確な位置合せを保証しつつ2枚の基板を
貼合せた。即ち、貼合せるべき2枚の基板はその成膜条
件等の前歴が同一のものどうしで実施させた。図23に
おいて、57と58は各々単結晶Si超薄膜の半導体集
積回路装置層であり、前記実施例2又は3に基づいて超
薄膜化とその貼合せを施した。30は透明石英基板であ
り、水溶性接着剤26及びフロン系接着剤34により超
薄膜57と接着した。57と58は各々製造工程が異な
り、従って超薄膜化前の段階、即ち半導体基板主表面上
に半導体集積回路装置が形成された段階において半導体
基板の反り量は各々異なっていた。かかる半導体基板に
関し、本実施例においては線膨張係数が半導体基板と異
なる絶縁膜を堆積して2枚の半導体基板の反りの方向及
び量が等しくなるごとく制御した。上記絶縁膜の堆積は
半導体基板の何れの面であってもよい。しかる後、前記
実施例13に記載の装置を用いて2枚の半導体基板の精
密な位置合せとその接着を行った。反りの方向及び量が
等しい2枚の基板間においてはパターンの伸縮及び歪量
がほぼ等量となり相対的なパターン位置ズレは解消さ
れ、良好な位置合せが実施できた。
(Embodiment 15) FIG. 23 is a sectional view showing a method of manufacturing a semiconductor integrated circuit device according to a fifteenth embodiment of the present invention. In the present embodiment, a technique for more precise alignment between the two substrates was pursued. As mentioned above,
The expansion and contraction and distortion of the pattern formed on the surface of the substrate largely depend on the film thickness of various insulating films and metal films formed on the substrate in the manufacturing process of the integrated circuit device and the heat treatment history after the various films are formed. Therefore, it is unavoidable that expansion / contraction and distortion peculiar to the integrated circuit device occur in the pattern of the integrated circuit device formed on the semiconductor substrate. In this embodiment, based on the above situation, the two substrates are bonded together while guaranteeing accurate alignment. That is, the two substrates to be bonded were made to have the same history of film forming conditions. In FIG. 23, 57 and 58 are semiconductor integrated circuit device layers each of which is a single crystal Si ultrathin film, and the ultrathin film and its bonding were performed based on the second or third embodiment. Reference numeral 30 denotes a transparent quartz substrate, which is adhered to the ultrathin film 57 with the water-soluble adhesive 26 and the fluorocarbon adhesive 34. The manufacturing processes of 57 and 58 are different from each other, and therefore, the warp amount of the semiconductor substrate is different at the stage before the ultra thin film formation, that is, at the stage where the semiconductor integrated circuit device is formed on the main surface of the semiconductor substrate. With respect to such a semiconductor substrate, in this embodiment, an insulating film having a coefficient of linear expansion different from that of the semiconductor substrate is deposited and controlled so that the two semiconductor substrates have the same warp direction and amount. The insulating film may be deposited on any surface of the semiconductor substrate. Then, using the apparatus described in Example 13, the two semiconductor substrates were precisely aligned and adhered to each other. Between two substrates having the same warp direction and amount, the amount of expansion and contraction of the pattern and the amount of distortion are almost equal, the relative pattern displacement is eliminated, and good alignment can be performed.

【0054】全く同一の製造工程により製造された2組
の超薄膜57及び58を各々透明石英基板30に接着さ
せ、再び前記実施例13に記載の装置を用いてこれらを
接着剤をもちず直接貼合せ、四層構造の超薄膜とした。
しかる後、水溶性接着剤26を溶融して一方の透明石英
基板30を除去してから別途準備した支持基板と接着さ
せ、接着剤34の溶融により他方の透明石英基板30も
除去して半導体集積回路装置を完成させた。上記四層構
造の超薄膜の製造において、2組の重合せ超薄膜57及
び58は何れも全く同一の製造工程により製造され、同
一の断面構成を有している。これにより、重合せ超薄膜
57及び58に生ずるパターン位置ズレは相対的に等し
くなり、正確な位置合せが特別な対策無しに容易に実現
できた。 (実施例16)図24は本発明の第16の実施例による
半導体集積回路装置の製造方法を示した平面図である。
前述の各実施例において、本発明の半導体集積回路装置
につきその製造方法を含めて説明したが何れの実施例に
おいても半導体集積回路装置又は半導体集積回路装置層
を別途準備した半導体基板、又は石英基板等に一度接着
し、超薄膜化など所望の製造工程を施した後、該超薄膜
を何らかの手法により他の基板と再び貼合せる手法を用
いている。上記手法において、最初に接着した半導体基
板、又は石英基板等を半導体集積回路装置又は半導体集
積回路装置層から剥離させるが接着剤によってはその溶
媒による剥離が容易でないことがある。これは接着剤厚
さが薄いため溶媒が接着面に速やかに浸透しないためで
ある。溶媒を接着面に速やかに浸透させ、石英基板72
を半導体集積回路装置又は半導体集積回路装置層75か
ら速やかに剥離させるため、本実施例においては剥離さ
せるべき石英基板72の所望箇所に図24に示すごとく
石英基板72の裏面から表面に達する微細な貫通孔59
を複数形成したものを使用した。接着剤の種類に応じて
貫通孔59は一つであってもよい。
Two sets of ultra-thin films 57 and 58 manufactured by exactly the same manufacturing process are adhered to the transparent quartz substrate 30, respectively, and they are directly bonded again without using an adhesive by using the apparatus described in the thirteenth embodiment. The lamination was performed to form an ultrathin film having a four-layer structure.
Thereafter, the water-soluble adhesive 26 is melted to remove one transparent quartz substrate 30 and then adhered to a separately prepared support substrate, and the other transparent quartz substrate 30 is also removed by melting the adhesive 34 to thereby integrate the semiconductors. Completed the circuit device. In the production of the ultra-thin film having the four-layer structure, the two sets of superposed ultra-thin films 57 and 58 are produced by exactly the same production process and have the same sectional structure. As a result, the pattern positional deviations generated in the superposed ultra-thin films 57 and 58 are relatively equal, and accurate positioning can be easily realized without any special measures. (Embodiment 16) FIG. 24 is a plan view showing a method for manufacturing a semiconductor integrated circuit device according to a sixteenth embodiment of the present invention.
In each of the above-described embodiments, the semiconductor integrated circuit device of the present invention has been described including its manufacturing method. However, in any of the embodiments, a semiconductor substrate or a quartz substrate in which a semiconductor integrated circuit device or a semiconductor integrated circuit device layer is separately prepared A method of adhering the ultrathin film to another substrate by some method after adhering it once to a desired manufacturing process such as forming an ultrathin film is used. In the above method, the first bonded semiconductor substrate, quartz substrate, or the like is peeled from the semiconductor integrated circuit device or the semiconductor integrated circuit device layer, but depending on the adhesive, peeling with the solvent may not be easy. This is because the thickness of the adhesive is small and the solvent does not quickly penetrate into the adhesive surface. The solvent is quickly permeated into the adhesive surface, and the quartz substrate 72
In order to quickly peel off the semiconductor substrate from the semiconductor integrated circuit device or the semiconductor integrated circuit device layer 75, in this embodiment, as shown in FIG. Through hole 59
The thing which formed multiple pieces was used. There may be one through hole 59 depending on the type of adhesive.

【0055】前記実施例1及び2等に従った半導体集積
回路装置の製造方法において、半導体集積回路装置又は
半導体集積回路装置層が形成された半導体基板を石英基
板に接着し、超薄膜化など所望の製造工程を施した後、
別途準備した他の半導体集積回路装置又は半導体集積回
路装置層と精密に位置合せを施して接着している。しか
る後、該石英基板を剥離させるがこの剥離工程において
本実施例に基づく石英基板72と貫通孔59を有しない
石英基板30についてその剥離に要する時間を比較し
た。溶融すべき接着剤としてポリビニルアルコール等の
水溶性接着剤、及びフロン系接着剤、石英基板72に設
ける貫通孔59の直径は10μmから200μmまで、
貫通孔59の数も1から50個まで各種検討した。何れ
の場合も貫通孔59を有する本実施例による石英基板7
2を用いた方が剥離に要する時間を十分の一以下と大幅
に短縮することができた。上記記載条件の貫通孔58を
有する石英基板72は予め接着する工程、及びその後の
超薄膜化など所望の製造工程を通じ、貫通孔59を有し
ない石英基板の場合と全く同様に作用でき、何等問題は
生じなかった。
In the method for manufacturing a semiconductor integrated circuit device according to the first and second embodiments, a semiconductor substrate having a semiconductor integrated circuit device or a semiconductor integrated circuit device layer formed thereon is adhered to a quartz substrate to obtain an ultra thin film. After performing the manufacturing process of
The semiconductor integrated circuit device or the semiconductor integrated circuit device layer separately prepared is precisely aligned and bonded. Thereafter, the quartz substrate is peeled off, but the time required for the peeling is compared between the quartz substrate 72 according to the present embodiment and the quartz substrate 30 having no through hole 59 in this peeling step. As the adhesive to be melted, a water-soluble adhesive such as polyvinyl alcohol, a fluorocarbon adhesive, and the diameter of the through hole 59 provided in the quartz substrate 72 is 10 μm to 200 μm.
The number of through holes 59 was also variously examined from 1 to 50. In any case, the quartz substrate 7 according to the present embodiment having the through hole 59
When 2 was used, the time required for peeling could be significantly shortened to less than 1/10. The quartz substrate 72 having the through holes 58 satisfying the above described conditions can operate in exactly the same way as the quartz substrate having no through holes 59 through the steps of pre-bonding and subsequent desired manufacturing steps such as ultra-thinning. Did not occur.

【0056】なお、前述した各実施例において、説明を
簡便化するために接着剤の材料を特定して述べたが本発
明の精神は第一の接着剤の溶融に対して第二の接着剤が
溶融されない性質のものであればよく、従って、その範
囲内であれば接着剤の材料は何ら限定されない。また、
接着剤の溶融は製造した超薄膜を他の支持基板に転写可
能にするための工程であり、被接着基板の消耗による製
造価格の上昇を考慮しないならば超薄膜を別の支持基板
に転写した後、被接着基板を機械的研磨・研削により除
去してもよい。
In each of the above-mentioned embodiments, the material of the adhesive is specified for the sake of simplification of description, but the spirit of the present invention is the melting of the first adhesive and the second adhesive. However, the material of the adhesive is not limited as long as it is within the range. Also,
Melting of the adhesive is a process to transfer the manufactured ultra-thin film to another supporting substrate, and if the increase in manufacturing cost due to consumption of the substrate to be adhered is not taken into consideration, the ultra-thin film is transferred to another supporting substrate. After that, the adherend substrate may be removed by mechanical polishing / grinding.

【0057】(実施例17)図25から図26は本発明
の第16の実施例による半導体集積回路装置を製造工程
順に示した断面図である。実施例2に於いて、図6の状
態から保護絶縁膜12に開口を施し、開口にAlを主材
料とする金属膜65及び66を埋め込み、保護絶縁膜1
2面と同一面になるごとく平坦化及び清浄化させた。更
に、図6と同様の製法により別の単結晶Si基板11上
に形成した半導体集積回路装置に厚い多結晶Si膜24
の堆積とその表面の平坦化研磨まで行い、その表面にフ
ッ素系樹脂による接着層23の形成、及び半導体集積回
路装置に達する開口を接着層23に施し、開口側壁の絶
縁化処理の後、開口部にAlを主材料とする金属膜67
及び68を埋め込み、接着層23面と同一面になるごと
く平坦化及び清浄化させた。しかる後、前述の位置合せ
装置を用いて正確な位置合せを行って両者を接着させた
(図25)。
(Embodiment 17) FIGS. 25 to 26 are sectional views showing a semiconductor integrated circuit device according to a sixteenth embodiment of the present invention in the order of manufacturing steps. In the second embodiment, an opening is formed in the protective insulating film 12 from the state of FIG. 6, and metal films 65 and 66 containing Al as a main material are buried in the opening to form the protective insulating film 1.
The surface was flattened and cleaned so that it was flush with the two surfaces. Further, a thick polycrystalline Si film 24 is formed on a semiconductor integrated circuit device formed on another single crystal Si substrate 11 by the same manufacturing method as in FIG.
Are deposited and the surface thereof is flattened and polished, an adhesive layer 23 made of a fluororesin is formed on the surface thereof, and an opening reaching the semiconductor integrated circuit device is formed in the adhesive layer 23. Metal film 67 whose main part is Al
And 68 were embedded and flattened and cleaned so as to be flush with the surface of the adhesive layer 23. After that, accurate alignment was performed using the alignment device described above to bond the two together (FIG. 25).

【0058】しかる後、第2のSi基板11を100℃
に加熱し、ワックス20を溶解させ、石英基板30から
剥離し、残置されたワックスのアセトンによる洗浄除去
と多結晶Si膜22の選択エッチングを施した。上記ワ
ックス除去工程はフッ素系樹脂よりなる接着層23には
何の影響も与えない。次に単結晶超薄膜Si層1上にお
いて所望の回路構成に基づいて配線18を施し、半導体
集積回路装置を完成させた(図26)。
Then, the second Si substrate 11 is heated to 100 ° C.
Then, the wax 20 was melted and peeled from the quartz substrate 30, and the remaining wax was removed by washing with acetone and the polycrystalline Si film 22 was selectively etched. The wax removing step has no influence on the adhesive layer 23 made of a fluororesin. Next, wiring 18 was formed on the single crystal ultra-thin film Si layer 1 based on a desired circuit configuration to complete a semiconductor integrated circuit device (FIG. 26).

【0059】本実施例に基づく半導体集積回路装置とし
てメモリセルアレーを積層集積化したが各層のメモリセ
ルアレーは同一製造工程、同一熱処理工程に基づいて形
成され、従って同一機能を有していたが、積層集積化に
よっても何ら機能に変化は生じなかった。従来平面構成
集積化構造における最大配線長が本実施例に基づく積層
化により短縮され、アクセス速度の向上が達成できた。
更に、本実施例は接着面に接続配線を露出し、露出面で
接続配線ができる構成であるため本実施例手法を拡張す
ることにより3層以上の積層化にも容易に適用できる利
点を有することが明らかである。
Although the memory cell array was laminated and integrated as the semiconductor integrated circuit device according to the present embodiment, the memory cell array of each layer was formed by the same manufacturing process and the same heat treatment process, and therefore had the same function. The function did not change even by stacking and integrating. The maximum wiring length in the conventional planar structure integrated structure was shortened by the stacking according to this embodiment, and the access speed could be improved.
Further, since the present embodiment has a configuration in which the connection wiring is exposed on the adhesive surface and the connection wiring can be formed on the exposed surface, there is an advantage that the method of this embodiment can be easily applied to stacking three or more layers. It is clear.

【0060】[0060]

【発明の効果】本発明によれば半導体集積回路装置を縦
方向にも極めて精度よく整合して積層化できるので面積
の増大化と無関係に半導体集積回路装置の更なる高集積
化が実現できる。上記積層化に於いて、各層の半導体集
積回路装置を熱処理工程を含めて全く同一特性、同一機
能を保ったままで積層化が可能である。本発明によれば
半導体基板の大口径化等新たな設備投資を要することな
く現有半導体製造装置で次世代、次々世代に要求させる
超高性能、大容量半導体集積回路装置を製造することが
できる。更に、本発明によればシステムを構成する種々
の半導体集積回路装置を予め複数枚途中製造しておき、
需要状況に応じて顧客が要望するシステムを迅速に製造
し、出荷することができる。従って、製造工程の短縮と
コストの低減効果がある。
According to the present invention, since the semiconductor integrated circuit device can be aligned in the vertical direction with extremely high accuracy, the semiconductor integrated circuit device can be further integrated without increasing the area. In the above-mentioned lamination, the semiconductor integrated circuit devices of the respective layers can be laminated while maintaining the same characteristics and functions including the heat treatment step. According to the present invention, it is possible to manufacture an ultra-high performance, large-capacity semiconductor integrated circuit device required by the existing semiconductor manufacturing apparatus for the next generation and the next generation without requiring new capital investment such as increasing the diameter of the semiconductor substrate. Further, according to the present invention, a plurality of semiconductor integrated circuit devices constituting the system are preliminarily manufactured in advance,
It is possible to quickly manufacture and ship the system requested by the customer according to the demand situation. Therefore, the manufacturing process can be shortened and the cost can be reduced.

【0061】本発明によれば半導体集積回路装置を構成
する基本回路を更に所望構成素子群ごとに同一の半導体
基板に製造し、その積層化により一基本回路に一体化し
て集積回路装置とすることができる。従って、同一基板
内で領域を分けて異種導電型素子を構成した従来構造に
比べて領域分離に要する製造工程、及び占有面積を省略
できる。また、隣接素子間の相互干渉や隣接素子製造工
程に基づく素子構造の自由度の制限なども解消できる。
これにより製造工程の短縮とコストの低減効果が新たに
生じる。
According to the present invention, the basic circuit constituting the semiconductor integrated circuit device is further manufactured on the same semiconductor substrate for each desired component group, and the integrated circuits are integrated into one basic circuit by stacking them. You can Therefore, as compared with the conventional structure in which regions of different conductivity type are formed by dividing the regions in the same substrate, the manufacturing process and the occupied area required for the region separation can be omitted. In addition, mutual interference between adjacent elements and restrictions on the degree of freedom of the element structure based on the adjacent element manufacturing process can be eliminated.
As a result, the manufacturing process is shortened and the cost is reduced.

【0062】半導体集積回路装置の大容量化・大面積化
に伴い、素子または構成回路が製造不良に陥る確率が増
大するが更に本発明によれば不良領域を素子単位、又は
所望単位ごとに選択し、その電流経路を正常な素子また
は構成回路側の領域に切替えることができる。これによ
り、大容量化・大面積化の半導体集積回路装置の良品歩
留りを大幅に向上することができる。
As the capacity and area of a semiconductor integrated circuit device increase, the probability that an element or a constituent circuit will fall into manufacturing defects increases. Further, according to the present invention, a defective area is selected for each element or desired unit. However, the current path can be switched to a normal element or a region on the side of the constituent circuit. As a result, the yield of non-defective semiconductor integrated circuit devices with large capacity and large area can be significantly improved.

【0063】本発明によれば超薄膜の製造工程におい
て、超薄膜を接着した第1の支持基板から他の支持基板
に超薄膜を転写するにあたり該第1の支持基板を消耗す
ることなく剥離させるので大規模半導体集積回路装置を
廉価に製造することができる。
According to the present invention, in the process of manufacturing the ultrathin film, when the ultrathin film is transferred from the first supporting substrate to which the ultrathin film is adhered to another supporting substrate, the first supporting substrate is peeled without being consumed. Therefore, a large-scale semiconductor integrated circuit device can be manufactured at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の半導体集積回路装置の一例を示す断面
図。
FIG. 1 is a sectional view showing an example of a conventional semiconductor integrated circuit device.

【図2】本発明の実施例1の半導体集積回路装置の製造
工程を示す断面図。
FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the first embodiment of the present invention.

【図3】本発明の実施例1の半導体集積回路装置の製造
工程を示す断面図。
FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the first embodiment of the present invention.

【図4】本発明の実施例1の半導体集積回路装置の製造
工程を示す断面図。
FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the first embodiment of the present invention.

【図5】本発明の実施例1の半導体集積回路装置の完成
断面図。
FIG. 5 is a completed sectional view of the semiconductor integrated circuit device according to the first embodiment of the present invention.

【図6】本発明の実施例2の半導体集積回路装置の製造
工程を示す断面図。
FIG. 6 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a second embodiment of the present invention.

【図7】本発明の実施例2の半導体集積回路装置の製造
工程を示す断面図。
FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the second embodiment of the present invention.

【図8】本発明の実施例2の半導体集積回路装置の完成
断面図。
FIG. 8 is a completed sectional view of a semiconductor integrated circuit device according to a second embodiment of the present invention.

【図9】本発明の実施例3の半導体集積回路装置の製造
工程を示す断面図。
FIG. 9 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the third embodiment of the present invention.

【図10】本発明の実施例3の半導体集積回路装置の製
造工程を示す断面図。
FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to the third embodiment of the present invention.

【図11】本発明の実施例3の半導体集積回路装置の完
成断面図。
FIG. 11 is a completed sectional view of a semiconductor integrated circuit device according to a third embodiment of the present invention.

【図12】本発明の実施例4の半導体集積回路装置の完
成断面図。
FIG. 12 is a completed sectional view of a semiconductor integrated circuit device according to a fourth embodiment of the present invention.

【図13】本発明の実施例5及び6の半導体集積回路装
置の完成断面図。
FIG. 13 is a completed sectional view of a semiconductor integrated circuit device according to fifth and sixth embodiments of the present invention.

【図14】本発明の実施例7の半導体集積回路装置の製
造工程を示す断面図。
FIG. 14 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a seventh embodiment of the present invention.

【図15】本発明の実施例7の半導体集積回路装置の完
成断面図。
FIG. 15 is a completed sectional view of a semiconductor integrated circuit device according to a seventh embodiment of the present invention.

【図16】本発明の実施例8の半導体集積回路装置の完
成断面図。
FIG. 16 is a completed sectional view of a semiconductor integrated circuit device according to an eighth embodiment of the present invention.

【図17】本発明の実施例9及び10の半導体集積回路
装置の完成断面図。
FIG. 17 is a completed cross-sectional view of the semiconductor integrated circuit device according to the ninth and tenth embodiments of the present invention.

【図18】本発明の実施例11の半導体集積回路装置の
完成断面図。
FIG. 18 is a completed sectional view of a semiconductor integrated circuit device according to an eleventh embodiment of the present invention.

【図19】本発明の実施例12の半導体集積回路装置の
製造工程を示す断面図。
FIG. 19 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to embodiment 12 of the present invention.

【図20】本発明の実施例12の半導体集積回路装置の
完成断面図。
FIG. 20 is a completed sectional view of a semiconductor integrated circuit device according to a twelfth embodiment of the present invention.

【図21】本発明の実施例13の半導体集積回路装置の
製造装置を示す概念図。
FIG. 21 is a conceptual diagram showing a semiconductor integrated circuit device manufacturing apparatus according to a thirteenth embodiment of the present invention.

【図22】本発明の実施例13の半導体集積回路装置の
製造装置を示す概念図。
FIG. 22 is a conceptual diagram showing an apparatus for manufacturing a semiconductor integrated circuit device according to Example 13 of the present invention.

【図23】本発明の実施例15の半導体集積回路装置の
製造工程を示す断面図。
FIG. 23 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to example 15 of the present invention.

【図24】本発明の実施例16の半導体集積回路装置を
示す平面図。
FIG. 24 is a plan view showing a semiconductor integrated circuit device of Embodiment 16 of the present invention.

【図25】本発明の実施例17の半導体集積回路装置の
製造工程を示す断面図。
FIG. 25 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device according to example 17 of the present invention.

【図26】本発明の実施例17の半導体集積回路装置を
示す平面図。
FIG. 26 is a plan view showing a semiconductor integrated circuit device according to a seventeenth embodiment of the present invention.

【図27】従来の半導体集積回路装置の一例を示す断面
図。
FIG. 27 is a sectional view showing an example of a conventional semiconductor integrated circuit device.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…素子間分離絶縁膜、3…ゲート絶
縁膜、4、5…ゲート電極、6、7、8…拡散層、9、
15…端子電極、10…電極保護絶縁膜、11…半導体
基板、14…配線、16…保護絶縁膜、17…接続配
線、18…配線、19…ゲート電極、20、25…ワッ
クス、21、23…接着層、22、24、27、28…
多結晶Si膜、26、29…接着層、30…透明石英基
板、31、35、40…Si基板、32…薄い絶縁膜、
33…低抵抗多結晶Si膜、36…熱酸化膜、37…低
抵抗導電配線、38…多結晶Si膜、39…電気的開放
領域、41、44…電極保護絶縁膜、42、43…低抵
抗導電膜、45…接着層、46、47…ゲート電極、4
9…電極、50…主記憶装置が構成された超薄膜Si
層、51、52、53…拡張記憶装置が構成された超薄
膜Si層、54…中央処理装置が構成された超薄膜Si
層、55、56…電流経路制御用トランジスタのゲート
電極、57、58…超薄膜半導体集積回路装置、59…
貫通孔、61、62、63…拡散層、71、72、73
…ステージ、74…ブロック、75、76…基板、7
7、78、84…位置検出光学系、79…位置認識部、
80、81…ステージマーク、82…基板変形制御機
構、83…コンピュータ制御制御系、85…ステージ位
置制御系、86…移動機構、201…第1の半導体集積
回路層、202…第2の半導体集積回路層、203…絶
縁膜、205…層間配線、211…第1の配線層、22
1…第2の配線層、212…第1の活性領域、222…
第2の活性領域、213…第1層のゲート電極。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Element isolation insulating film, 3 ... Gate insulating film, 4, 5 ... Gate electrode, 6, 7, 8 ... Diffusion layer, 9,
15 ... Terminal electrode, 10 ... Electrode protective insulating film, 11 ... Semiconductor substrate, 14 ... Wiring, 16 ... Protective insulating film, 17 ... Connection wiring, 18 ... Wiring, 19 ... Gate electrode, 20, 25 ... Wax, 21, 23 ... Adhesive layers, 22, 24, 27, 28 ...
Polycrystalline Si film, 26, 29 ... Adhesive layer, 30 ... Transparent quartz substrate, 31, 35, 40 ... Si substrate, 32 ... Thin insulating film,
33 ... Low resistance polycrystalline Si film, 36 ... Thermal oxide film, 37 ... Low resistance conductive wiring, 38 ... Polycrystalline Si film, 39 ... Electrical open area, 41, 44 ... Electrode protective insulating film, 42, 43 ... Low Resistive conductive film, 45 ... Adhesive layer, 46, 47 ... Gate electrode, 4
9 ... Electrode, 50 ... Ultra-thin film Si configured main memory
Layers, 51, 52, 53 ... Ultra thin film Si layer with extended storage device, 54 ... Ultra thin film Si with central processing unit
Layers, 55, 56 ... Gate electrodes of current path control transistors, 57, 58 ... Ultra thin film semiconductor integrated circuit devices, 59 ...
Through holes, 61, 62, 63 ... Diffusion layers, 71, 72, 73
... Stage, 74 ... Block, 75, 76 ... Substrate, 7
7, 78, 84 ... Position detection optical system, 79 ... Position recognition unit,
80, 81 ... Stage mark, 82 ... Substrate deformation control mechanism, 83 ... Computer control control system, 85 ... Stage position control system, 86 ... Moving mechanism, 201 ... First semiconductor integrated circuit layer, 202 ... Second semiconductor integrated Circuit layer, 203 ... Insulating film, 205 ... Inter-layer wiring, 211 ... First wiring layer, 22
1 ... 2nd wiring layer, 212 ... 1st active region, 222 ...
Second active region, 213 ... First layer gate electrode.

Claims (22)

【特許請求の範囲】[Claims] 【請求項1】絶縁膜で互いに分離された複数の単結晶半
導体薄膜領域の各々に少なくとも一つの半導体装置が設
けられ、且つ該半導体装置が配線層で互いに接続されて
なる半導体集積回路装置層が積層化されて構成された半
導体集積回路装置において、上記半導体集積回路装置層
内にそれぞれ形成された半導体装置の一部は実質的に同
一の伝達遅延時間特性を有し、且つ隣接する該半導体集
積回路装置層間で互いに整合された半導体装置電極端子
と、該端子を貫通して下部の該端子に達する接続導電体
とを備えたことを特徴とする半導体集積回路装置。
1. A semiconductor integrated circuit device layer in which at least one semiconductor device is provided in each of a plurality of single crystal semiconductor thin film regions separated from each other by an insulating film, and the semiconductor device is connected to each other by a wiring layer. In a stacked semiconductor integrated circuit device, some of the semiconductor devices formed in the semiconductor integrated circuit device layer have substantially the same transmission delay time characteristics and are adjacent to each other. 2. A semiconductor integrated circuit device comprising: a semiconductor device electrode terminal aligned between circuit device layers; and a connecting conductor that penetrates the terminal and reaches the lower terminal.
【請求項2】絶縁膜で互いに分離された複数の単結晶半
導体薄膜領域の各々に少なくとも一つの半導体装置が設
けられ、且つ該半導体装置が配線層で互いに接続されて
なる半導体集積回路装置層が積層化されて構成された半
導体集積回路装置において、上記半導体集積回路装置層
内にそれぞれ形成された半導体装置の一部は実質的に同
一の伝達遅延時間特性を有し、且つ上層部の上記単結晶
半導体薄膜領域を貫通して下層部の該単結晶半導体薄膜
領域又は配線領域と接続される接続導電体を備えたこと
を特徴とする半導体集積回路装置。
2. A semiconductor integrated circuit device layer in which at least one semiconductor device is provided in each of a plurality of single crystal semiconductor thin film regions separated from each other by an insulating film, and the semiconductor device is connected to each other by a wiring layer. In the semiconductor integrated circuit device configured by stacking, a part of the semiconductor devices formed in each of the semiconductor integrated circuit device layers has substantially the same transmission delay time characteristic, and the single layer of the upper layer part has the same characteristics. A semiconductor integrated circuit device comprising a connecting conductor which penetrates a crystalline semiconductor thin film region and is connected to the single crystal semiconductor thin film region or a wiring region in a lower layer portion.
【請求項3】請求項1又は2記載の半導体集積回路装置
において、相接する上記半導体集積回路装置層は接着剤
層を介さず直接貼合せにより積層化されていることを特
徴とする半導体集積回路装置。
3. The semiconductor integrated circuit device according to claim 1, wherein the adjacent semiconductor integrated circuit device layers are laminated by direct bonding without an adhesive layer. Circuit device.
【請求項4】請求項1又は2記載の半導体集積回路装置
において、上記半導体集積回路装置層はその上面および
底面のいずれにも配線層を有することを特徴とする半導
体集積回路装置。
4. The semiconductor integrated circuit device according to claim 1, wherein the semiconductor integrated circuit device layer has a wiring layer on both a top surface and a bottom surface thereof.
【請求項5】請求項4記載の半導体集積回路装置におい
て、上記配線層の少なくとも一層は面状であり、且つ電
源電位、または接地電位を印加するための端子を有する
ことを特徴とする半導体集積回路装置。
5. The semiconductor integrated circuit device according to claim 4, wherein at least one of the wiring layers is planar and has a terminal for applying a power supply potential or a ground potential. Circuit device.
【請求項6】請求項1又は2記載の半導体集積回路装置
において、相接する上記半導体集積回路装置層の一方に
は第一導電型半導体装置が、他方には第二導電型半導体
装置が設けられ、互いに対をなすことを特徴とする半導
体集積回路装置。
6. The semiconductor integrated circuit device according to claim 1 or 2, wherein one of the adjacent semiconductor integrated circuit device layers is provided with a first conductivity type semiconductor device, and the other is provided with a second conductivity type semiconductor device. And a semiconductor integrated circuit device which is paired with each other.
【請求項7】請求項1又は2記載の半導体集積回路装置
において、相接する一方の上記半導体集積回路装置層の
所望領域にはトランジスタが、他方の上記半導体集積回
路装置層の所望領域には該トランジスタと整合して容量
素子が設けられ、対をなすことを特徴とする半導体集積
回路装置。
7. The semiconductor integrated circuit device according to claim 1, wherein a transistor is provided in a desired region of one of the semiconductor integrated circuit device layers which are adjacent to each other, and a transistor is provided in a desired region of the other semiconductor integrated circuit device layer. A semiconductor integrated circuit device, wherein a capacitive element is provided in alignment with the transistor to form a pair.
【請求項8】請求項7記載の半導体集積回路装置におい
て、上記容量素子の一方の電極は高融点金属膜または高
融点金属珪化膜と接続され、該金属膜または該金属珪化
膜は上記トランジスタ下部に設けられていることを特徴
とする半導体集積回路装置。
8. The semiconductor integrated circuit device according to claim 7, wherein one electrode of the capacitance element is connected to a refractory metal film or a refractory metal silicide film, and the metal film or the metal silicide film is provided under the transistor. And a semiconductor integrated circuit device.
【請求項9】請求項1又は2記載の半導体集積回路装置
において、隣接して積層化される一方の上記半導体集積
回路装置層はメモリセルアレーのみで構成されることを
特徴する半導体集積回路装置。
9. The semiconductor integrated circuit device according to claim 1 or 2, wherein one of the adjacent semiconductor integrated circuit device layers which is laminated adjacently is composed of only a memory cell array. .
【請求項10】請求項1又は2記載の半導体集積回路装
置において、積層化される複数の上記半導体集積回路装
置層は主記憶装置、及び拡張記憶装置を有することを特
徴とする半導体集積回路装置。
10. The semiconductor integrated circuit device according to claim 1, wherein the plurality of stacked semiconductor integrated circuit device layers have a main memory device and an extended memory device. .
【請求項11】請求項1又は2記載の半導体集積回路装
置において、積層化される複数の上記半導体集積回路装
置層は主記憶装置及びキャシュ記憶装置を有することを
特徴とする半導体集積回路装置。
11. The semiconductor integrated circuit device according to claim 1, wherein the plurality of stacked semiconductor integrated circuit device layers have a main memory device and a cache memory device.
【請求項12】請求項10又は11記載の半導体集積回
路装置において、積層化される他の上記半導体集積回路
装置層は中央処理装置を有することを特徴とする半導体
集積回路装置。
12. The semiconductor integrated circuit device according to claim 10 or 11, wherein the other semiconductor integrated circuit device layer to be stacked has a central processing unit.
【請求項13】請求項1又は2記載の半導体集積回路装
置において、相接する上記半導体集積回路装置層の相接
する位置に対の関係で単位回路群と、その何れかを選択
するスイッチとが設けられていることを特徴とする半導
体集積回路装置。
13. The semiconductor integrated circuit device according to claim 1 or 2, wherein a unit circuit group and a switch for selecting one of them are provided in a pair relationship at the contact positions of the semiconductor integrated circuit device layers which contact each other. A semiconductor integrated circuit device comprising:
【請求項14】位置検出パターンを有する第1の基板の
所望領域における位置不整を機械的または熱的外力印加
により変形補正する制御手段、および位置検出パターン
を有する第2の基板と該第1の基板を該位置検出パター
ンを用いて整合する制御手段、該第1の基板と該第2の
基板を密着させる制御手段を有することを特徴とする半
導体集積回路装置の製造装置。
14. A control means for deforming and correcting a positional irregularity in a desired region of a first substrate having a position detection pattern by applying a mechanical or thermal external force, and a second substrate having the position detection pattern and the first substrate. An apparatus for manufacturing a semiconductor integrated circuit device, comprising: control means for aligning a substrate using the position detection pattern; and control means for bringing the first substrate and the second substrate into close contact with each other.
【請求項15】請求項14記載の半導体集積回路装置の
製造装置において、上記第1および第2の基板には半導
体集積回路装置または半導体集積回路装置層が形成され
ていることを特徴とする半導体集積回路装置の製造装
置。
15. A semiconductor integrated circuit device manufacturing apparatus according to claim 14, wherein a semiconductor integrated circuit device or a semiconductor integrated circuit device layer is formed on the first and second substrates. Manufacturing equipment for integrated circuit devices.
【請求項16】請求項14または15記載の半導体集積
回路装置の製造装置において、上記第1の基板は可視光
に対して透明であることを特徴とする半導体集積回路装
置の製造装置。
16. The manufacturing apparatus of a semiconductor integrated circuit device according to claim 14, wherein the first substrate is transparent to visible light.
【請求項17】請求項14または15、あるいは16記
載の半導体集積回路装置の製造装置において、上記第1
または該第2の基板の主表面を平面または所望曲面に保
持する制御手段を有することを特徴とする半導体集積回
路装置の製造装置。
17. The manufacturing apparatus for a semiconductor integrated circuit device according to claim 14, 15, or 16, wherein
Alternatively, there is provided a semiconductor integrated circuit device manufacturing apparatus having a control means for holding the main surface of the second substrate to a flat surface or a desired curved surface.
【請求項18】第1の半導体集積回路装置が構成された
第1の基板の主表面を平坦化する工程、平坦化された該
表面に第1の接着層を介して平坦な第2の基板とを接着
する工程、該第1の基板を裏面側から所望厚さまで薄化
しその表面を平坦化する工程、薄化及び平坦化した該表
面に第2の接着層を介して可視光に透明な第3の基板と
接着する工程、第1の接着層を除去し、第1の基板の主
表面を露出する工程、第2の半導体集積回路装置が設け
られ、且つ主表面が平坦化された第4の基板と該第1の
基板の主表面を整合させ、かつ接着する工程、該第2の
接着層を除去し、薄化及び平坦化した該表面を露出させ
る工程、該第1の半導体集積回路装置の所望領域を貫通
し、該第2の半導体集積回路装置の所望領域に達する開
孔を設け、接続配線する工程とを有することを特徴とす
る半導体集積回路装置の製造方法。
18. A step of flattening a main surface of a first substrate on which a first semiconductor integrated circuit device is formed, a flat second substrate on the flattened surface with a first adhesive layer interposed therebetween. And a step of thinning the first substrate from the back surface side to a desired thickness to flatten the surface, and the thinned and flattened surface is transparent to visible light through a second adhesive layer. The step of adhering to the third substrate, the step of removing the first adhesive layer to expose the main surface of the first substrate, the step of providing the second semiconductor integrated circuit device, and the step of planarizing the main surface. No. 4 substrate and the main surface of the first substrate are aligned and bonded, the second adhesive layer is removed, and the thinned and flattened surface is exposed, the first semiconductor integrated circuit An opening is formed through the desired area of the circuit device to reach the desired area of the second semiconductor integrated circuit device, and The method of manufacturing a semiconductor integrated circuit device characterized by a step of.
【請求項19】請求項18記載の半導体集積回路装置の
製造方法において、上記接着は断面構造を一にする半導
体集積回路装置層間で行うことを特徴とする半導体集積
回路装置の製造方法。
19. The method of manufacturing a semiconductor integrated circuit device according to claim 18, wherein the bonding is performed between layers of the semiconductor integrated circuit device having a uniform sectional structure.
【請求項20】請求項18記載の半導体集積回路装置の
製造方法において、上記第3の基板の所望個所に上記第
2の接着層に対する溶媒の注入孔が設けられていること
を特徴とする半導体集積回路装置の製造方法。
20. The method of manufacturing a semiconductor integrated circuit device according to claim 18, wherein a solvent injection hole for the second adhesive layer is provided at a desired portion of the third substrate. Manufacturing method of integrated circuit device.
【請求項21】請求項18記載の半導体集積回路装置の
製造方法において、開孔を介する接続工程に代えて上記
第1の半導体集積回路装置層と上記第2の半導体集積回
路装置層を接着面に露出された金属面で互いに接続配線
することを特徴とする半導体集積回路装置の製造方法。
21. The method for manufacturing a semiconductor integrated circuit device according to claim 18, wherein the first semiconductor integrated circuit device layer and the second semiconductor integrated circuit device layer are bonded to each other in place of the connecting step through the opening. A method of manufacturing a semiconductor integrated circuit device, comprising connecting and interconnecting metal surfaces exposed to each other.
【請求項22】請求項18記載の半導体集積回路装置の
製造方法において、上記第4の基板と上記第1の基板の
主表面を整合させ、接着する工程を接着剤を用いず直接
接着し、かつ上記第2の接着層を除去の後、接着強度を
強める熱処理を施すことを特徴とする半導体集積回路装
置の製造方法。
22. The method of manufacturing a semiconductor integrated circuit device according to claim 18, wherein the step of aligning the main surfaces of the fourth substrate and the first substrate and adhering them directly without using an adhesive, Further, after the second adhesive layer is removed, a heat treatment for increasing the adhesive strength is performed, which is a method for manufacturing a semiconductor integrated circuit device.
JP14885293A 1993-06-21 1993-06-21 Semiconductor integrated circuit device and its manufacture Pending JPH0714982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14885293A JPH0714982A (en) 1993-06-21 1993-06-21 Semiconductor integrated circuit device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14885293A JPH0714982A (en) 1993-06-21 1993-06-21 Semiconductor integrated circuit device and its manufacture

Publications (1)

Publication Number Publication Date
JPH0714982A true JPH0714982A (en) 1995-01-17

Family

ID=15462184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14885293A Pending JPH0714982A (en) 1993-06-21 1993-06-21 Semiconductor integrated circuit device and its manufacture

Country Status (1)

Country Link
JP (1) JPH0714982A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505672A (en) * 1996-03-12 1999-05-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor body having a substrate adhered to a support
JP2004214645A (en) * 2002-12-17 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
WO2005067046A1 (en) 2004-01-07 2005-07-21 Nikon Corporation Stacked device and method for stacking integrated circuit devices
JP2006041135A (en) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd Electronic device and manufacturing method thereof
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
KR100684189B1 (en) * 2003-10-22 2007-02-20 샤프 가부시키가이샤 Semiconductor device and fabrication method for the same
JP2007158200A (en) * 2005-12-08 2007-06-21 Nikon Corp Exposure method for manufacture of laminated semiconductor device
JP2008501239A (en) * 2004-05-28 2008-01-17 フリースケール セミコンダクター インコーポレイテッド Independently distorted N-channel and P-channel transistors
JP2009094492A (en) * 2007-09-20 2009-04-30 Semiconductor Energy Lab Co Ltd Display device
US7939831B2 (en) 2002-12-17 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP2013229415A (en) * 2012-04-25 2013-11-07 Hitachi Ltd Semiconductor device and method for manufacturing semiconductor device
KR20130137013A (en) * 2010-12-24 2013-12-13 아이오 세미컨덕터, 인코포레이티드 Trap rich layer for semiconductor devices
JP2020191465A (en) * 2014-08-08 2020-11-26 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505672A (en) * 1996-03-12 1999-05-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor body having a substrate adhered to a support
US7619282B2 (en) 1997-01-18 2009-11-17 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
US7154148B2 (en) 1997-01-18 2006-12-26 Semiconductor Energy Laboratory Co., Ltd. Hybrid circuit and electronic device using same
JP2004214645A (en) * 2002-12-17 2004-07-29 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
US8153506B2 (en) 2002-12-17 2012-04-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US7939831B2 (en) 2002-12-17 2011-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
KR100684189B1 (en) * 2003-10-22 2007-02-20 샤프 가부시키가이샤 Semiconductor device and fabrication method for the same
US7427517B2 (en) 2004-01-07 2008-09-23 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
WO2005067046A1 (en) 2004-01-07 2005-07-21 Nikon Corporation Stacked device and method for stacking integrated circuit devices
EP2221866A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
EP2221865A2 (en) 2004-01-07 2010-08-25 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
US8129201B2 (en) 2004-01-07 2012-03-06 Nikon Corporation Stacking apparatus and method for stacking integrated circuit elements
JP4744514B2 (en) * 2004-05-28 2011-08-10 フリースケール セミコンダクター インコーポレイテッド Method for forming integrated circuit
JP2008501239A (en) * 2004-05-28 2008-01-17 フリースケール セミコンダクター インコーポレイテッド Independently distorted N-channel and P-channel transistors
JP2006041135A (en) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd Electronic device and manufacturing method thereof
JP2006120726A (en) * 2004-10-19 2006-05-11 Seiko Epson Corp Process for fabricating thin film device, electro-optical device, electronic apparatus
JP4720469B2 (en) * 2005-12-08 2011-07-13 株式会社ニコン Exposure method for manufacturing a bonded semiconductor device
JP2007158200A (en) * 2005-12-08 2007-06-21 Nikon Corp Exposure method for manufacture of laminated semiconductor device
JP2009094492A (en) * 2007-09-20 2009-04-30 Semiconductor Energy Lab Co Ltd Display device
KR20130137013A (en) * 2010-12-24 2013-12-13 아이오 세미컨덕터, 인코포레이티드 Trap rich layer for semiconductor devices
JP2013229415A (en) * 2012-04-25 2013-11-07 Hitachi Ltd Semiconductor device and method for manufacturing semiconductor device
US9153495B2 (en) 2012-04-25 2015-10-06 Hitachi, Ltd. Semiconductor device and method of manufacturing the same
JP2020191465A (en) * 2014-08-08 2020-11-26 株式会社半導体エネルギー研究所 Semiconductor device
US11276685B2 (en) 2014-08-08 2022-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US11817453B2 (en) 2014-08-08 2023-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device

Similar Documents

Publication Publication Date Title
US11158620B2 (en) Wafer bonding in fabrication of 3-dimensional NOR memory circuits
US11764177B2 (en) Bonded structure with interconnect structure
JP4906994B2 (en) Method for transferring ultrathin substrate and method for manufacturing multilayer thin film device using the method
JPH0714982A (en) Semiconductor integrated circuit device and its manufacture
US8618646B2 (en) Layered chip package and method of manufacturing same
US5925924A (en) Methods for precise definition of integrated circuit chip edges
CN109390305B (en) Bonding wafer and preparation method thereof
US20120315710A1 (en) Method for producing reconstituted wafers and method for producing semiconductor devices
KR950009977A (en) Multi-layered structure having a single crystal semiconductor film formed over an insulating film and a method of manufacturing the same
US8653639B2 (en) Layered chip package and method of manufacturing same
KR20040015512A (en) Structure and method for stacking multi-wafer of merged memory and logic device
US20230307413A1 (en) Methods for multi-wafer stacking and dicing
CN107644841A (en) Wafer three-dimensional integration lead technique and its structure for three-dimensional storage
Kawano et al. New Cost-Effective Via-Last Approach by" One-Step TSV" After Wafer Stacking for 3D Memory Applications
US20230065535A1 (en) Three-dimensional integration structure and method of forming the same
US10763171B2 (en) Method of manufacturing semiconductor apparatus
US5589419A (en) Process for fabricating semiconductor device having a multilevel interconnection
JP3962443B2 (en) Semiconductor device and manufacturing method thereof
KR20100019907A (en) Wafer processing method for guaranteeing overlayer si to keep perfect quality in 3-dimensional ic intergration
EP1041620A2 (en) Method of transferring ultrathin substrates and application of the method to the manufacture of a multi-layer thin film device
CN112201573B (en) Multi-layer wafer bonding method
US11424235B2 (en) Interposer-less multi-chip module
JPH06120419A (en) Laminate type semiconductor integrated circuit
JPH1187647A (en) Semiconductor integrated circuit device and its manufacture
JPH05109594A (en) Semiconductor substrate, manufacture thereof and semiconductor device