JPH07149670A - Storage of energy of hydrogen - Google Patents

Storage of energy of hydrogen

Info

Publication number
JPH07149670A
JPH07149670A JP6231439A JP23143994A JPH07149670A JP H07149670 A JPH07149670 A JP H07149670A JP 6231439 A JP6231439 A JP 6231439A JP 23143994 A JP23143994 A JP 23143994A JP H07149670 A JPH07149670 A JP H07149670A
Authority
JP
Japan
Prior art keywords
hydrogen
energy
carbon dioxide
methanol
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6231439A
Other languages
Japanese (ja)
Inventor
Baldur Dr Eliasson
エリアソン バルドゥール
Eric Killer
キラー エーリク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB RES Ltd
ABB Research Ltd Sweden
Original Assignee
ABB RES Ltd
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB RES Ltd, ABB Research Ltd Sweden filed Critical ABB RES Ltd
Publication of JPH07149670A publication Critical patent/JPH07149670A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To store hydrogen energy by converting a mixture of hydrogen and carbon dioxide in a reactor into methane and/or methanol.
CONSTITUTION: Methane and/or methanol are generated by exposing hydrogen obtained by the decomposition of water or hydrogen sulphide using solar or nuclear energy, carbon dioxide obtained from the waste gas from the fossil fuel combusting energy generator, or a substance containing hydrogen (such as a mixture with water vapor) to the static discharge. Since hydrogen is used as the transportation means and the energy support for the fixed equipment, the process for storing hydrogen energy allows easy transportation, storage and handling of hydrogen, and reduction of the total discharge amount of carbon dioxide.
COPYRIGHT: (C)1995,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギーの貯蔵法に
関連する。本発明は、殊に水素からのエネルギーの貯蔵
法に関する。
FIELD OF THE INVENTION This invention relates to energy storage. The invention relates in particular to a method of storing energy from hydrogen.

【0002】[0002]

【従来の技術】化石燃料燃焼過程の二酸化炭素放出量
は、大気の組成の世界的規模の変化を生じ、かつ温室効
果による重大な気象変化を生じうる程度に達している。
1990年10月/11月にジュネーブで世界気候会議
を準備した気候変動に関する政府間パネル委員会(IPCC
-Kommission)の報告によれば、大気の二酸化炭素含量
を安定化するためには二酸化炭素の放出量を直ちに60
%減少させなければならないとのことである。
BACKGROUND OF THE INVENTION Carbon dioxide emissions during fossil fuel combustion processes have reached global scale changes in the composition of the atmosphere and can cause significant weather changes due to the greenhouse effect.
Intergovernmental Panel Committee on Climate Change (IPCC) which prepared the World Climate Conference in Geneva in October / November 1990.
-Kommission) reported that the amount of carbon dioxide released must be 60% in order to stabilize the carbon dioxide content of the atmosphere.
It must be reduced by%.

【0003】既に数年前に、水素を交通手段および固定
施設のためのエネルギー担体として使用することが提案
されたが、それというのも、水素の燃焼は完全に“清
浄”に行われるからである。水素の製造の際の莫大なエ
ネルギー消費を度外視しても、水素の運搬、貯蔵および
取扱は重大な問題である。
Already several years ago, it was proposed to use hydrogen as an energy carrier for transportation and fixed installations, since the combustion of hydrogen is completely "clean". is there. Hydrogen transport, storage and handling is a serious problem, even without regard for the enormous energy consumption in the production of hydrogen.

【0004】これとは異なり、例えば交通手段または燃
焼設備のための燃料として大量に販売することができる
化合物への二酸化炭素の変換が考えられる。前記化合物
とは、第一に、メタノールあるいはまたメタンである。
On the other hand, the conversion of carbon dioxide into compounds, which can be sold in large quantities as fuels, for example for transportation or combustion equipment, is conceivable. The compound is primarily methanol or methane.

【0005】[0005]

【発明が解決しようとする課題】本発明には、記載され
た問題を有しておらず、かつ二酸化炭素の全放出量を減
少させるのに寄与する水素エネルギーを貯蔵するための
方法を記載するという課題が課されている。
SUMMARY OF THE INVENTION The present invention describes a method for storing hydrogen energy which does not have the described problems and which contributes to reducing the total emission of carbon dioxide. The subject is called.

【0006】[0006]

【課題を解決するための手段】前記課題は、本発明によ
れば、水素と二酸化炭素との混合物が反応器中でメタン
および/またはメタノールに変換されることによって解
決される。この場合、好ましくは、化石燃料燃焼エネル
ギー発生装置(fossil beheizter Energieerzeugungsan
lagen)の排ガスからの二酸化炭素が使用される。
According to the invention, the abovementioned object is achieved by converting a mixture of hydrogen and carbon dioxide into methane and / or methanol in a reactor. In this case, fossil fuel combustion energy generators (fossil beheizter Energieerzeugungsan) are preferably used.
carbon dioxide from the exhaust gas of Lagen) is used.

【0007】メタンおよび殊にメタノールは、本質的に
問題なく貯蔵され、かつ取り扱われる。周知のように水
素は、通常の条件下ではガス状である。これとは異な
り、メタノールは、大気圧および通常の条件下で液体で
ある。水素に対する貯蔵体としてのメタノールのもう1
つの利点は、メタノールが、液体水素よりも単位容積当
たりほぼ2倍の高いエネルギー含量を有していることで
ある。
Methane and especially methanol are stored and handled essentially without problems. As is well known, hydrogen is gaseous under normal conditions. In contrast, methanol is a liquid under atmospheric pressure and normal conditions. Another for methanol as a reservoir for hydrogen
One advantage is that methanol has almost twice as much energy content per unit volume as liquid hydrogen.

【0008】水素エネルギーの変換は、確かに付加的に
装置の費用と結び付けられているが、しかし、少なくと
も環境面からは、このことから生じる利点は重要であ
る:メタンまたはメタノールの燃焼は、確かに再度、温
室効果ガス(Treibhausgas)の二酸化炭素を生じるが、
しかし、別の燃焼工程、例えば化石燃料燃焼発電所の排
ガスから二酸化炭素が得られ、その結果、二酸化炭素放
出量は全体として減少する。
The conversion of hydrogen energy is certainly associated with additional equipment costs, but at least from an environmental point of view, the advantages resulting from this are significant: the combustion of methane or methanol is The carbon dioxide of the greenhouse gas (Treibhausgas) is generated again in
However, carbon dioxide is obtained from the exhaust gases of other combustion processes, such as fossil-fuel-fired power plants, with the result that the carbon dioxide emissions are reduced overall.

【0009】この場合、二酸化炭素と水素からメタンお
よびメタノールは、出発物質の二酸化炭素および水素が
熱反応器に供給され、該反応器中で、加圧しながら、か
つ触媒の存在下にメタノールに変換されて製造される。
もう1つの方法は、ドイツ連邦共和国特許出願公開第4
220865号明細書に記載されている。前記明細書の
記載の場合、反応器中に二酸化炭素と水素または水素を
含有する物質、例えば水蒸気との混合物が静電放電にさ
らされ、かつ前記のメタンおよびメタノールを生じる。
In this case, carbon dioxide and hydrogen are converted to methane and methanol from the carbon dioxide and hydrogen by supplying the starting materials carbon dioxide and hydrogen to a thermal reactor and converting them into methanol in the presence of a catalyst under pressure. Is manufactured.
Another method is the German Federal Republic of Patent Application Publication No. 4
220865. In the case described in the above-mentioned specification, a mixture of carbon dioxide and hydrogen or a substance containing hydrogen, for example steam, in a reactor is subjected to an electrostatic discharge and produces said methane and methanol.

【0010】出発物質の水素は、今日普及している方法
により、例えば電気分解によって製造することができ、
この場合、エネルギー源としては、核エネルギーまたは
再生可能エネルギー源(太陽、風、水力、バイオマス)
を使用することができる。その上、水素は、静電放電を
用いる硫化水素(H2S)の分解、熱分解、電気分解あ
るいはまたマイクロ波を用いる硫化水素の分解によって
得ることができる。まさに最後に記載した方法は、比較
的僅かな製造費用によって顕著である。こうして、例え
ばマイクロ波の使用の際には水素約2kWh/m3、電
気分解の際には水素約5kWh/m3が必要とされる
(A.Z.bagagautdinow他、“Proceedings ofthe 9th Wor
ld Hydrogen Conference”、フランス、パリ、1992
年、6月22〜25日、第87〜90頁を参照のこ
と)。硫化水素は、特定の化学的方法の場合に産業廃棄
物として生じ;該硫化水素は、天然ガス処理産業の副産
物でもある。更に、硫化水素からの水素の取得は、硫化
水素の結合エネルギーが水の結合エネルギーよりも小さ
いという利点を有する。
The starting material hydrogen can be produced by methods prevailing today, for example by electrolysis,
In this case, the energy source is nuclear energy or renewable energy source (sun, wind, hydropower, biomass)
Can be used. Moreover, hydrogen can be obtained by decomposition of hydrogen sulfide (H 2 S) using electrostatic discharge, thermal decomposition, electrolysis or also decomposition of hydrogen sulfide using microwaves. The last-mentioned method is notable for relatively low manufacturing costs. Thus, for example, hydrogen about 2 kWh / m 3 during the use of microwaves is required hydrogen from about 5 kWh / m 3 is the time of electrolysis (AZbagagautdinow other, "Proceedings ofthe 9th Wor
ld Hydrogen Conference ”, Paris, France, 1992
22-25 June, pp. 87-90). Hydrogen sulphide is produced as industrial waste in the case of certain chemical processes; it is also a by-product of the natural gas processing industry. Furthermore, the acquisition of hydrogen from hydrogen sulfide has the advantage that the binding energy of hydrogen sulfide is smaller than that of water.

【0011】本発明による方法は、以下に、図面に基づ
く実施例により詳説される。
The method according to the invention is explained in greater detail below by means of an embodiment on the basis of the drawing.

【0012】本発明による方法の実施態様は図面中に略
図的に図示されている。
An embodiment of the method according to the invention is schematically illustrated in the drawings.

【0013】[0013]

【実施例】図1によれば、太陽1の光線エネルギーは、
太陽光発電装置(Solarstromanlage)2中で電気エネル
ギーに変換される。該電気エネルギーは、水電気分解装
置3中で水を水素と酸素とに分解するために使用され
る。生じた酸素は、工業的目的またはその他の目的に供
給される。水素は、反応器4中に到達する。ブロック5
によって符号化された化石エネルギー(石炭、天然ガ
ス、石油)は、発電所6中で電気エネルギーおよび/ま
たは熱エネルギーに変換される。発電所の排ガス浄化装
置には、例えばABB Lummus Crest、12141 Wickester、H
ouston、TX 77079-9570 アメリカ合衆国在、日付のない
社報“CO2 Recovery from Flue Gas”中に記載され、
かつ図示されているような二酸化炭素取得のための(公
知の)装置6aが備えられている。取得された二酸化炭
素は、同様に反応器4に供給される。
EXAMPLE According to FIG. 1, the light energy of the sun 1 is
It is converted into electric energy in the solar power generation system (Solarstromanlage) 2. The electric energy is used to decompose water into hydrogen and oxygen in the water electrolyzer 3. The oxygen produced is supplied for industrial or other purposes. Hydrogen reaches the reactor 4. Block 5
The fossil energy (coal, natural gas, oil) encoded by is converted in the power plant 6 into electrical and / or thermal energy. Exhaust gas purification devices at power plants include, for example, ABB Lummus Crest, 12141 Wickester, H
ouston, TX 77079-9570 United States, described in the dateless company newsletter "CO 2 Recovery from Flue Gas",
And a (known) device 6a for carbon dioxide capture as shown. The obtained carbon dioxide is similarly supplied to the reactor 4.

【0014】反応器4中では、例えばドイツ連邦共和国
特許出願公開第4220865号明細書に記載された方
法により、静電放電の影響下にメタノールが得られる。
また、メタノール合成は、熱反応器中で圧力および高め
られた温度で、銅を基礎とする触媒の存在下に行うこと
ができる。典型的な触媒は、例えばN.Kanoun他の刊行
物、CATALYSIS LETTERS 第15巻、(1992年)第2
31〜235頁の“Catalytic properties of new Cu b
ased catalysts containing Zr and/or V for methanol
synthesis from a carbon dioxide and hydrogen mixt
ure”中に記載されている。
In the reactor 4, methanol is obtained under the influence of electrostatic discharge, for example by the method described in DE-A 4220865.
Also, methanol synthesis can be carried out in a thermal reactor at pressure and elevated temperature in the presence of a copper-based catalyst. Typical catalysts are described, for example, in N. Kanoun et al., CATALYSIS LETTERS, Vol. 15, (1992) No. 2.
“Catalytic properties of new Cu b” on pages 31-235
ased catalysts containing Zr and / or V for methanol
synthesis from a carbon dioxide and hydrogen mixt
ure ”.

【0015】この結果、取得されたメタノールは、タン
ク7に貯蔵され、かつ必要に応じて消費体(Verbrauche
rn)8、例えば車両、発電所等に供給することができ
る。
As a result, the obtained methanol is stored in the tank 7 and, if necessary, consumed (Verbrauche).
8), such as vehicles, power plants, etc.

【0016】図2に図示された実施態様の場合、水素源
として硫化水素が使用される。マイクロ波、電気放電、
電気分解または熱分解によって、硫化水素は、公知方法
により水素と硫黄とに分解することができる。前記方法
の1つで処理する硫化水素分解装置は、図2中で符号3
aにより示されている。水素とともに生じる硫黄は、別
途使用され、これとは異なり水素は、反応器4中に到達
する。その他の点では、構造および運転方法は、図1に
よるものに相応する。
In the embodiment shown in FIG. 2, hydrogen sulfide is used as the hydrogen source. Microwave, electric discharge,
By electrolysis or thermal decomposition, hydrogen sulfide can be decomposed into hydrogen and sulfur by known methods. A hydrogen sulfide decomposition apparatus that is treated by one of the above-mentioned methods is designated by reference numeral 3 in FIG.
indicated by a. Sulfur produced with hydrogen is used separately, unlike hydrogen, which arrives in the reactor 4. Otherwise, the structure and operating method correspond to those according to FIG.

【0017】図3には、水素エネルギー貯蔵本発明によ
る方法の第3の変法が略図的に図示され、この場合、二
酸化炭素は、水素を有する物質、例えば水または硫化水
素が反応器4aに供給され、該反応器中で、二酸化炭素
と前記物質とからなる混合物が静電放電にさらされる。
またこの場合、双方の変法とは異なり、水素が直接反応
器4a中で得られ、二酸化炭素と反応する。前記方法お
よび前記方法の実施に係わる装置は、ドイツ連邦共和国
特許出願公開第4220865号明細書に記載され、か
つ図示されており、本明細書の場合には、該ドイツ連邦
共和国特許出願公開明細書に表現的に関連している。
FIG. 3 diagrammatically illustrates a third variant of the method according to the invention for hydrogen energy storage, in which carbon dioxide is hydrogen-bearing material such as water or hydrogen sulphide in the reactor 4a. As supplied, a mixture of carbon dioxide and the substance is subjected to electrostatic discharge in the reactor.
Also in this case, unlike both variants, hydrogen is obtained directly in the reactor 4a and reacts with carbon dioxide. The method and the apparatus for carrying out the method are described and illustrated in DE 4220865 A1, in which case the German patent application DE laid open. Is expressively related to.

【0018】こうして、全ての記載された変法の場合、
太陽エネルギーは、メタノールの形で貯蔵される。更
に、上記方法によれば、メタノールの代わりにメタンも
反応器4中で得ることができる。たとえメタンは、貯蔵
および取扱があまり簡単でないとしても、(液体化され
た)水素と比べれば、本質的に利点をもたらす(爆発し
にくく、液化し易い)。
Thus, in the case of all the described variants,
Solar energy is stored in the form of methanol. Furthermore, according to the above method, methane can be obtained in the reactor 4 instead of methanol. Methane provides essential advantages (less explosive and easier to liquefy) compared to (liquefied) hydrogen, even though it is not very easy to store and handle.

【0019】しかしまた、水素の準備は、別の方法によ
って、例えば夜間電流が供給される水素電気分解装置ま
たは硫化水素分解装置によっても行うことができる。
However, the hydrogen preparation can also be carried out in another way, for example by means of a hydrogen electrolyzer or a hydrogen sulphide decomposer, which is supplied with a night current.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、熱反応器を使用しながら太陽エネルギ
ーから得られる水素エネルギーの貯蔵のための第1の変
法を示し、この場合、水素源として水が使用される。
FIG. 1 shows a first variant for the storage of hydrogen energy obtained from solar energy using a thermal reactor, where water is used as the hydrogen source.

【図2】図2は、熱反応器を使用しながら太陽エネルギ
ーから得られた水素エネルギーの貯蔵のための第2の変
法を示し、この場合、水素源として硫化水素が使用され
る。
FIG. 2 shows a second variant for the storage of hydrogen energy obtained from solar energy using a thermal reactor, where hydrogen sulphide is used as the hydrogen source.

【図3】図3は、静電放出を使用しながら太陽エネルギ
ー源から得られた水素エネルギーの貯蔵のための第3の
変法示す。
FIG. 3 shows a third variant for the storage of hydrogen energy obtained from a solar energy source while using electrostatic emission.

【符号の説明】[Explanation of symbols]

1 太陽、 2 太陽光発電装置、 3 水電気分解装
置、 3a 硫化水素分解装置、 4、4a メタノー
ル反応器、 5 化石エネルギー担体 6 火力発電所
(Thermisches Kraftwerk)、 7 メタノール貯蔵
器、 8 消費体
1 solar, 2 solar power generation device, 3 water electrolysis device, 3a hydrogen sulfide decomposition device, 4 and 4a methanol reactor, 5 fossil energy carrier 6 thermal power plant (Thermisches Kraftwerk), 7 methanol storage device, 8 consumer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素エネルギーを貯蔵するための方法に
おいて、水素と二酸化炭素との混合物を反応器中でメタ
ンおよび/またはメタノールに変換することを特徴とす
る、水素エネルギーの貯蔵法。
1. A method for storing hydrogen energy, characterized in that a mixture of hydrogen and carbon dioxide is converted into methane and / or methanol in a reactor.
【請求項2】 化石燃料燃焼エネルギー発生装置の排ガ
スからの二酸化炭素を使用する、請求項1に記載の方
法。
2. The method according to claim 1, wherein carbon dioxide from the exhaust gas of a fossil fuel combustion energy generator is used.
【請求項3】 太陽エネルギーまたは核エネルギーを使
用しながら水または硫化水素から水素を取得する、請求
項1または2に記載の方法。
3. The method according to claim 1, wherein hydrogen is obtained from water or hydrogen sulfide while using solar energy or nuclear energy.
【請求項4】 静電放電の場合に水蒸気または硫化水素
から水素を取得する、請求項3に記載の方法。
4. The method according to claim 3, wherein hydrogen is obtained from water vapor or hydrogen sulfide in the case of electrostatic discharge.
JP6231439A 1993-09-27 1994-09-27 Storage of energy of hydrogen Pending JPH07149670A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4332789.3 1993-09-27
DE4332789A DE4332789A1 (en) 1993-09-27 1993-09-27 Process for storing energy

Publications (1)

Publication Number Publication Date
JPH07149670A true JPH07149670A (en) 1995-06-13

Family

ID=6498698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6231439A Pending JPH07149670A (en) 1993-09-27 1994-09-27 Storage of energy of hydrogen

Country Status (3)

Country Link
JP (1) JPH07149670A (en)
AU (1) AU7156894A (en)
DE (1) DE4332789A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012569A (en) * 2001-06-28 2003-01-15 Laser Gijutsu Sogo Kenkyusho System for forming methane or methanol
JP2012188360A (en) * 2011-03-09 2012-10-04 Japan Steel Works Ltd:The Production method and production system for reaction product utilizing waste heat and recyclable energy
WO2020203087A1 (en) * 2019-04-01 2020-10-08 株式会社Ihi Hydrocarbon combustion system

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPM561594A0 (en) * 1994-05-16 1994-06-09 Isentropic Systems Ltd Improvements in the utilisation of solar energy and solid fossil fuels
AU688904B2 (en) * 1994-05-16 1998-03-19 Cc Energy Pty Limited Production of methanol
DE19802660A1 (en) * 1998-01-24 1999-07-29 Goes Ges Fuer Forschung Und Te Integrating energy production, waste disposal and chemical synthesis, e.g. of polymer precursors, from carbon dioxide
AU6358199A (en) * 1998-10-27 2000-05-15 Quadrise Limited Electrical energy storage
DE10055717A1 (en) * 2000-11-10 2002-05-29 Jens Burfeind Transporting and/or storing hydrogen in chemically fixed form for use as fuel comprises using an alcohol as the chemical hydrogen storage medium, and releasing the hydrogen from the alcohol at the consumer site, forming a ketone
DE102004026281A1 (en) * 2004-05-28 2005-12-22 Lengeling, Gregor, Dipl.-Ing. Solar powered electrolyzer for generating hydrogen and method of operating such
SE531126C2 (en) * 2005-10-14 2008-12-23 Morphic Technologies Ab Publ Method and system for production, conversion and storage of energy
DE102006034712A1 (en) * 2006-07-27 2008-01-31 Steag Saar Energie Ag Method for reducing the CO2 emission of fossil-fired power plants
SE531159C2 (en) * 2006-10-06 2009-01-07 Morphic Technologies Ab Publ Method and arrangement for producing methanol
SE530399C2 (en) * 2006-10-06 2008-05-20 Morphic Technologies Ab Publ Method and arrangement for extracting carbon dioxide from air
US20100004495A1 (en) * 2006-11-02 2010-01-07 Erik Fareid Process for producing carbon dioxide and methane by catalytic gas reaction
GB2453963A (en) * 2007-10-23 2009-04-29 Stratos Fuels Ltd Manufacture of carbon-neutral fuel
EP2220367B1 (en) * 2007-11-22 2011-12-14 SolarFuel GmbH Modular power plant unconnected to the grid
PL2100869T3 (en) * 2008-03-10 2020-07-13 Edgar Harzfeld Method for producing methanol by recovering carbon dioxide from exhaust gases of energy generation facilities powered by fossil fuels
DE102008027311A1 (en) * 2008-06-07 2009-12-10 Deutz Ag Use of carbon dioxide from combustion exhaust gases and solar generated hydrogen for the production of liquid fuels
GB2461723B (en) * 2008-07-10 2013-03-27 Christopher Denham Wall The economic conversion of waste carbon dioxide gas such as that produced by fossil fuel burning power stations, to bulk liquid fuels suitable for automobiles
WO2010069622A1 (en) * 2008-12-18 2010-06-24 Silicon Fire Ag Method and plant for providing an energy carrier using carbon dioxide as a carbon supplier and using electricity
DE102009018126B4 (en) 2009-04-09 2022-02-17 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Power supply system and operating procedures
EP2426236B1 (en) * 2010-09-03 2013-01-02 Carbon-Clean Technologies AG Method and fuel generation assembly for the carbon dioxide-neutral compensation of energy peaks and troughs in the generation of electrical energy and/or for producing a fuel containing hydrocarbons
WO2012069636A2 (en) * 2010-11-26 2012-05-31 Statoil Asa Sanner cycle energy system and converter
DE102011051250A1 (en) 2011-06-22 2013-04-04 Jan A. Meissner Processes and plants for greenhouse gas reduction of power and heating fuels
GB201202791D0 (en) * 2012-02-20 2012-04-04 Simpson Robert Methods and system for energy conversion and generation
WO2013190065A1 (en) * 2012-06-20 2013-12-27 Antecy B.V. Device for energy storage and conversion
DE102012105736A1 (en) * 2012-06-29 2014-01-02 Peter Volkmer Method for storing electrical energy
DE102012107347A1 (en) 2012-08-09 2014-02-13 Evonik Industries Ag Process for obtaining a hydrocarbon-containing gas
DE102012023833A1 (en) 2012-12-06 2014-06-12 Evonik Industries Ag Integrated system and method for the flexible use of electricity
DE102013209883A1 (en) 2013-05-28 2014-12-04 Evonik Industries Ag Integrated system and method for the flexible use of electricity
DE102013010524A1 (en) 2013-06-24 2014-12-24 Gottfried Wilhelm Leibniz Universität Hannover Method for operating a bioreactor and bioreactor
DE102013018179A1 (en) 2013-11-29 2015-06-03 Michael Feldmann Process and equipment for the production of absolutely greenhouse gas-free fuels
US10337110B2 (en) 2013-12-04 2019-07-02 Covestro Deutschland Ag Device and method for the flexible use of electricity
DE102017005627A1 (en) 2016-10-07 2018-04-12 Lennart Feldmann Method and system for improving the greenhouse gas emission reduction performance of biogenic fuels, heating fuels and / or for enrichment of agricultural land with Humus-C
NO343888B1 (en) * 2016-10-13 2019-07-01 Terje Ernst Mikalsen Use of carbon dioxide (CO2) from a land-based farm for the production of methanol and / or methane.
WO2021102503A1 (en) * 2019-11-28 2021-06-03 Southern Green Gas Limited Renewable methanol production module
WO2023213583A1 (en) 2022-05-02 2023-11-09 Basf Se Synthetic methanol having low deuterium content from non-fossil resources

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261130A (en) * 1991-02-14 1992-09-17 Mitsubishi Heavy Ind Ltd Production of methanol utilizing nuclear heat
DE4220865A1 (en) * 1991-08-15 1993-02-18 Asea Brown Boveri Hydrogenation of carbon di:oxide esp. to methane or methanol in plasma - which can operate at low temp. and low pressure, using hydrogen@ or water vapour
JPH0565237A (en) * 1991-09-10 1993-03-19 Mitsubishi Heavy Ind Ltd Energy supply method using methanol as medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933608A (en) * 1974-08-27 1976-01-20 The United States Of America As Represented By The Secretary Of The Interior Method for the decomposition of hydrogen sulfide
DE2915210A1 (en) * 1979-04-14 1980-10-16 Davy International Ag METHOD FOR PRODUCING HYDROGEN AND SULFUR FROM SULFUR HYDROGEN
CA1134596A (en) * 1981-07-06 1982-11-02 Leo A. Behie Process for producing hydrogen from hydrogen sulphide in a gas fluidized bed reactor
US4602988A (en) * 1985-06-11 1986-07-29 Phillips Petroleum Company Photochemical production of hydrogen from hydrogen sulfide
DE4126349C2 (en) * 1991-08-09 1999-07-01 Andreas Dr Bandi Process for the electrolytic production of methanol and methane by reduction of carbon dioxide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261130A (en) * 1991-02-14 1992-09-17 Mitsubishi Heavy Ind Ltd Production of methanol utilizing nuclear heat
DE4220865A1 (en) * 1991-08-15 1993-02-18 Asea Brown Boveri Hydrogenation of carbon di:oxide esp. to methane or methanol in plasma - which can operate at low temp. and low pressure, using hydrogen@ or water vapour
JPH0565237A (en) * 1991-09-10 1993-03-19 Mitsubishi Heavy Ind Ltd Energy supply method using methanol as medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012569A (en) * 2001-06-28 2003-01-15 Laser Gijutsu Sogo Kenkyusho System for forming methane or methanol
JP2012188360A (en) * 2011-03-09 2012-10-04 Japan Steel Works Ltd:The Production method and production system for reaction product utilizing waste heat and recyclable energy
WO2020203087A1 (en) * 2019-04-01 2020-10-08 株式会社Ihi Hydrocarbon combustion system
JPWO2020203087A1 (en) * 2019-04-01 2021-10-21 株式会社Ihi Hydrocarbon combustion system

Also Published As

Publication number Publication date
DE4332789A1 (en) 1995-03-30
AU7156894A (en) 1995-04-06

Similar Documents

Publication Publication Date Title
JPH07149670A (en) Storage of energy of hydrogen
RU2225355C2 (en) Carbon dioxide binding system
EP2637991B1 (en) Method and apparatus for the carbon dioxide based methanol synthesis
EP2100869B1 (en) Method for producing methanol by recovering carbon dioxide from exhaust gases of energy generation facilities powered by fossil fuels
FI78163C (en) KRAFTVERK MED EN INTEGRERAD KOLFOERGASNINGSANLAEGGNING.
US5416245A (en) Synergistic process for the production of methanol
US20080311022A1 (en) Methods and apparatuses for ammonia production
US20100040916A1 (en) Methods and Systems for Generating Hydrogen From a Biomass
JPH0696790A (en) Method for generation of electric energy from biological raw material
EP0804272A1 (en) Waste gas treatment system and method
US20230020698A1 (en) Apparatus and method for utilizing off-gases from a power-to-x system
Chambers et al. Gas utilization from sewage waste
US20140021721A1 (en) Method and apparatus for efficient balancing baseload power generation production deficiencies against power demand transients
WO2010108936A1 (en) Method for operating a fossil fuel power plant and fossil fuel power plant having reduced carbon dioxide emissions
CN100580062C (en) COS treatment apparatus for gasified gas COS treatment method
KR100220147B1 (en) Method for combustion of hydrocarbons
Eliasson CO2 chemistry: An option for CO2 emission control?
CA2931223C (en) Sulphur-assisted carbon capture and utilization (ccu) methods and systems
Parmon Catalytic technologies for energy production and recovery in the future
KR20110025659A (en) Stockpiling methanol and/or dimethyl ether for fuel and energy reserves
JP5879091B2 (en) Combined thermal power generation system
RU92011239A (en) METHOD OF OBTAINING SYNTHESIS-GAS FOR PRODUCTION OF BASIC ORGANIC SYNTHESIS AND SYNTHETIC FUEL PRODUCTS
CA1069274A (en) Process for the generation of electric power
RO119311B1 (en) Process for treating purified synthesis gas which contains component parts including hydrogen and carbon monoxide
KR100520101B1 (en) Synthesis clean gas

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060127