JPH07149525A - Production of optical element having refractive index distribution - Google Patents

Production of optical element having refractive index distribution

Info

Publication number
JPH07149525A
JPH07149525A JP31914593A JP31914593A JPH07149525A JP H07149525 A JPH07149525 A JP H07149525A JP 31914593 A JP31914593 A JP 31914593A JP 31914593 A JP31914593 A JP 31914593A JP H07149525 A JPH07149525 A JP H07149525A
Authority
JP
Japan
Prior art keywords
distribution
solution
refractive index
optical element
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31914593A
Other languages
Japanese (ja)
Inventor
Hiroaki Kinoshita
博章 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP31914593A priority Critical patent/JPH07149525A/en
Publication of JPH07149525A publication Critical patent/JPH07149525A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/006Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To easily produce a refractive index distributed optical element having high reproducibility and reliability of optical characteristics such as refractive index, refractive index difference and dispersion characteristics by accurately controlling the profile of a metal component distribution in a porous material. CONSTITUTION:In the production of a refractive index distributed optical element, a porous material (gel) is intermittently contacted with a solution (distribution-imparting solution) containing at least one component selected from metal salt or metal alkoxide, acid, organic solvent and water. The term 'contact' means the contact of a part of the porous material with the above solution and the term 'intermittent' means the change of the contacting part by rotating the porous material in contact with the above solution and a process comprising the contact of the porous material with the solution and the separation of the material from the solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内視鏡などの各種微小
光学系に用いる屈折率分布型光学素子の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a gradient index optical element used in various micro optical systems such as an endoscope.

【0002】[0002]

【従来の技術】近年、微小光学系という新しい光学領域
が盛んに研究され、多くの利用が検討されている。そし
て、微小光学系の領域で使用されるレンズは、特にマイ
クロレンズと呼ばれ、その必要性が高まっている。この
ようなマイクロレンズを作製するには、旧来より行われ
てきた研磨加工では加工できる大きさやコストに限度が
あるために、全く新しいレンズの製造方法が提案されて
いる。その一つとして、ゾルゲル法によるマイクロレン
ズの製造方法の検討がなされている。ゾルゲル法は、低
温プロセスで、ゾルの化学組成を調整することが可能な
ことから種々の光学特性を持った多成分系ガラスが合成
できるため、多様な特性(屈折率、アッベ数、色など)
を持ったマイクロレンズが得られると期待されている。
2. Description of the Related Art In recent years, a new optical area called a micro optical system has been actively researched and many uses thereof have been studied. A lens used in the area of a micro optical system is called a micro lens, and its necessity is increasing. In order to manufacture such a microlens, there is a limit to the size and cost that can be processed by the conventional polishing process, and therefore a completely new lens manufacturing method has been proposed. As one of them, a method of manufacturing a microlens by the sol-gel method has been studied. Since the sol-gel method can synthesize a multi-component glass having various optical properties by adjusting the chemical composition of the sol in a low temperature process, it has various properties (refractive index, Abbe number, color, etc.).
It is expected that a microlens will be obtained.

【0003】ゾルゲル法による屈折率分布型光学素子の
製造方法の代表的な例としては、まず第1に、金属成分
を金属アルコキシドとして導入し、酸などによって分布
付与する方法(Elect.Lett.22(198
6),p1108)、第2に、金属成分を水溶性金属塩
として導入し、水溶液などで分布を付与する方法(J.
of Non−cryst.Solids 85(19
86),p244)が知られている。
As a typical example of the method of manufacturing a gradient index optical element by the sol-gel method, first, a method of introducing a metal component as a metal alkoxide and imparting a distribution with an acid or the like (Elect. Lett. 22). (198
6), p1108), and second, a method of introducing a metal component as a water-soluble metal salt and imparting distribution with an aqueous solution (J.
of Non-cryst. Solids 85 (19
86) and p244) are known.

【0004】特公平5−27575号公報には、ゾルゲ
ル法による屈折率分布型光学素子の製造方法として、シ
リコンのアルコキシドを主体とする溶液を加水分解して
得られるゾルに、屈折率分布を付与するための水溶性金
属塩を含む溶液を加えてゲル状多孔質体を得た後、径方
向に金属成分の分布を付与し、これを焼成して目的の屈
折率分布を有するガラス体を得る方法が開示されてい
る。また、特開平4−260608号公報には、屈折率
分布型光学素子の中心部と外周部との屈折率差を大きく
する方法が開示されている。この方法では、シリコンア
ルコキシドと屈折率を高める成分の金属アルコキシドと
を含むゾルから得たウェットゲルより金属成分を溶出す
る工程を複数回行い、1回目の濃度分布付与工程は、浸
漬する溶液がゲル中心部まで達して、金属成分が溶解
し、かつその溶解した成分がゲル外へ拡散し得る適当な
時間を分布付与時間とする。一旦この金属濃度分布を固
定した後、2回目以降の濃度分布付与工程は、ゲルの中
心部の金属成分濃度を保持するように、浸漬する溶液が
ゲルの中心部にまでは到達しない時間をその拡散速度か
ら概算し、新たな分布付与溶液に浸漬する。
Japanese Patent Publication No. 5-27575 discloses a method of manufacturing a gradient index optical element by a sol-gel method, in which a sol obtained by hydrolyzing a solution mainly containing silicon alkoxide is provided with a refractive index distribution. After obtaining a gel-like porous body by adding a solution containing a water-soluble metal salt for imparting a distribution of the metal component in the radial direction, it is fired to obtain a glass body having the desired refractive index distribution A method is disclosed. Further, JP-A-4-260608 discloses a method of increasing the difference in refractive index between the central portion and the outer peripheral portion of a gradient index optical element. In this method, a step of eluting a metal component from a wet gel obtained from a sol containing a silicon alkoxide and a metal alkoxide which is a component for increasing the refractive index is performed a plurality of times, and in the first concentration distribution giving step, the solution to be dipped is a gel. An appropriate time for reaching the center and dissolving the metal component and diffusing the dissolved component outside the gel is defined as the distribution imparting time. After fixing the metal concentration distribution once, in the second and subsequent concentration distribution applying steps, the time for which the solution to be dipped does not reach the center of the gel is adjusted so that the concentration of the metal component in the center of the gel is maintained. Estimate from the diffusion rate and immerse in a new distribution-imparting solution.

【0005】[0005]

【発明が解決しようとする課題】現在、微小光学系にお
いて、高性能な光学素子の1つとして、光学素子を小型
化し、通常の光学系と同様に、各種の収差を補正した光
学素子が必要となっている。このような光学素子を作製
する際には、光学素子の形状はもちろんのこと、小型化
にともない屈折率分布の精密な制御が必要不可欠であ
る。例えば、内視鏡には外径0.5〜3mm程度のレン
ズが用いられる。ここで、特公平5−27525号公報
に開示されている方法により、鉛成分に分布を付与した
外径0.5mmのレンズを得ようとすると、分布付与す
べき時間はほぼ半径の2乗に比例するので、約30秒程
度と非常に短い時間となる。
At present, in a micro optical system, as one of high-performance optical elements, it is necessary to downsize the optical element and to correct various aberrations as in a normal optical system. Has become. When manufacturing such an optical element, not only the shape of the optical element but also precise control of the refractive index distribution is indispensable as the size is reduced. For example, a lens having an outer diameter of about 0.5 to 3 mm is used for the endoscope. Here, when an attempt is made to obtain a lens having an outer diameter of 0.5 mm in which a lead component is distributed by the method disclosed in Japanese Patent Publication No. 5-27525, the time for distribution distribution is approximately the square of the radius. Since it is proportional, it is a very short time of about 30 seconds.

【0006】また、特開平4−260608号公報に開
示されている方法は、特公平5−27525号公報に開
示されている方法により作製した屈折率分布型光学素子
の屈折率差を拡大することを目的としたものであり、分
布付与速度を鑑みたものでないため、分布付与時間が短
く、分布付与条件を一定にするのは困難であるという欠
点は依然解決していなかった。このように、上記特公平
5−27525号公報、特開平4−260608号公報
記載の方法では、微小な屈折率分布型光学素子を作製す
る際には、多孔質体中のイオン種の拡散が速く、溶液の
温度、溶液の濃度、分布付与時間等の製造条件の僅かな
ばらつきが、多孔質体中の金属種の組成の分布形状をば
らつかせ、焼成された屈折率分布型光学素子の屈折率、
屈折率差、分散特性等の光学特性において再現性、信頼
性に劣るという欠点を有していた。
The method disclosed in Japanese Patent Laid-Open No. 4-260608 is to increase the difference in refractive index of the gradient index optical element manufactured by the method disclosed in Japanese Patent Publication No. 5-27525. However, the disadvantage that the distribution application time is short and it is difficult to keep the distribution application conditions constant has not been solved. As described above, according to the methods described in JP-B-5-27525 and JP-A-4-260608, when a minute gradient index optical element is produced, diffusion of ionic species in the porous body is prevented. A slight variation in the manufacturing conditions such as the temperature of the solution, the concentration of the solution, and the time for which the distribution is imparted causes the distribution shape of the composition of the metal species in the porous body to vary, and the sintered refractive index distribution type optical element Refractive index,
It has a drawback that it is inferior in reproducibility and reliability in optical characteristics such as refractive index difference and dispersion characteristics.

【0007】本発明は、かかる従来の問題点に鑑みてな
されたもので、多孔質体中の金属成分分布の形状を精密
に制御し、屈折率、屈折率差、分散特性等の光学特性に
おいて再現性、信頼性の高い屈折率分布型光学素子を容
易に製造する方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and precisely controls the shape of the metal component distribution in the porous body to obtain optical characteristics such as refractive index, refractive index difference and dispersion characteristics. An object of the present invention is to provide a method for easily manufacturing a gradient index optical element having high reproducibility and reliability.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、屈折率分布型光学素子を製造するにあた
り、多孔質体を、金属塩または金属アルコキシド、酸、
有機溶剤、水から選ばれた少なくとも一種の成分を含有
する溶液に断続的に接触させる工程を設けることとし
た。なお、ここで接触とは、多孔質体の一部が上記溶液
に触れていることを意味する。また、断続的とは、多孔
質体を上記溶液に接触させて、回転させることにより接
触部分を変化させることと、多孔質体を上記溶液に接触
させる工程と接触させない工程を有することを意味す
る。
In order to solve the above-mentioned problems, the present invention provides a porous body with a metal salt or a metal alkoxide, an acid, in producing a gradient index optical element.
A step of intermittently contacting with a solution containing at least one component selected from an organic solvent and water is provided. In addition, contact here means that a part of porous body is contacting the said solution. Further, the intermittent means that the porous body is brought into contact with the solution, and the contact portion is changed by rotating, and that it has a step of bringing the porous body into contact with the solution and a step of not bringing the porous body into contact with the solution. .

【0009】[0009]

【作用】以下に、従来の方法での欠点をその作用面から
明らかにし、その後に本発明について、前記欠点を解決
するための作用について説明する。分布付与を行う工程
では、多孔質体であるゲルを分布付与を行う溶液に完全
に浸漬して、分布付与溶液がゲル中心部まで達する時間
まで液相を交換するので、分布付与する溶液に浸漬する
べき時間、つまり分布付与時間が、屈折率分布型光学素
子の金属種の分布形状、ひいては屈折率や屈折率差、分
散特性などの光学特性を制御する重要なパラメータであ
ることは言うまでもない。したがって、分布付与時間を
制御し易い(実際の製造過程において、操作し易い)時
間にすることができれば、屈折率分布型光学素子の金属
種の分布形状を精密に制御することが可能となる。
In the following, the drawbacks of the conventional method will be clarified from the aspect of its operation, and then the operation of the present invention for solving the above drawbacks will be described. In the step of imparting distribution, the gel, which is a porous body, is completely immersed in the solution for imparting distribution, and the liquid phase is exchanged until the distribution imparting solution reaches the center of the gel, so it is immersed in the solution for imparting distribution. It goes without saying that the time to be performed, that is, the distribution giving time is an important parameter for controlling the distribution shape of the metal species of the gradient index optical element, and further, the optical characteristics such as the refractive index, the refractive index difference, and the dispersion characteristic. Therefore, if the distribution application time can be controlled easily (it is easy to operate in the actual manufacturing process), the distribution shape of the metal species of the gradient index optical element can be precisely controlled.

【0010】しかし、従来の方法により屈折率分布型マ
イクロレンズを製造すると、分布を付与すべき金属成分
の拡散が速すぎるため、分布付与する時間が実際に操作
しにくいほど短い時間になってしまっていた。そこで、
本発明は、見かけ上の分布付与時間を長くして、金属成
分の拡散速度を遅くすることにより、金属種の濃度分布
を精密に制御することを可能としたものである。以下
に、本発明の詳細な作用を説明する。
However, when a gradient index microlens is manufactured by a conventional method, the distribution component is too fast to diffuse, and the distribution imparting time is so short that it is difficult to actually operate. Was there. Therefore,
The present invention makes it possible to precisely control the concentration distribution of metal species by lengthening the apparent distribution application time and slowing the diffusion rate of the metal component. The detailed operation of the present invention will be described below.

【0011】第1回目に多孔質体を屈折率分布付与を行
う溶液に接触させる時間を、接触させる溶液が多孔質体
中心部まで遅する時間より短くする。そして、一旦分布
付与溶液への多孔質体の接触を中断し、適当な時間をお
いて再び分布付与溶液に接触させる。第1回目の分布付
与溶液への接触により、表面から中心までは届かないあ
る程度の位置まで液相が形成される。この液相が拡散す
ることにより分布を付与することができるが、多孔質体
を一旦引き上げることにより表面層から新たな分布付与
溶液が供給されないので、多孔質体中に残っている液相
のみの拡散となり、分布付与スピードが低下する。しば
らく時間をおいた後、再び多孔質体を分布付与液に接触
させることにより、再び表面層に液相が供給され、分布
付与スピードが向上する。これらの工程を繰り返すこと
により、見かけ上の分布付与時間を長くすることができ
るので、金属種の分布形状を精密に制御することが可能
となる。
The time for which the porous body is first contacted with the solution for imparting the refractive index distribution is set shorter than the time for the contacted solution to reach the center of the porous body. Then, the contact of the porous body with the distribution-imparting solution is once interrupted, and the distribution-imparting solution is contacted again after an appropriate time. By the first contact with the distribution-imparting solution, the liquid phase is formed to a certain position where the surface cannot reach the center. A distribution can be imparted by diffusing this liquid phase, but since a new distribution-imparting solution is not supplied from the surface layer by once pulling up the porous body, only the liquid phase remaining in the porous body Diffusion occurs, and distribution speed decreases. After a while, the porous body is again brought into contact with the distribution-imparting liquid, whereby the liquid phase is supplied to the surface layer again, and the distribution-imparting speed is improved. By repeating these steps, it is possible to lengthen the apparent distribution application time, so that it becomes possible to precisely control the distribution shape of the metal species.

【0012】用いられる多孔質体としては、シリコンア
ルコキシド等を加水分解したゾルをゲル化して得られ
る、いわゆるゲルや、CVD法やVAD法により作製さ
れるスート、分相法等により作製される多孔質ガラスを
用い、金属塩および酸には、酢酸塩、乳酸塩、くえん酸
塩、りんご酸塩、マレイン酸塩、しゅう酸塩等の有機酸
塩およびその酸や、塩酸塩、硝酸塩、亜硝酸塩等の無機
塩およびその酸を用いることができる。
The porous material used is a so-called gel obtained by gelling a sol obtained by hydrolyzing a silicon alkoxide, a soot produced by the CVD method or the VAD method, a porosity produced by a phase separation method, or the like. Quality glass, metal salts and acids include organic acid salts such as acetate, lactate, citrate, malate, maleate, oxalate, and their acids, as well as hydrochlorides, nitrates, and nitrites. Inorganic salts such as and the acid thereof can be used.

【0013】分布付与溶液として使用する上記金属塩、
金属アルコキシド、酸、有機溶剤、水から選ばれた少な
くとも一種の成分を含む溶液を適宜変化することによ
り、多孔質体中の金属種の濃度分布形状を変化させる。
例えば、多孔質体に予め分布付与をすべき金属成分を含
有させておき、酸、水、有機溶剤などを含む金属成分を
溶出させる溶液に接触させて多孔質体より金属成分を溶
出させることにより、金属濃度分布が中心部から外周部
に向かって減少する、いわゆる凸分布を多孔質体に付与
することができる。一方、分布付与溶液に金属塩または
金属アルコキシドを含有する溶液を含み、多孔質体に金
属種を外部から導入することにより、金属濃度分布が中
心部から外周部に向かって増加する、いわゆる凹分布を
多孔質体に付与することができる。また、複数の金属に
濃度分布を付与したい場合には、第1の金属種を多孔質
体中に含有させ、第1の金属成分を溶解させる成分と第
2の金属成分とを混合した分布付与溶液中に接触させる
ことにより、第1の金属成分に凸分布を、第2の金属成
分に凹分布を付与することができる。
The above metal salt used as a distribution-imparting solution,
By appropriately changing the solution containing at least one component selected from metal alkoxide, acid, organic solvent and water, the concentration distribution shape of the metal species in the porous body is changed.
For example, by preliminarily containing a metal component to be distributed in the porous body, by contacting it with a solution for eluting the metal component containing acid, water, an organic solvent, etc. to elute the metal component from the porous body. The so-called convex distribution, in which the metal concentration distribution decreases from the central portion toward the outer peripheral portion, can be imparted to the porous body. On the other hand, by including a solution containing a metal salt or a metal alkoxide in the distribution-imparting solution and introducing a metal species from the outside into the porous body, the metal concentration distribution increases from the central portion toward the outer peripheral portion, a so-called concave distribution. Can be applied to the porous body. Further, when it is desired to give a concentration distribution to a plurality of metals, the first metal species is contained in the porous body, and a distribution in which a component for dissolving the first metal component and a second metal component are mixed is provided. By bringing them into contact with the solution, it is possible to impart a convex distribution to the first metal component and a concave distribution to the second metal component.

【0014】分布付与時間は、分布付与すべき金属種の
拡散速度を考慮して、大まかに分布付与溶液に接触させ
る時間を推測した後、溶液の組成や濃度、液温、接触時
間、多孔質体の細孔径、多孔質体の直径、分布付与溶液
に接触させる量、分布付与溶液に繰り返し接触させる時
間間隔等のパラメータを適宜変化させることにより高精
度に制御することが可能となる。
The distribution-imparting time is determined by roughly estimating the time of contact with the distribution-imparting solution in consideration of the diffusion rate of the metal species to be distributed, and then the composition and concentration of the solution, liquid temperature, contact time, and porosity. The parameters such as the pore size of the body, the diameter of the porous body, the amount of contact with the distribution-imparting solution, and the time interval of repeated contact with the distribution-imparting solution can be controlled with high accuracy.

【0015】これらの操作により得られた多孔質体を分
布固定、乾燥、焼成することにより、屈折率、屈折率
差、分散特性等の光学特性において再現性、信頼性の高
い屈折率分布型光学素子を容易に製造することができ
る。
By fixing the distribution of the porous material obtained by these operations, drying and firing, the refractive index distribution type optics having high reproducibility and reliability in optical characteristics such as refractive index, refractive index difference and dispersion characteristics. The device can be easily manufactured.

【0016】また、本発明の効果は、用いる多孔質体の
半径が小さい場合や、多孔質体中に含まれる金属種の拡
散速度が大きな場合について特に有効である。半径が大
きい場合でも、より細やかに分布制御を行うことができ
るという利点を持つ。また、多孔質体は、球状、楕円球
状のように単純なロッド状以外の形状でも適用でき、さ
らに厚さが数ミリメーター以上の厚膜にも適用が可能で
ある。
The effect of the present invention is particularly effective when the radius of the porous body used is small or when the diffusion rate of the metal species contained in the porous body is high. Even if the radius is large, there is an advantage that the distribution control can be performed more finely. Further, the porous body can be applied in a shape other than a simple rod shape, such as a spherical shape or an elliptic spherical shape, and can also be applied to a thick film having a thickness of several millimeters or more.

【0017】[0017]

【実施例1】テトラメトキシシラン5ml、テトラエト
キシシラン5ml、トリエチルボレート2.1mlを混
合し、これに1/100規定の塩酸4.2mlを加えて
室温で1時間撹拌して部分加水分解を行った。この溶液
に、1.25mol/lの酢酸水溶液17.9mlと酢
酸2.6mlを混合した溶液を添加して10分間激しく
撹拌し、5分間静置した後、内径5mmのテフロン製真
円容器に分注し、30℃の恒温槽に3日間静置してゲル
化熟成させた。得られた直径3mmのゲルを60℃のイ
ソプロパノール:水=8:2(体積比、以下溶媒比は体
積比とする)の混合溶媒を用いた0.61mol/l酢
酸鉛溶液に接触させ、酢酸の除去及びゲルの熱成を行っ
た。このゲルをイソプロパノール、イソプロパノール:
アセトン=8:2、5:5、アセトンの順に各6時間ず
つ接触させることにより、ゲル細孔中に酢酸鉛の微結晶
を析出、固定させた。
Example 1 5 ml of tetramethoxysilane, 5 ml of tetraethoxysilane and 2.1 ml of triethylborate were mixed, 4.2 ml of 1 / 100N hydrochloric acid was added thereto, and the mixture was stirred at room temperature for 1 hour for partial hydrolysis. It was A solution prepared by mixing 17.9 ml of 1.25 mol / l acetic acid aqueous solution and 2.6 ml of acetic acid was added to this solution, stirred vigorously for 10 minutes, allowed to stand for 5 minutes, and then placed in a Teflon true round container having an inner diameter of 5 mm. The mixture was dispensed and allowed to stand in a constant temperature bath at 30 ° C. for 3 days for gelation and aging. The obtained gel having a diameter of 3 mm was brought into contact with a 0.61 mol / l lead acetate solution using a mixed solvent of 60 ° C. of isopropanol: water = 8: 2 (volume ratio, hereinafter solvent ratio is volume ratio), and acetic acid was added. Was removed and the gel was thermally aged. Isogel this gel with isopropanol:
By contacting with acetone = 8: 2, 5: 5, and then acetone for 6 hours each, fine crystals of lead acetate were deposited and fixed in the gel pores.

【0018】得られた均質ゲルを図1に示すような実験
装置中で分布付与を行った。グローブボックス1中を予
めアルコール雰囲気にしておき、図1(a)のように5
本のゲル2を30r.p.m.で回転させながら、図1
(b)のように酢酸カリウム0.305mol/lおよ
び酢酸0.153mol/lのエタノール溶液250m
l(分布付与溶液3)の液面をポンプ4でゲル2が完全
に接触するまで上げて10分間接触させた後、一旦液面
を下げ、30分間アルコール雰囲気中で回転させてお
き、再び同じ溶液3に10分間接触させて鉛成分に凸分
布を、カリウム成分に凹分布を付与した。このゲルをそ
れぞれイソプロパノール、イソプロパノール:アセトン
=8:2、5:5、アセトンの順に各6時間ずつ接触さ
せて分布を固定した。ゲルが回転することにより、接触
する部分が断続的に浸漬される。又、溶液に接触する工
程と接触しない工程と、さらに接触する工程を設け、断
続的に接触する工程を設けている。これらのゲルを30
℃で3日間乾燥した後、570℃まで昇温させて焼結す
ることにより、すべてクラックフリーな直径1.1mm
の無色透明なガラス体を得た。
Distribution of the obtained homogeneous gel was carried out in an experimental apparatus as shown in FIG. The inside of the glove box 1 is preliminarily made to have an alcohol atmosphere, and as shown in FIG.
Book 2 gel 30 r. p. m. 1 while rotating with
250 m of ethanol solution of potassium acetate 0.305 mol / l and acetic acid 0.153 mol / l as in (b)
The liquid level of 1 (distribution-imparting solution 3) was raised by the pump 4 until the gel 2 was completely contacted and kept in contact for 10 minutes, and then the liquid level was once lowered, rotated in an alcohol atmosphere for 30 minutes, and again the same. The solution 3 was brought into contact with it for 10 minutes to give a lead component a convex distribution and a potassium component a concave distribution. This gel was brought into contact with isopropanol, isopropanol: acetone = 8: 2, 5: 5, and acetone in this order for 6 hours each to fix the distribution. As the gel rotates, the contacting part is intermittently immersed. Further, a step of contacting the solution, a step of not contacting the solution, a step of further contacting, and a step of intermittently contacting are provided. 30 of these gels
After being dried at ℃ for 3 days, the temperature is raised to 570 ℃ and sintered to obtain a crack-free diameter of 1.1 mm.
A colorless and transparent glass body was obtained.

【0019】これらのガラス体の屈折率を測定したとこ
ろ、図2のように中心部から外周部に向かって屈折率が
単調減少している屈折率分布を持ち、変曲点の無い、表
1に示したような光学特性を持っていた。5本のロッド
ごとの屈折率分布の差はほとんど無く、各ガラス体で同
じ光学特性を持つ屈折率分布型光学素子を得ることがで
きた。また、後日同じ条件で実験をした結果、再現性よ
く同じ光学特性を持つ屈折率分布型光学素子を得ること
ができた。
When the refractive index of these glass bodies was measured, as shown in FIG. 2, it has a refractive index distribution in which the refractive index monotonically decreases from the central portion toward the outer peripheral portion, and there is no inflection point. It had the optical characteristics shown in. There was almost no difference in the refractive index distribution between the five rods, and it was possible to obtain a gradient index optical element having the same optical characteristics in each glass body. In addition, as a result of performing experiments under the same conditions later, it was possible to obtain a gradient index optical element having the same optical characteristics with good reproducibility.

【0020】[0020]

【表1】 [Table 1]

【0021】[比較例1]実施例1と同様にしてゲルを
作製し、ゲルをそれぞれ酢酸カリウム0.305mol
/lおよび酢酸0.153mol/lのエタノール溶液
25mlに20分間接触させて鉛成分に凸分布を、カリ
ウム成分に凹分布を付与した。このゲルをそれぞれイソ
プロパノール、イソプロパノール:アセトン=8:2、
5:5、アセトンの順に各6時間ずつ接触して分布を固
定した後、焼成した。クラックフリーなガラス体は4本
得られ、1本は割れた。クラックフリーなガラス体の屈
折率を測定したところ、表2に示したように屈折率差や
分散特性にロッドごとのばらつきがあり、各ガラス体で
同じ光学特性を持つ屈折率分布型光学素子を得ることが
できなかった。
[Comparative Example 1] A gel was prepared in the same manner as in Example 1, and the gel was used in an amount of 0.305 mol of potassium acetate.
25 ml of an ethanol solution containing 1 / l of acetic acid and 0.153 mol / l of acetic acid was contacted for 20 minutes to give a lead component a convex distribution and a potassium component a concave distribution. This gel is used as isopropanol, isopropanol: acetone = 8: 2,
The mixture was contacted with each other for 5 hours in the order of 5: 5 and acetone to fix the distribution, and then fired. Four crack-free glass bodies were obtained, and one was broken. When the refractive index of the crack-free glass body was measured, there were variations in the refractive index difference and dispersion characteristics from rod to rod as shown in Table 2, and a refractive index distribution type optical element having the same optical characteristics in each glass body was used. I couldn't get it.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【実施例2】実施例1と同様にしてゲルを作製し、ゲル
を図3に示すような実験装置中で分布付与を行った。グ
ローブボックス1中を予めアルコール雰囲気にしてお
き、5本のゲル2を回転させながら、酢酸カリウム0.
5mol/lおよび酸酸0.2mol/lのエタノール
溶液(分布付与溶液3)をポンプ4で引き上げて分布付
与溶液噴出口5から10分間ゲルに噴射し、その後一旦
噴射を止めてアルコール雰囲気で20分間回転させた
後、再び同じ溶液3を5分間ゲル2に噴射した。得られ
たゲルを分布固定、乾燥、焼結することにより、すべて
クラックフリーな直径1.1mmの無色透明なガラス体
を得ることができた。このガラス体の径方向の分布を測
定したところ、各ガラス体で同じ光学特性を持つ屈折率
分布型光学素子を得ることができた。
Example 2 A gel was prepared in the same manner as in Example 1, and the gel was given a distribution in an experimental apparatus as shown in FIG. The glove box 1 was previously placed in an alcohol atmosphere, and while the five gels 2 were rotated, potassium acetate 0.
An ethanol solution of 5 mol / l and an acid acid of 0.2 mol / l (distribution-imparting solution 3) was pulled up by a pump 4 and sprayed onto the gel from the distribution-imparting solution jet port 5 for 10 minutes, and then the spraying was stopped once and the mixture was placed in an alcohol atmosphere at After spinning for a minute, the same solution 3 was again sprayed on the gel 2 for 5 minutes. By fixing the distribution of the obtained gel, drying and sintering, it was possible to obtain a colorless and transparent glass body having a crack-free diameter of 1.1 mm. When the radial distribution of this glass body was measured, a gradient index optical element having the same optical characteristics as each glass body could be obtained.

【0024】[0024]

【実施例3】シリコン、ジルコニウム、バリウム、ナト
リウム原料にそれぞれ四塩化ケイ素SiCl4 、四塩化
ジルコニウム、亜硝酸バリウムBa(NO2 2 ・2H
2 O、酢酸ナトリウムNaOCOCH3 を使用した。四
塩化ケイ素と四塩化ジルコニウムを火炎加水分解して、
ジルコニアシリカの外径2mmのスートを5本作製し
た。得られたスートを亜硝酸バリウムとエタノールと水
の混合溶液に接触させ、該スートに亜硝酸バリウムの微
結晶を固定した。該スートを図4のような実験装置中で
分布付与を行った。6はスート7を回転させるための駆
動源(図示省略)に接続されたギアである。グローブボ
ックス1中をあらかじめアルコール雰囲気にしておい
た。図4(a)のように分布付与溶液3として酢酸ナト
リウムをメタノールに溶解した溶液を調製しておき、5
本のスート7を回転させながら、図4(b)のようにス
ート7の一部を液面に10分間接触させ、一旦引き上げ
た後、再び5分間接触してバリウム成分に凸分布を、ナ
トリウム成分に凹分布を付与した。その後、再びスート
をエタノールを乳酸とを混合させた溶液に接触させ、硝
酸バリウムと硝酸カリウムの微結晶を固定し、乾燥、焼
成することにより径1.2mmの透明ガス体を得た。こ
のガラス体の径方向の分布を測定したところ、各ガラス
体で同じ光学特性を持つ屈折率分布型光学素子を得るこ
とができた。
EXAMPLE 3 Silicon tetrachloride, SiCl 4 , zirconium tetrachloride, and barium nitrite Ba (NO 2 ) 2 .2H are used as raw materials for silicon, zirconium, barium, and sodium, respectively.
2 O, sodium acetate NaOCOCH 3 was used. Flame hydrolysis of silicon tetrachloride and zirconium tetrachloride,
Five soots having an outer diameter of 2 mm of zirconia silica were prepared. The obtained soot was brought into contact with a mixed solution of barium nitrite, ethanol and water, and microcrystals of barium nitrite were fixed to the soot. Distribution of the soot was performed in an experimental apparatus as shown in FIG. Reference numeral 6 is a gear connected to a drive source (not shown) for rotating the soot 7. The inside of the glove box 1 was previously made into an alcohol atmosphere. As shown in FIG. 4A, a solution in which sodium acetate is dissolved in methanol is prepared as the distribution-imparting solution 3, and
While rotating the soot 7 of the book, a part of the soot 7 is brought into contact with the liquid surface for 10 minutes as shown in FIG. The component was given a concave distribution. Then, the soot was again brought into contact with a solution of ethanol mixed with lactic acid to fix microcrystals of barium nitrate and potassium nitrate, followed by drying and firing to obtain a transparent gas body having a diameter of 1.2 mm. When the radial distribution of this glass body was measured, a gradient index optical element having the same optical characteristics as each glass body could be obtained.

【0025】[0025]

【実施例4】テトラエトキシシラン20ml、エタノー
ル9mlおよび2規定塩酸1.6mlを混合し、シリコ
ンアルコキシドの部分加水分解を行った。次に、ジルコ
ニウムテトライソプロポキシド4.5gをイソプロパノ
ール10ml中に溶解させた溶液を加え、撹拌した。続
いてこの溶液の中に、硝酸ナトリウム、水、イソプロパ
ノール、ジメチルホルムアミド、アンモニア水の混合溶
液を滴下してゾルを調製した。得られたゾルを内径4m
mのテフロン製真円容器に分注し、30℃の恒温槽に3
日間静置してゲル化熟成させた。
Example 4 20 ml of tetraethoxysilane, 9 ml of ethanol and 1.6 ml of 2N hydrochloric acid were mixed to partially hydrolyze a silicon alkoxide. Next, a solution of 4.5 g of zirconium tetraisopropoxide dissolved in 10 ml of isopropanol was added and stirred. Then, a mixed solution of sodium nitrate, water, isopropanol, dimethylformamide, and ammonia water was dropped into this solution to prepare a sol. The obtained sol has an inner diameter of 4 m.
Dispense into a Teflon round container of 3 m and put in a constant temperature bath at 30 ° C.
It was left to stand for a day to be aged for gelation.

【0026】得られたゲルを図1と同じ実験装置中で分
布付与を行った。分布付与溶液には、エタノールを用
い、15r.p.m.で回転させながら溶液に5分接
触、引き上げて10分放置後、再び5分接触させ引き上
げて10分放置した。これをイソプロパノールに浸漬し
て分布を固定した。このゲルを分布固定、乾燥、焼結を
行うことにより、すべてクラックフリーな直径0.6m
mの無色透明なガス体を得ることができた。このガラス
体の径方向の分布を測定したところ、ジルコニア成分、
ナトリウム成分共に同じ凸分布を持つガラス体を得た。
各ガラス体の光学特性を測定したところ、同じ光学特性
を持つ屈折率分布型光学素子を得ることができた。
The obtained gel was subjected to distribution in the same experimental apparatus as shown in FIG. Ethanol was used as the distribution-imparting solution, and the solution was added at 15 r. p. m. The solution was brought into contact with the solution for 5 minutes while being rotated by, and was pulled up and left for 10 minutes, and then contacted again for 5 minutes and pulled up and left for 10 minutes. This was immersed in isopropanol to fix the distribution. By fixing the distribution of this gel, drying it, and sintering it, the crack-free diameter is 0.6 m.
It was possible to obtain a colorless and transparent gas body of m. When the distribution in the radial direction of this glass body was measured, the zirconia component,
A glass body having the same convex distribution for both sodium components was obtained.
When the optical characteristics of each glass body were measured, a gradient index optical element having the same optical characteristics could be obtained.

【0027】[比較例2]実施例4と同じようにして作
製したゲルを、エタノール液に10分間浸漬し、分布付
与を行った。これをイソプロパノールに浸漬して分布を
固定した。このゲルを分布固定、乾燥、焼結を行うこと
により、すべてクラックフリーな直径0.8mmの無色
透明なガラス体を得た。しかし、各ガス体の径方向の分
布を測定したところ、ジルコニア成分は同じような凸分
布を付与することができたが、ナトリウム成分は各ロッ
ドごとで分布形状が異なる凸分布になってしまい、同じ
光学特性を持つ屈折率分布型光学素子を得ることができ
なかった。
[Comparative Example 2] The gel produced in the same manner as in Example 4 was immersed in an ethanol solution for 10 minutes to give a distribution. This was immersed in isopropanol to fix the distribution. By subjecting this gel to distribution fixing, drying and sintering, a colorless and transparent glass body having a diameter of 0.8 mm, which is all crack-free, was obtained. However, when the radial distribution of each gas body was measured, the zirconia component could be given a similar convex distribution, but the sodium component had a convex distribution with a different distribution shape for each rod, It was not possible to obtain a gradient index optical element having the same optical characteristics.

【0028】[0028]

【発明の効果】以上のように、本発明の屈折率分布型光
学素子の製造方法によれば、多孔質体中の金属分布の形
状を精密に制御し、屈折率、屈折率差、分散特性等の光
学特性において、再現性、信頼性の高い屈折率分布型光
学素子を容易に製造することができる。
As described above, according to the method of manufacturing the gradient index optical element of the present invention, the shape of the metal distribution in the porous body is precisely controlled, and the refractive index, the refractive index difference and the dispersion characteristics are controlled. It is possible to easily manufacture a gradient index optical element having high reproducibility and reliability in optical characteristics such as.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1で使用した実験装置を示す概
略構成図である。
FIG. 1 is a schematic configuration diagram showing an experimental device used in Example 1 of the present invention.

【図2】同実施例1で作製した屈折率分布型光学素子の
径方向の屈折率分布を示す図である。
FIG. 2 is a diagram showing a refractive index distribution in a radial direction of the gradient index optical element manufactured in Example 1.

【図3】本発明の実施例2で使用した実験装置を示す概
略構成図である。
FIG. 3 is a schematic configuration diagram showing an experimental device used in Example 2 of the present invention.

【図4】本発明の実施例3で使用した実験装置を示す概
略構成図である。
FIG. 4 is a schematic configuration diagram showing an experimental device used in Example 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 グローブボックス 2 ゲル 3 分布付与溶液 4 ポンプ 5 分布付与溶液噴出口 6 ギア 7 スート 8 篭 9 モーター 1 glove box 2 gel 3 distribution-imparting solution 4 pump 5 distribution-imparting solution jet 6 gear 7 soot 8 cage 9 motor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質体を、金属塩または金属アルコキ
シド、酸、有機溶剤、水から選ばれた少なくとも一種の
成分を含有する溶液に断続的に接触させる工程を有する
ことを特徴とする屈折率分布型光学素子の製造方法。
1. A refractive index characterized by comprising a step of intermittently contacting a porous body with a solution containing at least one component selected from a metal salt or metal alkoxide, an acid, an organic solvent and water. Manufacturing method of distributed optical element.
JP31914593A 1993-11-25 1993-11-25 Production of optical element having refractive index distribution Withdrawn JPH07149525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31914593A JPH07149525A (en) 1993-11-25 1993-11-25 Production of optical element having refractive index distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31914593A JPH07149525A (en) 1993-11-25 1993-11-25 Production of optical element having refractive index distribution

Publications (1)

Publication Number Publication Date
JPH07149525A true JPH07149525A (en) 1995-06-13

Family

ID=18106949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31914593A Withdrawn JPH07149525A (en) 1993-11-25 1993-11-25 Production of optical element having refractive index distribution

Country Status (1)

Country Link
JP (1) JPH07149525A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036230A1 (en) * 2003-10-08 2005-04-21 Toyo Glass Co., Ltd. Optical fiber coupling component
WO2006040828A1 (en) * 2004-10-15 2006-04-20 Toyo Glass Co., Ltd. Method of manufacturing grin lens and grin lens

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005036230A1 (en) * 2003-10-08 2005-04-21 Toyo Glass Co., Ltd. Optical fiber coupling component
US7346237B2 (en) 2003-10-08 2008-03-18 Toyo Glass Co., Ltd. Optical fiber coupling part
WO2006040828A1 (en) * 2004-10-15 2006-04-20 Toyo Glass Co., Ltd. Method of manufacturing grin lens and grin lens

Similar Documents

Publication Publication Date Title
JP3708238B2 (en) Manufacturing method of gradient index optical element
RU2278079C2 (en) Sol-gel method for preparation of large-size dry gels and modified glasses
JPH0463119A (en) Manufacture of acid-resistant composite separation membrane
US5069700A (en) method of manufacturing gradient-index glass
JPH07149525A (en) Production of optical element having refractive index distribution
JP3476864B2 (en) Glass manufacturing method
JP3209533B2 (en) Method of manufacturing refractive index distribution type optical element
JPH054839A (en) Method for preparing thin film by sol-gel method
JPH09202652A (en) Production of refractive distribution type optical element
JPH05306126A (en) Distributed index optical element and its production
JP3523748B2 (en) Method for producing refractive index distribution type glass
JP3337522B2 (en) Method of manufacturing refractive index distribution type optical element
JP3043781B2 (en) Method of manufacturing refractive index distribution type optical element
JPH08169723A (en) Production of glass or ceramics
JPH06321562A (en) Production of optical element having refractive index distribution
JP3477225B2 (en) Glass manufacturing method
JPH101319A (en) Production of glass
JPH06316420A (en) Production of glass
JPH09301775A (en) Production of ceramics
JPH08283024A (en) Production of glass or ceramic and device therefor
JP2003335527A (en) Method for production of glass
JPH10158018A (en) Production of multicomponent glass
JPS6345143A (en) Production of preform for optical fiber
JPS6340731A (en) Preparation of refractive index dispersion type lens
JP2000007384A (en) Production of refractive index distribution type optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130