JPH07148430A - New catalyst containing metal oxide and gas treat-ing method using said catalyst - Google Patents

New catalyst containing metal oxide and gas treat-ing method using said catalyst

Info

Publication number
JPH07148430A
JPH07148430A JP6161167A JP16116794A JPH07148430A JP H07148430 A JPH07148430 A JP H07148430A JP 6161167 A JP6161167 A JP 6161167A JP 16116794 A JP16116794 A JP 16116794A JP H07148430 A JPH07148430 A JP H07148430A
Authority
JP
Japan
Prior art keywords
catalyst
weight
present
amount
gas stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6161167A
Other languages
Japanese (ja)
Other versions
JP2881114B2 (en
Inventor
Frederick H Rumpf
ハリー ランプ フレデリック
Jonathan B Scher
ベイカー シアー ジョナサン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of JPH07148430A publication Critical patent/JPH07148430A/en
Application granted granted Critical
Publication of JP2881114B2 publication Critical patent/JP2881114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/34Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/306Organic sulfur compounds, e.g. mercaptans
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/308Carbonoxysulfide COS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/408Cyanides, e.g. hydrogen cyanide (HCH)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To obtain a catalyst for the conversion of carbon sulfide and hydrogen cyanide in the presence of oxygen in a standard concentration and below by using a molybdenum promoted titania catalyst containing a mixture of cobalt and nickel. CONSTITUTION: This catalyst contains about 0.5-5.0 wt.% metal oxide selected from cobalt oxide, nickel oxide and a mixture of these, about 1.5-15 wt.% molybdenum trioxide and about 70-98 wt.% titanium dioxide. When a gas stream containing carbon sulfide and/or HCN is brought into contact with the catalyst, sulfur contained as carbon sulfide and/or nitrogen contained as HCN are converted to H2 S and NH3 , respectively, even in the presence of oxygen in <=2 vol.%, preferably <=1 vol.% concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は新規な触媒と、同触媒を
用いて、硫化炭素とシアン化水素とを転化させる方法と
に関する。
FIELD OF THE INVENTION The present invention relates to a novel catalyst and a method for converting carbon sulfide and hydrogen cyanide using the catalyst.

【0002】[0002]

【従来の技術】燃焼炉を用いる産業では、硫黄化合物及
び/又はシアン化水素を含むガスがしばしば発生する。
例えば、炉カーボンブラック製造プロセスからのテール
ガス流(tail gas stream) は一般に例えば二硫化炭素
(CS2 )及び硫化カルボニル(COS)のような硫化
炭素を含み、シアン化水素(HCN)をも含む。
Gases containing sulfur compounds and / or hydrogen cyanide are often generated in the industry using combustion furnaces.
For example, the tail gas stream from a furnace carbon black manufacturing process typically contains carbon sulfides such as carbon disulfide (CS 2 ) and carbonyl sulfide (COS), and also hydrogen cyanide (HCN).

【0003】大気中への硫黄含有種の放出に関する法律
と規定とを遵守するために、ガス流から硫黄含有種を除
去することがしばしば望ましい。CS2 とCOSとは比
較的不活性な化学的性質を有するので、ガス流からの除
去が困難になる可能性がある。他方では、硫化水素(H
2 S)は多様な方法によってガス流から容易に除去され
る。硫化炭素としての硫黄は触媒作用によってH2 Sに
転化され;同様に、HCNとしての窒素は触媒作用によ
って反応してアンモニア(NH3 )になる。これらの転
化のための典型的な商業的触媒にはチタニア(二酸化チ
タン)、コバルト及びモリブデン促進アルミナ(酸化コ
バルト及び三酸化モリブデン/酸化アルミニウム)、担
体付き白金及び酸化クロム促進アルミナがある。これら
の典型的な商業的な触媒は酸素の不存在下で有効であ
る。しかし、供給ガス中の低濃度(約0.1%以上)の
酸素の存在下でさえ、これらの物質はそれらの望ましい
触媒機能を失う。例えば、酸素の存在下では、促進(pro
moted)アルミナ触媒は硫酸化され、触媒活性を失う。チ
タニア触媒に関しては、低濃度の酸素が硫黄種をSO 2
及び/又はCOSへ転化させ、かつ、硫化炭素とHCN
の不充分な転化とを生ずる可能性がある。
Act on Release of Sulfur-Containing Species into the Atmosphere
And sulfur regulations to remove sulfur-containing species from the gas stream.
It is often desirable to leave. CS2And COS are ratio
It has a relatively inert chemistry that allows it to be removed from the gas stream.
It may be difficult to leave. On the other hand, hydrogen sulfide (H
2S) is easily removed from the gas stream by various methods
It Sulfur as carbon sulfide is catalytically converted to H2To S
Converted; similarly, nitrogen as HCN is catalytically
To react with ammonia (NH3)become. These rolls
Typical commercial catalysts for oxidation are titania
Tungsten), cobalt and molybdenum promoted alumina (co-oxide
Baltic and molybdenum trioxide / aluminum oxide), bearing
There are body-plated platinum and chromium oxide promoted alumina. these
Typical commercial catalysts are effective in the absence of oxygen.
It However, the low concentration (about 0.1% or more) in the supply gas
Even in the presence of oxygen, these substances are desirable for their
Loss of catalytic function. For example, in the presence of oxygen,
moted) Alumina catalysts are sulphated and lose catalytic activity. Chi
For tania catalysts, a low concentration of oxygen causes sulfur species to 2
And / or COS, and carbon sulfide and HCN
May result in inadequate conversion of

【0004】典型的に用いられる触媒に対する酸素の不
利な影響を克服するために、二段階触媒床が提案されて
いる。例えば、米国特許第4,981,661号は二段
階プロセスを開示しており、このプロセスでは、第1段
階において酸素を水素化によって除去し、第2段階にお
いては硫化炭素とHCNとの触媒加水分解が生ずる。し
かし、酸素の存在下でも硫化炭素とHCNとの転化に効
果的であり、それ故、一段階触媒反応器に用いることが
できる触媒を有することが有利であると考えられる。
To overcome the adverse effects of oxygen on the typically used catalysts, two-stage catalyst beds have been proposed. For example, U.S. Pat. No. 4,981,661 discloses a two-stage process in which oxygen is removed by hydrogenation in the first stage and catalytic hydration of carbon sulfide and HCN in the second stage. Decomposition occurs. However, it is believed that it would be advantageous to have a catalyst that is effective in the conversion of carbon sulfide and HCN even in the presence of oxygen and therefore can be used in a one-step catalytic reactor.

【0005】[0005]

【発明が解決しようとする課題】新規な触媒を提供する
ことが本発明の目的である。この触媒は2容量%以下
(乾量基準)の濃度の酸素の存在下、好ましくは1容量
%以下(乾量基準)の濃度の酸素の存在下においても、
硫化炭素とHCNとの転化に特に効果的である。本発明
の他の目的は、本発明の触媒を用いて、ガス流の硫化炭
素とHCNとを転化させる方法である。
It is an object of the present invention to provide a new catalyst. This catalyst is present in the presence of oxygen at a concentration of 2% by volume or less (dry basis), preferably in the presence of oxygen at a concentration of 1% by volume or less (dry basis).
It is particularly effective in converting carbon sulfide and HCN. Another object of the invention is a process for converting carbon sulphide and HCN in a gas stream using the catalyst of the invention.

【0006】[0006]

【課題を解決するための手段】我々は新規なコバルト及
びモリブデン促進チタニア触媒、ニッケル及びモリブデ
ン促進チタニア触媒、及びコバルトとニッケルとの混合
物を含むモリブデン促進チタニア触媒を開発した。この
触媒は2容量%以下(乾量基準)の濃度の酸素の存在下
においても、硫化炭素とHCNとの転化への使用に特に
効果的である。この触媒は下記成分:酸化コバルト(C
oO)、又は酸化ニッケル(NiO)、又はこれらの混
合物約0.5〜約5.0重量%と;三酸化モリブデン
(MoO3 ) 約1.5〜約15重量%と;二酸化チタ
ン(TiO2 ) 約70〜約98重量%とを含む。好ま
しくは、この触媒は約2.0〜約3.5%のCoO又は
NiOと、約8〜約12%のMoO3 とを含む。実際
に、CoO又はNiOとMoO3 の最小必要装入量は被
処理ガス中の酸素の濃度に依存し;酸素濃度が大きけれ
ば大きいほど、CoO又はNiOとMoO3 の必要割合
は大きくなる。この触媒は技術上周知の任意の形状をと
りうる。この触媒は技術上周知の任意の方法で、例えば
促進剤金属の塩の水溶液をチタニアペレットに含浸させ
ることによって製造することができる。
We have developed novel cobalt and molybdenum promoted titania catalysts, nickel and molybdenum promoted titania catalysts, and molybdenum promoted titania catalysts containing a mixture of cobalt and nickel. This catalyst is particularly effective for use in the conversion of carbon sulfide and HCN even in the presence of oxygen at a concentration of 2% by volume or less (dry basis). This catalyst has the following components: Cobalt oxide (C
oO) or nickel oxide (NiO), or a mixture thereof, about 0.5 to about 5.0 wt%; molybdenum trioxide (MoO 3 ) about 1.5 to about 15 wt%; titanium dioxide (TiO 2). ) About 70 to about 98% by weight. Preferably, the catalyst comprises from about 2.0 to about 3.5% of CoO or NiO, and MoO 3 of about 8 to about 12%. In fact, the minimum required loading of CoO or NiO and MoO 3 depends on the concentration of oxygen in the gas to be treated; the higher the oxygen concentration, the higher the required proportion of CoO or NiO and MoO 3 . The catalyst can take any shape known in the art. The catalyst can be prepared by any method known in the art, for example by impregnating titania pellets with an aqueous solution of a salt of a promoter metal.

【0007】本発明の方法は、本発明の触媒に硫化炭素
及び/又はHCNを含むガス流を接触させて、硫化炭素
として含まれる硫黄及び/又はHCNとして含まれる窒
素をそれぞれH2SとNH3とに転化させることを含む。
ガスは2容量%以下(乾量基準)の酸素を含むことがで
きる。ガス流は硫化炭素及び/又はHCNを触媒転化さ
せるために充分な水蒸気及び/又は水素(H2 )をも含
まなければならない。
The process of the present invention comprises contacting the catalyst of the present invention with a gas stream containing carbon sulfide and / or HCN to add sulfur contained as carbon sulfide and / or nitrogen contained as HCN to H 2 S and NH, respectively. Including conversion to 3 and.
The gas may contain up to 2% by volume (dry basis) of oxygen. The gas stream must also contain sufficient steam and / or hydrogen (H 2 ) to catalytically convert carbon sulfide and / or HCN.

【0008】本発明の触媒は、硫化炭素として存在する
硫黄の硫化水素への転化及び/又はHCNとして存在す
る窒素のアンモニアへの転化を有利に促進させ、それに
よってガス流中の硫化炭素とHCNとのレベルを減ず
る。本発明の触媒と本発明の方法は、カーボンブラック
の生産において炉カーボンブラック反応器によって発生
するガス流の硫化炭素成分とHCN成分との転化に触媒
作用を及ぼすことに用いるために特に有利である。本発
明の触媒と方法とのこれ以上の詳細及び利点は以下の、
本発明のさらに詳細な説明に記載する。
The catalyst of the present invention advantageously promotes the conversion of sulfur present as carbon sulphide into hydrogen sulphide and / or the conversion of nitrogen present as HCN into ammonia, whereby carbon sulphide and HCN in the gas stream are present. And reduce the level with. The catalyst of the present invention and the method of the present invention are particularly advantageous for use in catalyzing the conversion of carbon sulfide and HCN components of a gas stream produced by a furnace carbon black reactor in the production of carbon black. . Further details and advantages of the catalyst and process of the present invention are as follows:
A more detailed description of the invention is provided.

【0009】上述したように、本発明はコバルト及びモ
リブデン促進チタニア触媒、又はニッケル及びモリブデ
ン促進チタニア触媒、及びコバルトとニッケルとの混合
物を含むモリブデン促進チタニア触媒に関する。本発明
はまた、触媒を用いて、硫化炭素としての硫黄及び/又
はシアン化水素として存在する窒素をそれぞれ硫化水素
とアンモニアとに転化させる方法にも関する。本発明の
触媒は下記成分:酸化コバルト(CoO)、又は酸化ニ
ッケル(NiO)、又はこれらの混合物約0.5〜約
5.0重量%と;三酸化モリブデン(MoO3 ) 約
1.5〜約15重量%と;二酸化チタン(TiO2
約70〜約98重量%とを含む。好ましくは、この触媒
は約2.0〜約3.5%のCoO又はNiOと、約8.
0〜約12.0%のMoO3 とを含む。実際に、CoO
又はNiOとMoO3 との最小必要レベルは供給ガス中
の酸素の濃度に依存する。この触媒は技術上周知の任意
の形状をとりうる。
As mentioned above, the present invention relates to cobalt and molybdenum promoted titania catalysts, or nickel and molybdenum promoted titania catalysts, and molybdenum promoted titania catalysts containing a mixture of cobalt and nickel. The invention also relates to a process for converting sulfur as carbon sulphide and / or nitrogen present as hydrogen cyanide into hydrogen sulphide and ammonia, respectively, using a catalyst. The catalyst of the present invention comprises the following components: cobalt oxide (CoO) or nickel oxide (NiO), or about 0.5 to about 5.0% by weight of a mixture thereof; molybdenum trioxide (MoO 3 ) about 1.5 to about. About 15% by weight; titanium dioxide (TiO 2 )
About 70 to about 98% by weight. Preferably, the catalyst is about 2.0 to about 3.5% CoO or NiO and about 8.
0 to about 12.0% MoO 3 . In fact, CoO
Alternatively, the minimum required level of NiO and MoO 3 depends on the concentration of oxygen in the feed gas. The catalyst can take any shape known in the art.

【0010】本発明の触媒は技術上周知の任意の方法で
製造することができる。例えば、本発明の触媒は、Co
又はNi及びMoの促進剤金属の塩の水溶液をチタニア
ペレットに含浸させることによって製造することができ
る。触媒中に促進剤金属酸化物の所望の濃度を生ずるた
めに充分な量の促進剤金属塩を、ほぼチタニアの吸収能
力に対応する必要量の水中に溶解する。チタニアが塩溶
液を吸収する時間を見込んで、塩溶液をチタニアに徐々
に加える。Mo及びCo又はNiの促進剤金属塩の各々
の溶液を別々にかつ連続的にチタニアに加える、又は金
属塩溶液を一緒にして、チタニアに加えることができ
る。含浸させたチタニアを次に乾燥させる。乾燥後に、
チタニア担体を含む促進剤金属を流動空気中で徐々に温
度を上昇させながらか焼して、本発明の触媒を製造す
る。本発明の触媒の製造方法は以下の実施例1において
さらに詳細に説明する。
The catalyst of the present invention can be prepared by any method known in the art. For example, the catalyst of the present invention is Co
Alternatively, it can be produced by impregnating titania pellets with an aqueous solution of Ni and Mo promoter metal salts. A sufficient amount of the promoter metal salt to produce the desired concentration of the promoter metal oxide in the catalyst is dissolved in the required amount of water which corresponds approximately to the titania absorption capacity. Allow the titania to absorb the salt solution, and slowly add the salt solution to the titania. Solutions of each of the Mo and Co or Ni promoter metal salts can be added separately and continuously to the titania, or the metal salt solutions can be combined and added to the titania. The impregnated titania is then dried. After drying,
The catalyst of the present invention is produced by calcining a promoter metal containing a titania carrier in flowing air while gradually increasing the temperature. The method of making the catalyst of the present invention is described in further detail in Example 1 below.

【0011】本発明の方法は、本発明の触媒に硫化炭素
(例えば、CS2 及びCOS)とHCNとから成る群か
ら選択される少なくとも1成分を含むガス流を接触させ
ることを含み、この方法ではガス流は硫化炭素(例え
ば、CS2 及びCOS)としての硫黄をH2 Sへ転化さ
せる及び/又はHCNとして存在する窒素をNH3 へ転
化させるために充分なレベルの水蒸気及び/又は水素を
含む。ガス流は2容量%以下(乾量基準)の酸素を含む
ことができる。
The process of the present invention comprises contacting a catalyst of the present invention with a gas stream containing at least one component selected from the group consisting of carbon sulfide (eg, CS 2 and COS) and HCN. The gas stream then provides sufficient levels of water vapor and / or hydrogen to convert sulfur as carbon sulfide (eg CS 2 and COS) to H 2 S and / or nitrogen present as HCN to NH 3 . Including. The gas stream may contain up to 2% by volume (dry basis) of oxygen.

【0012】さらに詳しくは、本発明の方法によると、
下記成分:酸化コバルト(CoO)、又は酸化ニッケル
(NiO)、又はこれらの混合物約0.5〜約5.0重
量%と;三酸化モリブデン(MoO3 ) 約1.5〜約
15重量%と;二酸化チタン(TiO2 ) 約70〜約
98重量%とを含む、コバルト及びモリブデン促進チタ
ニア触媒、又はニッケル及びモリブデン促進チタニア触
媒、又はコバルトとニッケルとの混合物を含むモリブデ
ン促進チタニア触媒にガス流を接触させる。好ましく
は、この触媒は約2.0〜約3.5重量%のCoO又は
NiOと、約8〜約12重量%のMoO3 とを含む。
More specifically, according to the method of the present invention,
The following components: cobalt oxide (CoO), nickel oxide (NiO), or a mixture thereof in an amount of about 0.5 to about 5.0% by weight; molybdenum trioxide (MoO 3 ) about 1.5 to about 15% by weight. A gas flow to a cobalt and molybdenum promoted titania catalyst, or a nickel and molybdenum promoted titania catalyst, or a molybdenum promoted titania catalyst comprising a mixture of cobalt and nickel, comprising about 70 to about 98 wt% titanium dioxide (TiO 2 ). Contact. Preferably, the catalyst comprises from about 2.0 to about 3.5 wt% of CoO or NiO, and MoO 3 of about 8 to about 12 wt%.

【0013】本発明の方法は本発明の触媒を含む一段階
触媒反応器において実施することができる。この一段階
触媒反応器の設計とサイズは当業者の知識の範囲内であ
り、転化させるべき硫化炭素成分及び/又はHCN成分
を含むガス流の性質に依存する。この方法を実施する場
合には、硫化炭素及び/又はHCNを含むガス流を管又
は同様な手段を通して触媒反応器中に供給して、触媒に
接触させる。触媒反応器内の滞留時間と温度とは硫化炭
素とHCNとの所望の転化を確実に達成するために充分
でなければならない。ガス流がこの転化を行うために充
分な水蒸気又は水素を含まない場合には、触媒反応器の
上流で又は触媒反応器中でガス流に水を導入することが
できる。本発明の触媒及び方法についてのこれ以上の詳
細と、本発明の触媒及び方法の利点は下記実施例から明
らかになると思われる。
The process of the present invention can be carried out in a single stage catalytic reactor containing the catalyst of the present invention. The design and size of this single-stage catalytic reactor is within the knowledge of one of ordinary skill in the art and depends on the nature of the gas stream containing the carbon sulfide and / or HCN components to be converted. When carrying out this method, a gas stream containing carbon sulfide and / or HCN is fed through a tube or similar means into the catalytic reactor to contact the catalyst. The residence time and temperature in the catalytic reactor must be sufficient to ensure the desired conversion of carbon sulfide and HCN. Water can be introduced into the gas stream upstream of or in the catalytic reactor if the gas stream does not contain sufficient steam or hydrogen to carry out this conversion. Further details regarding the catalysts and methods of the present invention, as well as the advantages of the catalysts and methods of the present invention, will be apparent from the examples below.

【0014】下記実施例に記載するガス流の大部分の組
成の決定には、真空発生器(VacuumGenerator)MM8−
805プロセス質量分光器を用いた。質量分光器に導入
する前に、ガス流をパーマ ピュアー プロダクツ社(P
erma Pure Products Incorporated)(ニュージャーシー
州、トムスリバー)によって製造されたパーマ ピュア
ー乾燥機を用いて約2重量%の水分にまで乾燥させた。
ガス流中の水分の濃度は組成(formulation) と種残部(s
pecies balance) とから判明した。実施例3と5の供給
ガス組成はそれぞれ実施例2と4の供給ガス組成と、供
給ガスへの酸素の導入に用いた空気添加速度とから算出
した。
A vacuum generator MM8- was used to determine the composition of most of the gas streams described in the examples below.
An 805 process mass spectrometer was used. Prior to introducing it into the mass spectrometer, the gas stream was directed through Permapur Products (P
erma Pure Products Incorporated (Toms River, NJ) was used to dry to about 2 wt% moisture.
The concentration of water in the gas stream depends on the composition (formulation) and the residual species (s).
pecies balance). The feed gas compositions of Examples 3 and 5 were calculated from the feed gas compositions of Examples 2 and 4, respectively, and the air addition rate used to introduce oxygen into the feed gas.

【0015】[0015]

【実施例】実施例1 この実施例は本発明の触媒の製造を説明する。本発明の
コバルト及びモリブデン促進チタニア触媒を下記操作に
よって製造した。ラロッシュ ケミカルス(LaRoche Che
micals) (ルイジナ州、ベイトンルージュ)によって販
売されるラロッシュS701二酸化チタン(商業的に入
手可能なチタニア)を触媒担体として用いた。最初に、
下記工程によってチタニアの初期湿潤点(point of inci
pient wetness)を測定した。 i. ペーパータオルを水で飽和させて、ビーカー中に入
れた。3片のチタニア(長さ約1cm、総重量約0.7
0g)をビーカー内の湿ったペーパータオルの頂部に置
いた。 ii.水分がチタニア片に吸収されて、チタニアの表面が
濡れるまで(約2時間)、チタニア片を飽和タオル上に
放置した。 iii. 次にチタニア片を秤量して、チタニア重量あたり
の水吸収量を測定した。初期湿潤試験を3回実施して、
チタニア重量あたりの平均水吸収量(平均初期湿潤点)
が0.43g水/gチタニアであると算出した。
EXAMPLE 1 This example illustrates the preparation of the catalyst of the present invention. The cobalt and molybdenum promoted titania catalysts of the present invention were prepared by the following procedure. La Roche Chemicals
Laroche S701 titanium dioxide (commercially available titania) sold by Micals) (Baton Rouge, LA) was used as the catalyst support. At first,
The initial process of titania
pient wetness) was measured. i. The paper towel was saturated with water and placed in a beaker. 3 pieces of titania (length about 1 cm, total weight about 0.7
0 g) was placed on top of a damp paper towel in a beaker. ii. The titania pieces were left on a saturated towel until the water was absorbed by the titania pieces and the surface of the titania became wet (about 2 hours). iii. Next, titania pieces were weighed to measure the amount of water absorbed per weight of titania. Perform initial wetness test 3 times,
Average water absorption per weight of titania (average initial wet point)
Was 0.43 g water / g titania.

【0016】次に、チタニア担体にコバルトとモリブデ
ンとを含む溶液を含浸させた。CoO 3.3重量%と
MoO3 10重量%とを含む最終触媒が目的であった。
チタニア担体75gが水約32mlを吸収することが算
出された。それ故、硝酸コバルト六水和物11.1gと
モリブデン酸アンモニウム四水和物10.5gとを水3
2mlに溶解することによって、コバルトとモリブデン
とを含む溶液を調製した。溶液の製造に用いる硝酸コバ
ルトと三酸化モリブデンアンモニウムとの量は、金属塩
試薬を用いた化学分析から、CoO 3.3重量%とM
oO3 10重量%とを含む最終触媒の製造に必要なCo
とMoとの量を算出することによって決定した。
Next, the titania carrier was impregnated with a solution containing cobalt and molybdenum. The final catalyst was intended to contain 3.3% by weight CoO and 10% by weight MoO 3 .
It was calculated that 75 g of titania carrier absorb about 32 ml of water. Therefore, 11.1 g of cobalt nitrate hexahydrate and 10.5 g of ammonium molybdate tetrahydrate were added to water 3 times.
A solution containing cobalt and molybdenum was prepared by dissolving in 2 ml. The amount of cobalt nitrate and ammonium molybdenum trioxide used in the production of the solution was determined to be 3.3% by weight of CoO and M by chemical analysis using a metal salt reagent.
Co required for the preparation of the final catalyst containing 10% by weight of oO 3.
Was determined by calculating the amounts of Mo and Mo.

【0017】コバルトとモリブデンとを含むこの溶液を
直径約1/2cm未満のペレットの形状であるチタン担
体75gに徐々に加えた。溶液の全てがチタニアの孔に
吸収されるために充分な時間を見込むやり方で、溶液を
添加した。
This solution containing cobalt and molybdenum was gradually added to 75 g of titanium support in the form of pellets less than about 1/2 cm in diameter. The solution was added in a manner that allowed for sufficient time for all of the solution to be absorbed by the titania pores.

【0018】次に、湿った含浸(impregnated) チタンを
トレー上に広げて、室温において一晩乾燥させてから、
流動空気中で加熱することによってか焼した。か焼温度
を下記のように約200゜F(93.3℃)から900
゜F(482.2℃)まで徐徐に上昇させて、本発明の
モリブデン促進チタニア触媒を製造した: 温度 温度における保持時間 200゜F(93.3℃) 4時間 300゜F(148.9℃) 4時間 600゜F(315.6℃) 4時間 900゜F(482.2℃) 4時間
The moist impregnated titanium was then spread on a tray and allowed to dry overnight at room temperature,
Calcination by heating in flowing air. Calcination temperature from about 200 ° F (93.3 ° C) to 900 as follows
The molybdenum-promoted titania catalyst of the present invention was produced by gradually increasing the temperature to ° F (482.2 ° C): temperature, holding time at temperature 200 ° F (93.3 ° C) 4 hours, 300 ° F (148.9 ° C) ) 4 hours 600 ° F (315.6 ° C) 4 hours 900 ° F (482.2 ° C) 4 hours

【0019】実施例2 この実施例は本発明の方法における実施例1の触媒の使
用を説明する。実施例1において製造した本発明の触媒
47cm3を2.8cm直径の縦型石英管反応器に入れ
た。この反応器を密封し、供給ガス源に結合させて、ガ
ス流を反応器に流入させ、触媒床に通し、反応器の反対
端部から流出させた。供給ガスと触媒床との温度を45
0゜F(232.2℃)に維持し、供給ガス速度を36
00時-1ガス毎時空間速度(GHSV)になるように制
御した。
Example 2 This example illustrates the use of the catalyst of Example 1 in the process of the present invention. 47 cm 3 of the catalyst of the present invention prepared in Example 1 was placed in a 2.8 cm diameter vertical quartz tube reactor. The reactor was sealed, coupled to a source of feed gas, and a gas stream was introduced into the reactor, through the catalyst bed, and out the opposite end of the reactor. The temperature of the feed gas and the catalyst bed is 45
Maintain at 0 ° F (232.2 ° C) and feed gas rate to 36
00 hr -1 was controlled at a gas hourly space velocity (GHSV).

【0020】反応器に流入し、反応器から流出するガス
流の組成をここに述べる操作に従って測定した。結果は
下記表1に示す:
The composition of the gas stream entering and leaving the reactor was measured according to the procedure described herein. The results are shown in Table 1 below:

【表1】表1 ガス流組成 [Table 1] Table 1 Gas flow composition

【0021】これらの結果は図1にグラフによって示
す。0.0〜0.4時間の間に、図1は反応器供給ガス
の組成を示す。0.4時間目に初めて、供給ガスは触媒
床を通り、CS2 、COS及びHCNの反応器流出ガス
濃度は、供給ガス中のそれらの濃度に比べて実質的に低
下する。表1と図1とに示す結果は、実施例1の触媒が
供給ガス中のCS2 、COS及びHCN成分の転化に効
果的に触媒作用を及ぼしたことを実証する。CS2 、C
OS及びHCNの転化率を表1の結果から算出して、下
記表2に示す。
The results are shown graphically in FIG. During 0.0-0.4 hours, FIG. 1 shows the composition of the reactor feed gas. Only at 0.4 hours does the feed gas pass through the catalyst bed and the reactor effluent concentrations of CS 2 , COS and HCN drop substantially compared to their concentration in the feed gas. The results shown in Table 1 and FIG. 1 demonstrate that the catalyst of Example 1 effectively catalyzed the conversion of CS 2 , COS and HCN components in the feed gas. CS 2 , C
The conversion rates of OS and HCN were calculated from the results in Table 1 and shown in Table 2 below.

【表2】 これらの結果は、本発明の方法と触媒とがCS2 、CO
S及びHCNを転化させることに用いるために有利であ
ることを実証する。
[Table 2] These results show that the method and catalyst of the present invention produce CS 2 , CO
It proves to be advantageous for use in converting S and HCN.

【0022】実施例3 この実施例は、実施例1の触媒と本発明の方法とが供給
ガス中に酸素が存在する場合にも有効であることを説明
する。実施例2に述べた同じ触媒と反応器供給材料とを
用いた。しかし、この実施例では、供給ガスは0.32
%の酸素を含有した。
Example 3 This example illustrates that the catalyst of Example 1 and the method of the present invention are also effective in the presence of oxygen in the feed gas. The same catalyst and reactor feed as described in Example 2 were used. However, in this example, the feed gas is 0.32
% Oxygen.

【0023】反応器に流入し、反応器から流出するガス
流の組成はここに述べる操作に従って測定した。結果は
下記表3に示す:
The composition of the gas stream entering and leaving the reactor was measured according to the procedure described herein. The results are shown in Table 3 below:

【表3】表3 ガス流組成 [Table 3] Table 3 Gas flow composition

【0024】これらの結果も図1にグラフによって示
す。2.8時間目に、酸素0.32%(乾量基準で0.
5%)を供給ガス中に注入した。反応器流出ガス流の組
成に本質的な変化は観察されない。この触媒はCS2
COS及びHCNの転化を効果的に促進させた。表3と
図1とに示す結果は、実施例1の触媒が供給ガス中のC
2 、COS及びHCN成分の転化を、酸素の存在下に
おいても、効果的に促進させたことを実証する。C
2 、COS及びHCNの転化率を表3の結果から算出
して、下記表4に示す。
These results are also shown graphically in FIG.
You At 2.8 hours, 0.32% oxygen (0.
5%) was injected into the feed gas. Set of reactor effluent gas streams
No substantive changes in growth are observed. This catalyst is CS2,
It effectively promoted the conversion of COS and HCN. Table 3
The results shown in FIG. 1 and FIG. 1 show that the catalyst of Example 1 is C in the feed gas.
S 2, COS and HCN components conversion in the presence of oxygen
Even in this case, it will be proved that the promotion was effective. C
S2, COS and HCN conversion rates calculated from the results in Table 3
The results are shown in Table 4 below.

【表4】 これらの結果は、本発明の方法と実施例1の触媒とが、
ガス流中に酸素が存在する場合にも、ガス流のCS2
COS及びHCN成分を転化させることに用いるために
有利であることを実証する。
[Table 4] These results show that the method of the present invention and the catalyst of Example 1
Even if oxygen is present in the gas stream, CS 2 of the gas stream,
It proves to be advantageous for use in converting COS and HCN components.

【0025】実施例4 この実施例は本発明の方法における本発明の他の触媒の
使用を説明する。この触媒はNiO 2.5%と、Mo
3 9.0%と、残部の(balance) チタニア(ラロッシ
ュS701)とを含有した。この触媒は実施例1に述べ
た含浸方法によって製造したが、この場合には硝酸ニッ
ケル六水和物を硝酸コバルト六水和物の代わりに用い、
金属塩の使用量はNiO(2.5重量%)とMoO
3 (9.0重量%)の所望の装入量(loading) を生ずる
ように調節した。この触媒47cm3を2.8cm直径
の縦型石英管反応器に入れた。この反応器を密封し、供
給ガス源に結合させて、ガス流を反応器に流入させ、触
媒床に通し、反応器の反対端部から流出させた。供給ガ
スと触媒床との温度を450゜F(232.2℃)に維
持し、供給ガス速度を3600時-1ガス毎時空間速度
(GHSV)になるように制御した。
Example 4 This example illustrates the use of other catalysts of the invention in the process of the invention. This catalyst is NiO 2.5% and Mo
It contained 9.0% O 3 and the balance (balance) titania (La Roche S701). This catalyst was prepared by the impregnation method described in Example 1, but in this case nickel nitrate hexahydrate was used in place of cobalt nitrate hexahydrate,
The amount of metal salt used is NiO (2.5% by weight) and MoO.
It was adjusted to give the desired loading of 3 (9.0% by weight). 47 cm 3 of this catalyst was placed in a vertical quartz tube reactor having a diameter of 2.8 cm. The reactor was sealed, coupled to a source of feed gas, and a gas stream was introduced into the reactor, through the catalyst bed, and out the opposite end of the reactor. The temperature of the feed gas and catalyst bed was maintained at 450 ° F (232.2 ° C) and the feed gas velocity was controlled to be 3600 h -1 gas hourly space velocity (GHSV).

【0026】反応器に流入し、反応器から流出するガス
流の組成をここに述べる操作に従って測定した。結果は
下記表5に示す:
The composition of the gas stream entering and leaving the reactor was measured according to the procedure described herein. The results are shown in Table 5 below:

【表5】表5 ガス流組成 [Table 5] Table 5 Gas flow composition

【0027】これらの結果は図2にグラフによって示
す。0.0〜0.35時間の間に、図2は反応器供給ガ
スの組成を示す。0.35時間目に初めて、供給ガスは
触媒床を通り、CS2 、COS及びHCNの反応器流出
ガス濃度は、供給ガス中のそれらの濃度に比べて実質的
に低下する。表5と図2とに示す結果は、この実施例の
触媒が供給ガス中のCS2 、COS及びHCN成分の転
化に効果的に触媒作用を及ぼしたことを実証する。CS
2 、COS及びHCNの転化率を表5の結果から算出し
て、下記表6に示す。
The results are shown graphically in FIG. During the 0.0 to 0.35 hour period, FIG. 2 shows the composition of the reactor feed gas. Only after 0.35 hours the feed gas has passed through the catalyst bed and the reactor effluent gas concentrations of CS 2 , COS and HCN have dropped substantially compared to their concentrations in the feed gas. The results, shown in Table 5 and FIG. 2, demonstrate that the catalyst of this example effectively catalyzed the conversion of CS 2 , COS and HCN components in the feed gas. CS
The conversion rates of 2 , COS and HCN were calculated from the results of Table 5 and shown in Table 6 below.

【表6】 これらの結果は、本発明の触媒と方法とがCS2 、CO
S及びHCNを転化させることに用いるために有利であ
ることを実証する。
[Table 6] These results, catalyst and the method and the CS 2, CO of the present invention
It proves to be advantageous for use in converting S and HCN.

【0028】実施例5 この実施例は、実施例4の触媒と本発明の方法とが供給
ガス中に酸素が存在する場合にも有効であることを説明
する。実施例4に述べた同じ触媒と反応器供給材料とを
用いた。しかし、この実施例では、供給ガスは0.32
%の酸素を含有した。
Example 5 This example illustrates that the catalyst of Example 4 and the method of the present invention are also effective in the presence of oxygen in the feed gas. The same catalyst and reactor feed as described in Example 4 were used. However, in this example, the feed gas is 0.32
% Oxygen.

【0029】反応器に流入し、反応器から流出するガス
流の組成はここに述べる操作に従って測定した。結果は
下記表7に示す:
The composition of the gas stream entering and leaving the reactor was measured according to the procedure described herein. The results are shown in Table 7 below:

【表7】表7 ガス流組成 [Table 7] Table 7 Gas flow composition

【0030】これらの結果も図2にグラフによって示
す。3.4時間目に、酸素0.32%(乾量基準で0.
5%)を供給ガス中に注入した。反応器流出ガス流の組
成に本質的な変化は観察されない。表7と図2とに示す
結果は、この実施例の触媒が供給ガス流中のCS2 、C
OS及びHCN成分の転化を、酸素の存在下において
も、効果的に促進させたことを実証する。CS2 、CO
S及びHCNの転化率を表7の結果から算出して、下記
表8に示す。
These results are also shown graphically in FIG. Oxygen 0.32% at 3.4 hours (0.
5%) was injected into the feed gas. No substantial change in the composition of the reactor effluent gas stream is observed. The results shown in Table 7 and FIG. 2 show that the catalyst of this example was used for the CS 2 , C in the feed gas stream.
It is demonstrated that the conversion of OS and HCN components was effectively promoted even in the presence of oxygen. CS 2 , CO
The conversion rates of S and HCN were calculated from the results in Table 7 and shown in Table 8 below.

【表8】 これらの結果は、本発明の方法とこの実施例の触媒と
が、ガス流中に酸素が存在する場合にも、ガス流のCS
2 、COS及びHCN成分を転化させることに用いるた
めに有利であることを実証する。ここに述べた本発明の
態様(form)が説明のためのみであり、本発明の範囲を限
定する意図を有さないことは、明確に理解されることと
思われる。
[Table 8] These results indicate that the method of the present invention and the catalyst of this example have a CS in the gas stream even when oxygen is present in the gas stream.
2 , demonstrated to be advantageous for use in converting COS and HCN components. It will be clearly understood that the forms of the invention described herein are illustrative only and are not intended to limit the scope of the invention.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2と3に述べた、本発明のCoO−Mo
3 促進チタニア触媒を用いるCS2 、COS及びHC
Nの転化のグラフ。
FIG. 1 CoO—Mo of the present invention as described in Examples 2 and 3.
CS 2 , COS and HC with O 3 -promoted titania catalyst
Graph of conversion of N.

【図2】実施例4と5に述べた、本発明のNiO−Mo
3 促進チタニア触媒を用いるCS2 、COS及びHC
Nの転化のグラフ。
FIG. 2 NiO—Mo of the present invention as described in Examples 4 and 5.
CS 2 , COS and HC with O 3 -promoted titania catalyst
Graph of conversion of N.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 約0.5〜約5.0重量%の範囲の量
の、酸化コバルト(CoO)、酸化ニッケル(NiO)
又はこれらの混合物から成る群から選択される金属酸化
物と;約1.5〜約15重量%の範囲の量の三酸化モリ
ブデン(MoO 3 )と;約70〜約98重量%の範囲の
量の二酸化チタン(TiO2 )とを含む触媒。
1. An amount in the range of about 0.5 to about 5.0% by weight.
Cobalt oxide (CoO), nickel oxide (NiO)
Or a metal oxide selected from the group consisting of mixtures thereof
And tritium oxide in an amount ranging from about 1.5 to about 15% by weight.
Buden (MoO 3) And; in the range of about 70 to about 98% by weight.
Amount of titanium dioxide (TiO 22) And a catalyst containing.
【請求項2】 金属酸化物が酸化コバルト(CoO)で
ある請求項1記載の触媒。
2. The catalyst according to claim 1, wherein the metal oxide is cobalt oxide (CoO).
【請求項3】 金属酸化物が酸化ニッケル(NiO)で
ある請求項1記載の触媒。
3. The catalyst according to claim 1, wherein the metal oxide is nickel oxide (NiO).
【請求項4】 金属酸化物が約2.0〜約3.5重量%
の範囲の量で存在し、三酸化モリブデン(MoO3 )が
約8.0〜約12.0重量%の範囲の量で存在する請求
項1記載の触媒。
4. The metal oxide is about 2.0 to about 3.5% by weight.
The catalyst of claim 1, wherein the molybdenum trioxide (MoO 3 ) is present in an amount ranging from 8.0 to 12.0 wt%.
【請求項5】 金属酸化物が酸化コバルト(CoO)で
あって、約3.3重量%の量で存在し、三酸化モリブデ
ン(MoO3 )が約10.0重量%の量で存在し、二酸
化チタンが約86.7重量%の量で存在する請求項1記
載の触媒。
5. The metal oxide is cobalt oxide (CoO) present in an amount of about 3.3% by weight and molybdenum trioxide (MoO 3 ) is present in an amount of about 10.0% by weight, The catalyst of claim 1 wherein titanium dioxide is present in an amount of about 86.7% by weight.
【請求項6】 金属酸化物が酸化ニッケル(NiO)で
あって、約2.5重量%の量で存在し、三酸化モリブデ
ン(MoO3 )が約9.0重量%の量で存在し、二酸化
チタンが約88.5重量%の量で存在する請求項1記載
の触媒。
6. The metal oxide is nickel oxide (NiO), present in an amount of about 2.5% by weight, and molybdenum trioxide (MoO 3 ) is present in an amount of about 9.0% by weight, The catalyst of claim 1 wherein titanium dioxide is present in an amount of about 88.5% by weight.
【請求項7】 硫化炭素とシアン化水素とから成る群か
ら選択される少なくとも1成分を含むガス流を、約0.
5〜約5.0重量%の範囲の量の、酸化コバルト(Co
O)、酸化ニッケル(NiO)又はこれらの混合物から
成る群から選択される金属酸化物と;約1.5〜約15
重量%の範囲の量の三酸化モリブデン(MoO3 )と;
約70〜約98重量%の範囲の量の二酸化チタン(Ti
2 )と含む触媒と接触させることを含む方法におい
て、ガス流が硫化炭素としての硫黄を硫化水素に転化さ
せ、シアン化水素としての窒素をアンモニアに転化させ
るために充分な量の水蒸気及び/又は水素を含む前記方
法。
7. A gas stream containing at least one component selected from the group consisting of carbon sulfide and hydrogen cyanide is about 0.
Cobalt oxide (Co) in an amount ranging from 5 to about 5.0% by weight.
O), nickel oxide (NiO) or a metal oxide selected from the group consisting of a mixture thereof; about 1.5 to about 15
Molybdenum trioxide (MoO 3 ) in an amount in the range of weight percent;
Titanium dioxide (Ti) in an amount ranging from about 70 to about 98% by weight.
O 2 ) and a catalyst comprising a gas stream in which the gas stream converts sulfur as carbon sulfide to hydrogen sulfide and nitrogen as hydrogen cyanide in sufficient amount to convert ammonia to ammonia and / or hydrogen. The method comprising:
【請求項8】 金属酸化物が約2.0〜約3.5重量%
の範囲の量で存在し、三酸化モリブデン(MoO3 )が
約8.0〜約12.0重量%の量で存在する請求項7記
載の方法。
8. The metal oxide is about 2.0 to about 3.5% by weight.
The method of claim 7 present in an amount ranging from molybdenum trioxide (MoO 3) is present in an amount of from about 8.0 to about 12.0 wt%.
【請求項9】 硫化炭素が二硫化炭素(CS2 )と硫化
カルボニル(COS)とから成る群から選択される請求
項7記載の方法。
9. The method of claim 7, wherein the carbon sulfide is selected from the group consisting of carbon disulfide (CS 2 ) and carbonyl sulfide (COS).
【請求項10】 ガス流が更に2.0容量%以下(乾量
基準)の酸素を含む請求項7記載の方法。
10. The method of claim 7, wherein the gas stream further comprises up to 2.0% by volume of oxygen (dry basis).
【請求項11】 ガス流が更に1.0容量%以下(乾量
基準)の酸素を含む請求項7記載の方法。
11. The method according to claim 7, wherein the gas stream further comprises up to 1.0% by volume (dry basis) of oxygen.
【請求項12】 ガス流が水蒸気と水素とを含む請求項
7記載の方法。
12. The method of claim 7, wherein the gas stream comprises water vapor and hydrogen.
JP6161167A 1993-07-14 1994-07-13 Gas treatment method using catalyst Expired - Fee Related JP2881114B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US9179693A 1993-07-14 1993-07-14
US091796 1993-07-14

Publications (2)

Publication Number Publication Date
JPH07148430A true JPH07148430A (en) 1995-06-13
JP2881114B2 JP2881114B2 (en) 1999-04-12

Family

ID=22229700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6161167A Expired - Fee Related JP2881114B2 (en) 1993-07-14 1994-07-13 Gas treatment method using catalyst

Country Status (3)

Country Link
US (1) US5466427A (en)
JP (1) JP2881114B2 (en)
DE (1) DE4424695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066237A (en) * 2010-08-27 2012-04-05 Hitachi Ltd Shift catalyst, and method and equipment for gas purification
WO2013125437A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107353A (en) * 1995-08-08 2000-08-22 Exxon Research And Engineering Company Cyanide and ammonia removal from synthesis gas
EP0757969B1 (en) * 1995-08-08 2000-03-29 Exxon Research And Engineering Company Process for removing hydrogen cyanide from synthesis gas
US6162373A (en) * 1995-10-03 2000-12-19 Exxon Research And Engineering Company Removal of hydrogen cyanide from synthesis gas (Law322)
WO1997039979A1 (en) * 1996-04-23 1997-10-30 Exxon Research And Engineering Company Process for removal of hydrogen cyanide from synthesis gas
WO1999037389A1 (en) * 1998-01-26 1999-07-29 Tda Research, Inc. Catalysts for the selective oxidation of hydrogen sulfide to sulfur
FR2830466B1 (en) 2001-10-09 2004-02-06 Axens USE OF A TI02-BASED COMPOSITION AS A CATALYST FOR REALIZING COS AND / OR HCN HYDROLYSIS IN A GASEOUS MIXTURE
JP4048043B2 (en) * 2001-11-02 2008-02-13 日揮株式会社 Catalysts and methods for decomposition of carbonyl sulfide and hydrogen cyanide
US7060233B1 (en) * 2002-03-25 2006-06-13 Tda Research, Inc. Process for the simultaneous removal of sulfur and mercury
US20030194366A1 (en) * 2002-03-25 2003-10-16 Girish Srinivas Catalysts and process for oxidizing hydrogen sulfide to sulfur dioxide and sulfur
US20070169412A1 (en) * 2006-01-26 2007-07-26 Georgia Tech Research Corporation Sulfur- and alkali-tolerant catalyst
FR2990360B1 (en) 2012-05-10 2014-04-25 Axens PROCESS FOR TREATING GAS
CN103861439A (en) * 2014-03-25 2014-06-18 云南亚太环境工程设计研究有限公司 Method for simultaneously desulfurizing, denitrating and purifying flue gas
FR3035795B1 (en) 2015-05-07 2017-04-28 Axens PROCESS FOR TREATING GAS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432168A (en) * 1977-08-17 1979-03-09 Babcock Hitachi Kk Treating method for tail gas

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423194A (en) * 1965-06-11 1969-01-21 Exxon Research Engineering Co Aluminum simultaneously impregnated with salts of nickel,aluminum and metal promoter
GB1406802A (en) * 1971-09-21 1975-09-17 British Gas Corp Hydrogen cyanide removal
JPS535065A (en) * 1976-07-05 1978-01-18 Nitto Chem Ind Co Ltd Treatment of exhaust gas containing hydrocyanic acid
JPS5418466A (en) * 1977-07-12 1979-02-10 Toho Rayon Co Ltd Waste gas treating method
US4975255A (en) * 1987-08-21 1990-12-04 Shell Oil Company Removal of sour components from a gas stream
NL185225C (en) * 1988-01-13 1992-03-16 Comprimo Bv METHOD FOR CONVERTING AND REMOVING SULFUR COMPOUNDS FROM A CO-CONTAINING GAS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5432168A (en) * 1977-08-17 1979-03-09 Babcock Hitachi Kk Treating method for tail gas

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012066237A (en) * 2010-08-27 2012-04-05 Hitachi Ltd Shift catalyst, and method and equipment for gas purification
WO2013125437A1 (en) * 2012-02-24 2013-08-29 三菱重工業株式会社 Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium oxide-based composition
JP2013173099A (en) * 2012-02-24 2013-09-05 Mitsubishi Heavy Ind Ltd Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and usage of titanium oxide-based composition
US9878310B2 (en) 2012-02-24 2018-01-30 Mitsubishi Heavy Industries, Ltd. Catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide and use of titanium dioxide-based composition

Also Published As

Publication number Publication date
US5466427A (en) 1995-11-14
DE4424695A1 (en) 1995-01-19
JP2881114B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
JP2881114B2 (en) Gas treatment method using catalyst
US2083894A (en) Process for the treatment of sulphur compounds
KR100549778B1 (en) Vanadium/titania-based catalyst for the removal of nitrogen oxide at low temperature, its uses and method of removing nitrogen oxide using the same
US4164546A (en) Method of removing nitrogen oxides from gaseous mixtures
JPS5837008B2 (en) Removal of nitrogen oxides and sulfur oxides from gases
JPS6059004B2 (en) Removal of nitrogen oxides from flue gas
US2083895A (en) Catalytic process for the conversion of sulphur compounds
US4780445A (en) Selective catalytic reduction catalyst consisting essentially of nickel and/or manganese sulfate, ceria and alumina
JPH0638915B2 (en) New catalysts for selective reduction of nitrogen oxides
US5587134A (en) Process for decomposing ammonia in an off-gas
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
US4695437A (en) Selective catalytic reduction catalysts
JPS5812057B2 (en) Shiyokubaisosabutsu
JP2004223381A (en) Support for methane-selective type denitrification catalyst, its manufacturing method and methane-selective type denitrification catalyst
JPH0239297B2 (en)
FI85562C (en) FOERFARANDE FOER AVLAEGSNANDE AV KVAEVEOXIDER UR AVGASER, VILKA UPPKOMMER VID FOERBRAENNING.
GB1565000A (en) Catalysts and processes for oxiding sulphur and oxidisable sulphur compounds
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPS5837009B2 (en) NH3 Niyori Endo Gaskara NOX Ojiyokyo Surhouhou
JP2000342972A (en) Catalyst for purifying exhaust gas and exhaust gas purifying method
JP2000176289A (en) Catalyst for purifying hydrocarbon in waste gas, and purification method of waste gas
SU825133A1 (en) Catalyst for conversion of sulfur-containing gases to elemental sulfur
JPS6043170B2 (en) Catalyst for removing nitrogen oxides
SU1397071A1 (en) Catalyst for thermolysis of sulfuric acid
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees