JPH0714801B2 - Method for producing aqueous film-forming inorganic compound - Google Patents

Method for producing aqueous film-forming inorganic compound

Info

Publication number
JPH0714801B2
JPH0714801B2 JP14439788A JP14439788A JPH0714801B2 JP H0714801 B2 JPH0714801 B2 JP H0714801B2 JP 14439788 A JP14439788 A JP 14439788A JP 14439788 A JP14439788 A JP 14439788A JP H0714801 B2 JPH0714801 B2 JP H0714801B2
Authority
JP
Japan
Prior art keywords
inorganic compound
film
forming inorganic
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14439788A
Other languages
Japanese (ja)
Other versions
JPH01313303A (en
Inventor
直人 穀田
憲治 穀田
勝洋 穀田
博 穀田
Original Assignee
株式会社コーミックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コーミックス filed Critical 株式会社コーミックス
Priority to JP14439788A priority Critical patent/JPH0714801B2/en
Priority to AU36281/89A priority patent/AU634962B2/en
Priority to US07/365,112 priority patent/US5049316A/en
Priority to EP89305928A priority patent/EP0346162B1/en
Priority to CA000602501A priority patent/CA1333745C/en
Priority to DE68925756T priority patent/DE68925756T2/en
Publication of JPH01313303A publication Critical patent/JPH01313303A/en
Priority to US07/693,480 priority patent/US5234631A/en
Priority to US08/066,223 priority patent/US5368950A/en
Publication of JPH0714801B2 publication Critical patent/JPH0714801B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用野) この発明は、紙、繊維、クロス類の塗装材となり、かつ
着火を防ぎ耐熱性を高め、ガラスクロスに塗布すると融
点を高め、又木材に含浸すると着火,着炎,発煙を防
ぎ、又金属の防錆塗料となり、かつセラミックスとの耐
火接着材となる多様な利用野を有する水性造膜性無機化
合物の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field) The present invention is a coating material for paper, fibers, cloths, etc., which prevents ignition and enhances heat resistance. TECHNICAL FIELD The present invention relates to a method for producing an aqueous film-forming inorganic compound having various fields of use which, when impregnated, prevents ignition, flame and smoke generation, becomes a rust preventive paint for metals, and becomes a fire resistant adhesive with ceramics.

(従来の技術とその解決課題) 従来無機接着材やコーティング材として、硅酸ソーダが
あるが、吸温性があり、炭酸化して白華を生じ、固化し
ても収縮クラックを生じ剥離し易い等の欠点がある。前
記硅酸ソーダに弗化物を加えて、耐水性を向上させる方
法もあるが、充分ではない。またシリカゲルやシリカア
ルコキシドも市販されているが、これらには造膜性がな
く、有機化合物で変性して、造膜性化合物としているが
高温耐火物にはならなかった。又フレオンと有機物の化
合物である弗素樹脂は、一般合成樹脂より耐熱性を有し
ていても、耐火物にはならなかった。
(Prior art and its problem to be solved) Sodium silicate has been used as a conventional inorganic adhesive or coating material, but it has a heat-absorbing property and is easily carbonized to produce white fluff, which easily causes shrinkage cracks and peels even when solidified. There are drawbacks such as. There is also a method of improving the water resistance by adding fluoride to the sodium silicate, but it is not sufficient. Silica gel and silica alkoxide are also commercially available, but they have no film-forming property and are modified with an organic compound to form a film-forming compound, but they did not become a high temperature refractory. Further, the fluororesin, which is a compound of Freon and an organic substance, did not become a refractory even though it had more heat resistance than general synthetic resins.

又、金属とアンモニア、硅酸、燐酸又はそれ等の塩と、
アルカリ金属とで、水性造膜性無機化合物とする提案が
あるが(アメリカ特許第4,117,088号、第4,029,747号、
第4,117,099号、特開昭51−132196号)、何れも造膜性
を有しない問題点があった。
In addition, a metal and ammonia, silicic acid, phosphoric acid or a salt thereof,
There is a proposal to form an aqueous film-forming inorganic compound with an alkali metal (US Patent Nos. 4,117,088 and 4,029,747,
No. 4,117,099 and JP-A No. 51-132196), there is a problem that they do not have film-forming properties.

(課題を解決する為の手段) 一般に硬化現象は、成分が溶解して過飽和となり結晶構
造にゲル結合することから開始すると説明されている。
前記アメリカ特許の、水性無機錯化合物に、金属成分と
して例えば珪素(Si)が大過剰となる様に、シリカゲル
や硅酸ソーダ、ポゾラン、フライアッシュ等を加えて
も、造膜硬化してフレキシブルな塗膜とはならなかっ
た。また硅弗化ソーダや硅硼酸ソーダの水溶物を、乾燥
しても塗膜とならず、粉化するにすぎなかった。ガラス
は硅酸、硼酸、アルカリ金属の化合物であるが、フレキ
シブルな水溶性塗布材にはならない。前記の様に、テフ
ロンは弗化物ではあるが、無機物のみでは高分子の塗膜
とはならなかった。この発明は、無機化合物で、かつ高
分子量を有し、柔軟性のある塗膜を形成する無溶剤の水
性造膜性無機化合物にすることを目的としている。
(Means for Solving the Problems) It is generally explained that the hardening phenomenon starts when the components dissolve and become supersaturated to form a gel bond with the crystal structure.
Even if silica gel, sodium silicate, pozzolan, fly ash, etc. are added to the aqueous inorganic complex compound of the above-mentioned US patent so that, for example, silicon (Si) as a metal component is in a large excess, the film is cured to form a flexible film. It did not give a coating. Further, a water-soluble material such as sodium fluorinated sodium or sodium borosilicate does not form a coating film even when dried, and is merely powdered. Glass is a compound of silicic acid, boric acid, and an alkali metal, but it is not a flexible water-soluble coating material. As mentioned above, although Teflon is a fluoride, it is not a polymer coating only with an inorganic substance. An object of the present invention is to provide a solvent-free aqueous film-forming inorganic compound which is an inorganic compound, has a high molecular weight, and forms a flexible coating film.

即ち、有機塗料の様に造膜するには、高分子とする必要
があり、又、防火防炎性は、酸素の供給を遮断する耐熱
造膜物となる事により生じ、更に、金属板や繊維製品に
適した防火防炎塗膜は、フレキシブルな耐熱塗膜である
必要がある。一方、低価格とならなければ汎用性を生じ
ないから、無溶剤で生産性の高い重合法でなければなら
ない。この発明は上記問題点を何れも解決した。
That is, in order to form a film like an organic paint, it is necessary to use a polymer, and fire and flame resistance are caused by a heat-resistant film-forming product that blocks the supply of oxygen. A fireproof and flameproof coating suitable for textiles must be a flexible heat resistant coating. On the other hand, if the price is not low, versatility does not occur, so a polymerization method that is solvent-free and has high productivity must be used. The present invention has solved all the above problems.

この発明により製造する水性造膜性無機化合物は、金属
に、鉱酸のうち水和して硼酸や弗酸を解離する鉱酸化合
物か、亜鉱酸化合物(以後、鉱酸化合物と総称する)
と、アルカリ金属との反応によってのみ生ずる。例え
ば、SiとFとNaとの反応物は硅弗化ソーダと考えられ、
それは溶解度が低く100℃でも固形分2.45%以上の水溶
液にはならない。又、Si,B,Naなら硅硼化ソーダと考え
られ、前述同様に水溶液とはならない。然しながら、こ
の発明の水溶液は、固形分が45%であっても、元素はSi
F,Na,やSi,B,Naしか分析されない。
The aqueous film-forming inorganic compound produced according to the present invention is a mineral acid compound that hydrates a metal to dissociate boric acid or hydrofluoric acid from a mineral acid, or a mineral acid compound (hereinafter collectively referred to as mineral acid compound).
And only by reaction with alkali metals. For example, the reaction product of Si, F, and Na is considered to be sodium silicate,
It has low solubility and does not become an aqueous solution with a solid content of 2.45% or more even at 100 ° C. Also, Si, B and Na are considered to be sodium borohydride and do not become an aqueous solution as described above. However, in the aqueous solution of the present invention, even if the solid content is 45%, the element is Si
Only F, Na, and Si, B, Na are analyzed.

前記のアメリカ特許によれば、例えば、金属シリコンが
反応容器底にあって、苛性ソーダフレークを落下接触せ
しめたその局所領域において、シリコン、苛性ソーダ、
硫酸の反応が生ずるとしている。然しながら、金属シリ
コン塊が反応容器底部に過剰にしきつめられ、硼酸の稀
釈溶液が容器の半分まである状態に、苛性ソーダのフレ
ークが、シリコン表面を被覆する程一時に撒布投入して
も、苛性ソーダフレークの局所領域反応ならば、底部全
面に一時に反応を生ずる筈であるが、一時に同時にでは
なく、部分が間欠的に消耗され、底部領域において溶解
度に応じて溶解成分が反応する様に消費されていて、局
所領域反応でない事が観察された。同様に、金属を1m/m
径のアルミニウム線とした反応を観察すると、苛性ソー
ダフレークが散在しているにもかかはならず、前記苛性
ソーダフレークの周辺だけでなく、アルミニウム線を這
う様に、白雲がわきでる反応が観察できる。又、金属シ
リコンを鉄製メッシュに包み、反応容器底部より5cm以
上引上げて宙吊りにし、苛性ソーゾフレークを底部に投
入して、直接にはシリコンに接触しない様にしても、直
接に接触した時と同様に起泡を生じて反応を開始した。
前記により明らかなようにこの発明は反応容器底部に沈
下した苛性ソーダフレークが、一定溶解度に達すれば溶
解は停滞し、反応により消耗されて更に溶解するか対流
により溶解度が変化すれば、更に溶解するかを示して、
前記アメリカ特許にいうフレークの局所領域反応とは異
る事を示している。この発明により生成する水性造膜性
無機化合物は、金属固体とアルカり金属の濃厚溶液反応
に、水和硼酸や弗酸が参加して、発熱反応又は加温され
て生成する。硼砂や弗化ソーダの溶解は酸より低いので
反応を制御する。夏季には沸騰する反応を冷却して制御
する場合と、沸騰するに至らない温度に自己制御する様
に、ハフニウムを含有するハフニウム化合物か、ジルコ
ン、ジルコニア類ジルコニア副生シリカの一種以上(以
下ジルコン類という)を鉱酸化合物の0.5%乃至100%加
える事により発熱を制御して反応せしめる。冬期には50
℃以上に加温して反応を促進する。
According to said U.S. patent, for example, in the local area where metallic silicon is at the bottom of the reaction vessel and the caustic soda flakes are in drop contact therewith, silicon, caustic soda,
The reaction of sulfuric acid is said to occur. However, when the metal silicon block was excessively stuffed at the bottom of the reaction vessel and the dilute solution of boric acid was present in the half of the vessel, the caustic soda flakes were sprinkled at one time enough to cover the silicon surface, and the caustic soda flake was If it is a local area reaction, the reaction should occur all over the bottom at one time, but not at the same time, the parts are intermittently consumed, and the dissolved components are consumed so that they react according to the solubility in the bottom area. It was observed that the reaction was not a local area reaction. Similarly, 1m / m metal
When observing the reaction with aluminum wire of diameter, it is possible to observe the reaction that white clouds crawl along the aluminum wire as well as around the caustic soda flakes, even if caustic soda flakes are scattered. . Also, wrap the metallic silicon in an iron mesh, pull it up by 5 cm or more from the bottom of the reaction container and hang it in the air, put caustic sozo flakes on the bottom, even if it does not come into direct contact with the silicon, just as when it comes into direct contact Foaming was generated to start the reaction.
As is clear from the above, according to the present invention, if the caustic soda flakes that have settled at the bottom of the reaction vessel reach a certain solubility, the dissolution is stalled and the caustic soda flakes are consumed by the reaction and further dissolved or if the solubility changes due to convection, further dissolution occurs. Shows
It shows that it is different from the local area reaction of flakes referred to in the US patent. The aqueous film-forming inorganic compound produced according to the present invention is produced by an exothermic reaction or heating by hydrated boric acid or hydrofluoric acid participating in a concentrated solution reaction of a metal solid and an alkali metal. Since the dissolution of borax and sodium fluoride is lower than that of acid, it controls the reaction. In the case of controlling the reaction by cooling the boiling reaction in the summer, and in order to control the temperature so that it does not reach the boiling point, a hafnium compound containing hafnium, zircon, or one or more of zirconia by-product silica (hereinafter zircon). (Referred to as "classes") is added to 0.5% to 100% of the mineral acid compound to control the heat generation and react. 50 in winter
The reaction is accelerated by heating above ℃.

前記鉱酸類は、水和して弗酸を解離する弗化水素、弗化
水素酸、弗化ソーダ、弗化アンモニウム及び水和して硼
酸を解離する硼酸、硼砂、硼水素化ソーダ、又は硼弗化
水素酸及びそのアンモニウム金属塩をいう。
The mineral acids include hydrogen fluoride, which hydrates to dissociate hydrofluoric acid, hydrofluoric acid, sodium fluoride, ammonium fluoride, and boric acid, which hydrates and dissociates boric acid, borax, sodium borohydride, or boron. Hydrofluoric acid and its ammonium metal salt.

前記の稀釈鉱酸を反応液に使用すれば、アルカリ金属の
溶解度を増し強アルカリ製品(PH11.5〜12.6)ができ
る。又濃厚溶液酸を使用すれば、アルカリ金属の溶解度
は少く、弱アルカリ(PH7〜9)製品ができる。前記反
応は、反応溶液が比重1.1以上であれば、固形分が10%
以上であり、かつPHが13以下になった水溶液は、硅弗化
ソーダ、又は硅硼化ソーダとは異ったこの発明により生
成した造膜性無機化合物である。反応容器底部におい
て、金属とアルカリ金属フレークの濃厚溶液を反応させ
ながら、ガス状鉱酸か濃厚水溶液鉱酸を反応に参加させ
るか、濃厚鉱酸と金属の混合状態に、アルカリ金属フレ
ーク又は10倍以下の濃厚溶液を、反応容器底部に送入し
て反応させて、比重1.2以上PH9以下の反応生成液を得
た。何れの場合も、50℃以上の自己発熱を生じない時に
は加温が必要で、90℃〜100℃に達すると思はれる場合
は沸騰しない様に、前記ジルコン類を添加するか冷却す
る必要がある。鉱酸濃厚溶液には、固体アルカリ金属の
溶解度は少いから、加温するか、徐々の反応とする必要
がある。この発明では各成分が過剰に配合しても溶解積
以上には各成分の溶解はなく、反応上澄液はほぼ一定し
ている。
If the above diluted mineral acid is used in the reaction solution, the solubility of the alkali metal is increased and a strong alkaline product (PH 11.5-12.6) can be prepared. Also, if a concentrated solution acid is used, the solubility of alkali metals is low and weakly alkaline (PH7-9) products can be produced. If the reaction solution has a specific gravity of 1.1 or more, the solid content is 10%.
The above-mentioned aqueous solution having a pH of 13 or less is a film-forming inorganic compound produced by the present invention, which is different from sodium fluorosilicate or sodium borohydride. At the bottom of the reaction vessel, while reacting a concentrated solution of metal and alkali metal flakes, allow a gaseous mineral acid or concentrated aqueous solution mineral acid to participate in the reaction, or to add a mixture of concentrated mineral acid and metal to alkali metal flakes or 10 times The following concentrated solution was fed into the bottom of the reaction vessel and reacted to obtain a reaction product solution having a specific gravity of 1.2 or more and PH9 or less. In any case, heating is required when self-heating above 50 ° C is not generated, and it is necessary to add or cool the zircon so that it does not boil when it is expected to reach 90 ° C to 100 ° C. is there. Since the solid alkali metal has a low solubility in a concentrated mineral acid solution, it needs to be heated or gradually reacted. In this invention, even if each component is excessively blended, each component does not dissolve beyond the dissolution product, and the reaction supernatant is almost constant.

前記の造膜性無機化合物を、鉄板に塗布して常温乾燥し
たところ7ミクロンの塗膜を得た。この塗膜は加熱して
も亀裂を生じない。
The film-forming inorganic compound was applied to an iron plate and dried at room temperature to obtain a 7-micron coating film. The coating does not crack when heated.

塗膜を強くし、硬化を早めるには、金属成分が過飽和状
態にあればよく、金属がシリコンであれば、シリカゾル
や硅酸ソーダ及びポゾラン、シリカヒュームの様なSiO2
含有成分か、その焼成物金属がアルミニウムならアルミ
ナゾルやアルミン酸ソーダ又はカオリン・ボーキサイド
の様なAl2O3含有成分か、その焼成物を、前記造膜性無
機化合物に加えて金属成分を大過剰となした造膜性無機
化合物にすると、造膜が早く常温硬化でも表面硬度は高
くなる。金属含有成分の添加量は、例えばSiO2かAl2O3
換算で、この発明の固形分の30%以内で20%前後が作業
性上適量である。この改良結果により、例えば鉛筆硬度
が5Hから9Hに向上した。
In order to strengthen the coating film and accelerate the curing, it is sufficient if the metal component is in a supersaturated state, and if the metal is silicon, silica sol, sodium silicate and pozzolan, or SiO 2 such as silica fume.
Ingredients, or if the calcined product metal is aluminum, add Al 2 O 3 -containing components such as alumina sol, sodium aluminate, or kaolin / bauxide, or the calcined product to the above film-forming inorganic compound to cause a large excess of the metal component. When the film-forming inorganic compound described above is used, the film formation is fast and the surface hardness is high even when the film is cured at room temperature. The amount of the metal-containing component added is, for example, SiO 2 or Al 2 O 3
In terms of workability, around 20% within 30% of the solid content of the present invention is suitable for workability. As a result of this improvement, for example, the pencil hardness is improved from 5H to 9H.

前記造膜性無機化合物を高分子となる様に、高比重とす
るには、汎用的な手法として、加熱濃縮の方法がある。
前記の比重1.2の造膜性無機化合物に、アルコール類
(メチルからステアリルに至るC数1〜18)を、固形分
のほぼ同量以下を加えると、例えば比重1.25には20%量
の高比重成分のみ沈降し、低比重成分(低分子量)はア
ルコール類と共に上層部を形成するから、タンク(反応
器)の底部から沈降物を抜取ることで高比重成分約1.4
が得られる。この場合にアルコール類を混合して後に、
高比重成分が沈降するまでに時間を要するので、例えば
PH2以上の稀釈鉱酸(2〜10倍)をアルコール類に対し
5%乃至30%を加えたアルコールを、この発明により生
成した比重1.2の造膜性無機化合物に約20%容量を混合
すると、高比重成分の沈降を早めることができる。また
99%メタノールとは1%でもゲル化が早いが、固形分以
上のアルコール添加の必要はない。アルコール類が混入
していると、加熱時に共沸による沸点を低めて余剰水分
を放出し硬化する。
As a general-purpose method, there is a heating concentration method for increasing the specific gravity so that the film-forming inorganic compound becomes a polymer.
Alcohols (C number 1-18 from methyl to stearyl) are added to the above-mentioned film-forming inorganic compound having a specific gravity of 1.2 in an amount not more than about the same as the solid content. Only the components settle, and the low specific gravity component (low molecular weight) forms the upper layer together with the alcohols. Therefore, by removing the sediment from the bottom of the tank (reactor), the high specific gravity component is about 1.4.
Is obtained. In this case, after mixing alcohols,
Since it takes time for the high specific gravity component to settle,
When diluted mineral acid having a pH of 2 or more (2 to 10 times) is added to the alcohol in an amount of 5% to 30%, the film-forming inorganic compound having a specific gravity of 1.2 produced according to the present invention is mixed with about 20% by volume. It is possible to accelerate the sedimentation of high specific gravity components. Also
Although 99% methanol gels rapidly even at 1%, it is not necessary to add alcohol above the solid content. When alcohols are mixed, the boiling point due to azeotropy is lowered during heating and excess water is released to cure.

造膜硬化を早める為に、加熱すると表面造膜が早めら
れ、余剰水分を内蔵して、フクレの原因となる。常温硬
化後加熱しても同様の傾向がある。これに吸水して水酸
基を形成するマグネシウム(Mg)、アルミニウム(A
l)、鉄(Fe)の様な金属や、その水酸化物の100メッシ
ュ以下の微粉を、前記造膜性無機化合物の固形分に対
し、1〜50%を加える事により、余剰水を吸収し、又は
発熱反応により加熱時の造膜フクレや常温硬化後に加熱
した時のフクレを防止することができる。非晶質鉱物の
500℃以上の焼成鉱物粉で硅酸.アルミナの水酸化物と
なるものも有効である。
When the film is heated to accelerate film formation, surface film formation is accelerated, and excess water is built in, causing blistering. There is a similar tendency even when heated after room temperature curing. Magnesium (Mg), which absorbs water to form hydroxyl groups, and aluminum (A
l), metals such as iron (Fe) and fine powders of its hydroxide of 100 mesh or less are added to the solid content of the film-forming inorganic compound in an amount of 1 to 50% to absorb excess water. Alternatively, due to an exothermic reaction, film-forming blisters at the time of heating and blistering at the time of heating after curing at room temperature can be prevented. Amorphous mineral
Silicic acid with mineral powder calcined above 500 ℃. Alumina hydroxide is also effective.

この発明による造膜性無機化合物は、不燃材であり、耐
火材である。更に、接着、粘着、耐火性を増す為に、カ
オリン,パイロフィライト,クレー、白土,非晶質シリ
カ(ポゾラン・シリカヒューム)雲母、蛭石、硅藻土の
一種以上で時に高温時に耐火性のあるムライト.アルミ
ナ形成材を混入すると、粘着力があり、かつ耐火1000℃
以上あるので、耐火防火強力塗膜となり、鉄,ステンレ
ス,アルミニウム,セラミックフエルト,ボード等の、
フレキシブル耐火接着材となる。粘度は、無添加時100
〜200センチポイズが、前記配合物により800〜1500セン
チポイズに増粘し、鉱物繊維を混合して更に抗折力を増
す。但し、前記造膜性無機化合物と同重量以上の配合
は、耐衝撃性を弱める。前記接着材は鉄との引張剥離強
度が30kg/cm2にも達した。
The film-forming inorganic compound according to the present invention is a noncombustible material and a fireproof material. Furthermore, in order to increase adhesion, tackiness and fire resistance, kaolin, pyrophyllite, clay, clay, amorphous silica (pozzolan / silica fume) mica, vermiculite, and diatomaceous earth are fire resistant at high temperatures. Mullite with. Admixed with alumina forming material, it has adhesiveness and fire resistance of 1000 ℃
Because of the above, it becomes a fireproof and fireproof strong coating film, such as iron, stainless steel, aluminum, ceramic felt, board, etc.
Flexible fireproof adhesive. Viscosity is 100 without addition
~ 200 centipoise thickens to 800-1500 centipoise with the formulation and mixes mineral fibers to further increase transverse rupture strength. However, if the amount of the film-forming inorganic compound is the same or more, the impact resistance is weakened. The adhesive had a tensile peel strength of 30 kg / cm 2 from iron.

前記造膜性無機化合物は、活性なCaイオンを溶出する水
和物により硬化する。生石灰や軽焼ドロマイト、又はそ
れらの含有物である水和発熱材を混合することにより、
余剰水の除出とイオン交換により速かに硬化する。一般
の水酸化カルシウムを溶出するセメント類によっても硬
化する。止水セメントの様に、発熱して速硬するセメン
トにも有効である。又マグネシアセメントは硬化剤がな
くても、前記造膜性無機化合物と硬化反応を生ずる。同
様に金属アルミニウムやマグネシウム、鉄又はそれ等の
酸化物で水和し発熱する混合物も有効に機能する。添加
量は前記造膜性無機化合物の余剰水と同重量から3倍迄
を限度とする。
The film-forming inorganic compound is hardened by a hydrate that elutes active Ca ions. By mixing quick-lime or light-burnt dolomite, or a hydration exothermic material that is a content thereof,
It cures quickly by removing excess water and ion exchange. It is also hardened by general cements that dissolve calcium hydroxide. It is also effective for cement that quickly hardens due to heat generation, such as waterproof cement. Further, the magnesia cement causes a curing reaction with the film-forming inorganic compound even without a curing agent. Similarly, a mixture hydrated with metallic aluminum, magnesium, iron, or an oxide thereof, and generating heat, also works effectively. The amount of addition is the same as the excess water of the film-forming inorganic compound up to 3 times.

この発明による造膜性無機化合物は、錯化合物重合体と
考えられる。従って、水酸基と余剰水の境界が判然とせ
ず、加熱又は常乾脱水よりも表面造膜が早くなる欠点あ
り、この解決手段として前記の様に水酸基となって吸水
する。金属の酸化物、水酸化物や非晶質金属の焼成物を
混合する方法が有効である。又、入口温度が150℃〜600
℃のドライヤーに、前記造膜性無機化合物をスプレーし
て5〜80ミクロンの脱水ビーズを造ることができる。ケ
ット水分計で、2〜7%に脱水できた。これを前記造膜
性無機化合物に1〜100%自由に混入し、塗布すると肉
盛りの良い塗膜とする事ができた。ガラス、カーボン、
棉、合成繊維、毛の様な繊維類は、糸が数百本のヤーン
で構成されていて気泡を内蔵している。此の気泡を代替
し、かつ前記造膜性無機化合物と反応する塗布剤は、ア
ルコール基をもつ合成樹脂がよい。例えばポリビニール
アルコールは、耐アルカリ性があるので、下塗剤となる
適性があり、水に可溶性であっても、前記造膜性無機化
合物と縮合して不溶化する。
The film-forming inorganic compound according to the present invention is considered to be a complex compound polymer. Therefore, there is a drawback that the boundary between the hydroxyl group and the excess water is not clear, and the surface film formation is faster than heating or normal dry dehydration. As a means for solving this, the hydroxyl group absorbs water as described above. A method of mixing a metal oxide, a hydroxide or a fired product of an amorphous metal is effective. In addition, the inlet temperature is 150 ℃ ~ 600
The film-forming inorganic compound can be sprayed on a dryer at ℃ to produce dehydrated beads of 5 to 80 microns. With a Kett moisture meter, it was possible to dehydrate to 2 to 7%. When this was freely mixed with the film-forming inorganic compound in an amount of 1 to 100% and applied, a coating film with good build-up could be obtained. Glass, carbon,
Fibers such as cotton, synthetic fibers, and wool are made up of hundreds of yarns and contain air bubbles. A synthetic resin having an alcohol group is preferable as the coating agent that substitutes for the bubbles and reacts with the film-forming inorganic compound. For example, polyvinyl alcohol is suitable as an undercoat because it has alkali resistance, and even if soluble in water, it condenses with the film-forming inorganic compound and becomes insoluble.

次にこの発明の原料について述べる。金属は周期律表の
I〜VIII属に属する金属の一種以上を使用し得るが、汎
用的には、金属シリコンと金属アルミニウムがよい、反
応性は表面積が大きれば高く、中、小塊、粒、箔又は線
等の何れでも使用し得る。前記した様に、メッシュに入
れて底部より幾分引揚げて宙吊りにすると反応物による
表面被覆なく数回の反応に使用し得る。鉱酸又は亜鉱酸
のうち、解離して、硼酸や弗酸を生ずる鉱酸化合物であ
ればよく、硼砂や弗化ソーダも使用できる。又、ガス体
も使用し得る事は前記の通りである。夏季における過剰
反応熱により反応液は沸騰するが、前記ジルコン類を
(粉末.塊等態様は問はない)投入すると、激しく発熱
反応はするが沸騰するには至らないので安全である。ジ
ルコン副生シリカヒュームは微量のハフニウムを含むが
シリコンと等量投入しても良い。アルカリ金属は、ナト
リウム(Na)、カリウム(K)、リチウム(Li)の何れ
でも.粒.フレーク.等の固体態様をとはず、又10倍液
以下−汎用的には5倍液以下−を使用し得る。金属成分
を過剰ならしめる成分は、シリカ.アルミナのゾルや硅
酸ソーダやアルミン酸ソーダのようなアルカリ金属塩、
前記した非晶質鉱物やその焼成物水酸化物となる前記酸
化物や水酸化物を単独に又は混合して使用し得る。高比
重品を得るための添加アルコールとしては、メチルアル
コールはゲル化が早く、エチルアルコールはよいが高価
であるので、変性アルコールがよく、又イソプロピルア
ルコール(I.P.A)を用いると収率が良く経済性が高
い。鉱酸の種類により適するアルコールもも異る。沈降
物とする作用があれば炭酸数や変性品ということで、こ
の発明の外ということはできない。アルコールの20%液
に、鉱酸として、例えば、塩酸のPH2液を、その20%加
えて用いると沈降率は早くなる。酸は、鉱酸の何れでも
よいが造膜性無機化合物の原料鉱酸と同種鉱酸は相溶す
るので他種鉱酸がよい。
Next, the raw materials of this invention will be described. As the metal, one or more of the metals belonging to Groups I to VIII of the Periodic Table can be used, but in general, metal silicon and metal aluminum are preferable, and the reactivity is high if the surface area is large, medium, small lumps, Any of grains, foils or wires may be used. As described above, when it is placed in a mesh and slightly lifted from the bottom and suspended in the air, it can be used for several reactions without surface coating with reactants. Of the mineral acids or sub-mineral acids, any mineral acid compound that dissociates to generate boric acid or hydrofluoric acid may be used, and borax and sodium fluoride may also be used. As described above, a gas body can also be used. Although the reaction solution boils due to excessive heat of reaction in the summer, when the zircon is introduced (the powder, lump, etc. may be used), the reaction is violently exothermic but it does not result in boiling, which is safe. Zircon by-product silica fume contains a small amount of hafnium, but may be added in the same amount as silicon. The alkali metal may be any of sodium (Na), potassium (K), and lithium (Li). grain. flake. A solid form such as 10 times liquid or less-generally 5 times liquid or less-can be used. The component that makes the metal component excessive is silica. Alumina sol and alkali metal salts such as sodium silicate and sodium aluminate,
The above-mentioned amorphous minerals and the above-mentioned oxides and hydroxides which become the hydroxides of the fired products thereof may be used alone or in combination. As an added alcohol for obtaining a high specific gravity product, methyl alcohol rapidly gels, ethyl alcohol is good but expensive, so denatured alcohol is good, and isopropyl alcohol (IPA) gives good yield and economic efficiency. Is high. Suitable alcohols also differ depending on the type of mineral acid. If it acts as a precipitate, it cannot be said to be outside the scope of the present invention because it is a carbonic acid number or a modified product. If a 20% solution of alcohol is added with 20% of PH2 solution of hydrochloric acid as a mineral acid, the sedimentation rate will be faster. The acid may be any of mineral acids, but other mineral acids are preferable because the raw material mineral acid of the film-forming inorganic compound and the same mineral acid are compatible with each other.

耐火性や造膜厚みを得るフィラーは、貯蔵安定性のよい
カオリン、非晶質シリカ含有鉱物粉、シリカヒューム、
水酸化マグネシゥムや水酸化アルミニゥム又は水和して
それらを溶出するもので、100メッシュ以下の微粉が望
ましい。
Fillers that obtain fire resistance and film thickness are storage stable kaolin, amorphous silica-containing mineral powder, silica fume,
Magnesium hydroxide, aluminum hydroxide, or those which hydrate to dissolve them, and fine powder of 100 mesh or less is desirable.

この発明は、反応容器底部における水より高比重の固体
又は高比重液との反応であり、従って溶解積の理論に従
い各成分は一定溶解量以上には溶解せず過剰に配合して
も未溶解成分として残存し発熱反応による対流により反
応成分は上澄液となるもので、金属と鉱酸成分が過剰で
もアルカリ成分の溶解量により製品となるので稀釈溶液
反応当量の様な成分比にはならない。
This invention is a reaction with a solid having a higher specific gravity than water or a high specific gravity liquid at the bottom of the reaction vessel, and therefore, in accordance with the theory of dissolution product, each component does not dissolve above a certain amount and does not dissolve even if blended in excess. It remains as a component and the reaction component becomes a supernatant due to convection due to the exothermic reaction, and even if the metal and mineral acid components are in excess, it becomes a product due to the dissolved amount of the alkali component, so it does not have a component ratio like the diluted solution reaction equivalent .

(発明の効果) この発明による水性造膜性無機化合物であるが、神奈川
県工業試験所の分析結果(表1)によっても、その元素
は、Si、F、NaかSi、B、Naの二群構成であることと、
固形分が20%以上であることが確認され、溶解度の低い
硅弗化ソーダや硅硼化ソーダでないことが判った。前記
の何れも鉄板の上で造膜し、5ミクロン乃至100ミクロ
ンの何れの厚みでもクラックや、鉄板との剥離を生じな
かった。
(Effects of the Invention) The aqueous film-forming inorganic compound according to the present invention has two elements of Si, F, Na or Si, B, Na according to the analysis results (Table 1) of the Kanagawa Prefectural Industrial Laboratory. Being a group composition,
It was confirmed that the solid content was 20% or more, and it was found that it was not low-solubility sodium fluorinated sodium or sodium borohydride. In each of the above cases, a film was formed on the iron plate, and cracks and peeling from the iron plate did not occur at any thickness of 5 μm to 100 μm.

表1の各試料の含有物質は水を除いた数値である。従っ
て数値の総和は100%に満たないが残部は水である。
The substances contained in each sample in Table 1 are values excluding water. Therefore, the total number is less than 100%, but the balance is water.

この発明による造膜性無機化合物の構造は [Aa Bb]Cc Dd 又は[Aa Bb Cc Dd]sCp Dq 但しA…Si、Al B…FH、H、BH3、B2O3 C…Na、K、Li D…H2O、OH モル数…a、b、c、d、p、q、R、S と推定される。The structure of the film-forming inorganic compound according to the present invention is [Aa Bb] R Cc Dd or [Aa Bb Cc Dd] sCp Dq, where A ... Si, Al B ... FH, H, BH 3 , B 2 O 3 C ... Na, K, Li D ... H 2 O, OH moles ... a, b, c, d, p, q, R, S are estimated.

前記、この発明による製品は、30ミクロンの鉄箔に塗り
100℃で乾燥したところ6ミクロンに造膜し曲率半径2m/
mで90度に屈曲したが剥離クラックを生じなかった。加
熱乾燥物は鉛筆硬度3〜5Hであった。その鉄箔を、50℃
×90%RH×7日間で、錆の発生はなく防錆力を生じた。
この発明による製品を、ポリエステル不織布に塗布した
ところ、元素Si−B−Na品はSi−F−Na品よりはソフト
になったが、何れもフレキシブルでクラック、剥離な
く、ライターで直ちに着火することはなかった。50ミク
ロン鉄箔に塗り80℃で乾燥した。その厚みは7ミクロン
で硬度は9H以上であり、無塗布品は50回の屈曲で切れた
が、この発明による塗布品は120回まで切れなかった。
厚さ3.2m/mの鉄板をバーナーで加熱し、1分40秒で貫通
したが、この鉄板の両面に、Si−F−Na系の発明実施品
を塗布後バーナーで加熱したところ、貫通までに、4分
10秒を要した。
The product according to the present invention is coated on a 30-micron iron foil.
When it was dried at 100 ℃, it was formed into a film of 6 microns and the radius of curvature was 2m /
Although it was bent at 90 degrees at m, no peeling crack occurred. The heat-dried product had a pencil hardness of 3 to 5H. The iron foil, 50 ℃
× 90% RH × 7 days, no rust was generated, and rust preventive power was generated.
When the product according to the present invention was applied to a polyester non-woven fabric, the elemental Si-B-Na product became softer than the Si-F-Na product, but all of them were flexible and did not crack or peel, and were immediately ignited by a lighter. There was no. It was applied to a 50-micron iron foil and dried at 80 ° C. The thickness was 7 microns and the hardness was 9H or more. The uncoated product was cut by 50 times of bending, but the coated product according to the present invention could not be cut up to 120 times.
A 3.2 m / m-thick iron plate was heated with a burner and penetrated in 1 minute 40 seconds. When both sides of this iron plate were heated with a burner after applying Si-F-Na-based invention product, In 4 minutes
It took 10 seconds.

この発明による製品中、比重1.25、ケット測定固形分27
%のSi−F−K系品に、イソプロピルアルコール(I.P.
A)20%(容量)を加え混合し、放置した。一時間後
に、沈降物を取出したところ収率55%(重量)の比重1.
45の製品を得た。(これをP−Si−F−Kと記す)。同
様に、Si−B−Na系品の比重1.23ケット測定固形分25%
に、変性アルコール20容量部を加え混合し、一時間後収
率50重量部の比重1.43の製品を得た(これをP−Si−B
−Naと記す)。直径20m/mの棒鋼に、前記P−Si−F−
Kを10ミクロン厚に塗り、酸素バーナーで熔断したが、
塗料の様に燃えることなく、熔断部が盛上る事もなかっ
た。熔断部が200℃前後の頃に、前記P−Si−F−Kを
コートし、屋外に6ケ月間放置したが錆を認められなか
った。
The product according to the present invention has a specific gravity of 1.25 and a solid content of 27
% Si-F-K-based products, isopropyl alcohol (IP
A) 20% (volume) was added and mixed and left to stand. One hour later, the sediment was taken out and the specific gravity was 55% (by weight) 1.
Got 45 products. (This is referred to as P-Si-FK). Similarly, the specific gravity of Si-B-Na-based products is 1.23, and the solid content is 25%.
Then, 20 parts by volume of denatured alcohol was added and mixed, and after 1 hour, a product having a specific gravity of 1.43 with a yield of 50 parts by weight was obtained (this was P-Si-B
-Na). On a steel bar with a diameter of 20 m / m, the P-Si-F-
K was applied to a thickness of 10 microns and melted with an oxygen burner,
It did not burn like paint, and the fusing part did not rise. Around the melting point of about 200 ° C., the P-Si-FK was coated and left outdoors for 6 months, but no rust was observed.

この発明による製品のD.T.G解析結果によれば、140℃〜
180℃に大きな脱水、即ち余剰水の脱水あり、以後600℃
と800℃付近に結晶水脱の小さなピークが認められ、重
量変化は僅少であった。然しながら、これ等を鉄板に塗
り、余剰水脱水の200℃に加熱すると、表面造膜が早
く、余剰水脱水が遅延し、フクレを生ずる事が多い。水
和して、水酸化物や結晶水となり、余剰水を吸収する金
属化合物や鉱物焼成粉、例えば、Mg、Al化合物や、硅藻
状焼成粉が有効である。粘度のある、前記P−Si−F−
KやP−Si−B−Naに10重量部以下5重量部前後で、顕
著な効果を示した。10ミクロン厚に塗った鉄板を、180
℃で乾燥しても、更にバーナーで1000℃で加熱してもフ
クレを生じなかった。
According to the DTG analysis result of the product according to the present invention,
Large dehydration at 180 ℃, that is, excess water dehydration, then 600 ℃
At around 800 ° C, a small peak of water desorption was observed, and the change in weight was slight. However, when these are coated on an iron plate and heated to 200 ° C. for dehydration of excess water, surface film formation is rapid, dehydration of excess water is delayed, and blisters often occur. It is effective to use a metal compound or a mineral calcined powder that hydrates to form a hydroxide or crystal water and absorbs excess water, for example, a Mg or Al compound or a diatomaceous calcined powder. The viscous P-Si-F-
When K or P-Si-B-Na was added in an amount of 10 parts by weight or less and about 5 parts by weight, a remarkable effect was exhibited. 180 iron plate coated to a thickness of 10 microns
No blister occurred when dried at ℃ or heated at 1000 ℃ with a burner.

この発明による製品は、水溶液であるので、塗厚は10ミ
クロン前後になる。耐火防火性を増強するために塗厚を
増すには、フィラーを混入しなければならないが、貯蔵
安定性のあるカオリン、非晶質シリカヒューム等や、パ
イロフィライトシンター等がよく、パイロフィライト結
晶水脱水や、ムライト相や、クリストバライト相変化に
より耐火性を生ずる。粘着性は、硅藻土により、抗折力
は鉱物繊維により付与できる。以上の混合物は、金属、
例えば、ステンレス箔とアルミナシリカペーパーとの接
着材に用いて積層シートとすると、フレキシブルで、10
00℃に加熱しても加熱しても剥離がなく耐火性があっ
た。
Since the product according to the invention is an aqueous solution, the coating thickness is around 10 microns. In order to increase the coating thickness to enhance fire resistance, a filler must be mixed, but storage stable kaolin, amorphous silica fume, etc., pyrophyllite sinter etc. are good, and pyrophyllite Fire resistance occurs due to dehydration of water of crystallization, mullite phase, and cristobalite phase change. Tackiness can be imparted by diatomaceous earth, and transverse rupture strength can be imparted by mineral fibers. The above mixture is a metal,
For example, when it is used as a laminated sheet using an adhesive material of stainless steel foil and alumina silica paper, it is flexible and
There was no peeling even when heated to 00 ° C and there was fire resistance.

一方、透明で肉盛りのあるコーティングには、水晶、水
酸化マグネシウムやアルミニウムの様な透明なフィラー
が要る。この発明製品を、200℃以上の温度でスプレー
ドライヤーにかけると、大部分の余剰水を脱水し、数%
を残存せしめ、反応性を残すファインセラミックスビー
ズを得た。顕微鏡でみると5〜80ミクロンの球形の透明
品であった。
On the other hand, a transparent and thick coating requires a transparent filler such as quartz, magnesium hydroxide or aluminum. When this invention product is spray dried at a temperature of 200 ° C or higher, most of the excess water is dehydrated and
Was left, and fine ceramic beads that remained reactive were obtained. When viewed under a microscope, it was a spherical transparent product of 5 to 80 microns.

前記この発明による製品は、無機物であるので、高熱を
かけても燃焼することはないので、スプレー入口温度を
600℃にしてもよく、従って、スプレー供給量を多くし
て収率を多量に得る事ができた。これによりコストの安
いファインセラミックスビーズを得た。
Since the product according to the present invention is an inorganic substance, it does not burn even if it is exposed to high heat.
The temperature may be set to 600 ° C. Therefore, it was possible to increase the amount of spray supply and obtain a large amount of yield. As a result, low cost fine ceramic beads were obtained.

この発明による製品は、マグネシアセメントに3〜20%
加えてその硬化剤になる。従って、この発明による製品
に、マグネシアセメントをフィラーとして混合すると硬
化する。常温又は加熱して水和時発熱し、カルシウム成
分を溶出するセメント・石灰系水和発熱材・生石灰・ド
ロマイトは、前記同様にフィラーとして混入し硬化剤と
して作用する。金属に接着し硬化収縮は少く、1000℃の
耐火性を有していた。
The product according to the invention contains 3 to 20% magnesia cement.
In addition, it becomes the curing agent. Therefore, when the product according to the invention is mixed with magnesia cement as a filler, it cures. Cement, lime-based hydration exothermic material, quicklime, and dolomite, which generate heat at room temperature or when hydrated and elute calcium component, are mixed as fillers and act as a hardening agent as described above. It adhered to metal, had little curing shrinkage, and had fire resistance of 1000 ° C.

前記の様に、この発明による製品を加熱により造膜化を
行う場合、減圧加熱して余剰水の脱水をすれば、例えば
740ミリHg60℃は、常圧180℃〜200℃に相当するので、
効果的であるが、連続生産が難しい。又、繊維、フェル
ト状製品は、多数のヤーンで構成されていて空気を内蔵
しているので、そのまゝこの発明による製品で密閉し加
熱すると、膨張により、この発明による造膜は破壊し
て、耐火性も柔軟性も生じない。これらの場合に、耐ア
ルカリ性があり、アルコール酸基を有するPVAや、アク
リルや、多糖類蛋白を下塗材とし、又、空気置換用に使
用し、この発明による製品を上塗材とすると、縮合反応
し化学結合し、フクレなく低温乾燥し、フレキシビリテ
ィーを保持し、耐火防火を生じた。
As described above, when the product according to the present invention is formed into a film by heating, it is heated under reduced pressure to dehydrate excess water, for example,
Since 740 mm Hg 60 ° C is equivalent to atmospheric pressure 180 ° C-200 ° C,
Although effective, continuous production is difficult. Further, since the fiber or felt-like product is composed of a large number of yarns and contains air therein, if the product according to the present invention is hermetically sealed and heated, the film formation according to the present invention is destroyed due to expansion. , Neither fire resistance nor flexibility. In these cases, there is alkali resistance, PVA having an alcoholic acid group, acrylic, or polysaccharide protein as the undercoat material, and also used for air displacement, when the product according to the present invention as the overcoat material, condensation reaction It chemically bonded, dried at low temperature without blistering, retained flexibility, and gave fire protection.

(実施例−1) 容量1のプラスチック容器の底部に、金属シリコン5m
/m〜10m/m粒、300gを密にしき、硼砂10水塩の5倍溶液3
00ccを投入した。更にフレーク状苛性ソーダの数片を、
シリコン上に落下したが拡散して、シリコン表面に何の
反応をも生じなかった。次いで、苛性ソーダの3倍液50
ccを投入したところ、比重差で沈降し、金属表面から気
泡を生じ反応した。スポイトで底部より、吸上げた溶液
は、濃厚でPH14であったが、表面液はPH9.5にすぎなか
った。但し気温21℃水温18.4℃であった。
(Example-1) At the bottom of a plastic container with a capacity of 1
/ m ~ 10m / m grain, 300g densely packed, borax 10 hydrate 5 times solution 3
I put in 00cc. In addition, a few pieces of flaky caustic soda,
It fell on the silicon but diffused, causing no reaction on the silicon surface. Next, triple solution of caustic soda 50
When cc was added, it settled due to the difference in specific gravity and generated bubbles from the metal surface and reacted. The solution sucked up from the bottom with a dropper had a thick PH14, but the surface liquid was only PH9.5. However, the temperature was 21 ℃ and the water temperature was 18.4 ℃.

(実施例−2) 前記実施例−1の容器に、純度99.9%の0.5m/m径の金属
アルミニウム線を長さ10cmにカットし、200gを底部にし
きつめた。硼酸の10倍液、300ccを投入した後、フレー
ク状苛性ソーダを、さじ一杯分を落下投入した。反応
は、苛性ソーダ落下周辺にのみ生ずることなく、前記ア
ルミニウム線をつたって這う様に、白雲を生じて反応が
拡った。即ち反応容器底部の溶解度に応じて、アルカリ
濃度溶液を生じて反応を開始した。これは前記公知のア
メリカ特許に示す固形アルカリの局所領域反応ではない
と認めた。
(Example-2) A 0.5 m / m diameter metallic aluminum wire having a purity of 99.9% was cut into a length of 10 cm in the container of Example-1 described above, and 200 g was tightly placed at the bottom. After adding 300 cc of a 10-fold solution of boric acid, one scoop of flaky caustic soda was dropped. The reaction did not occur only around the fall of the caustic soda, but the reaction spread as white clouds crawl along the aluminum wire. That is, depending on the solubility of the bottom of the reaction vessel, an alkaline solution was generated to start the reaction. It was acknowledged that this was not the local area reaction of solid alkali as shown in the previously mentioned US patent.

(実施例−3) 前記実施例−1と同様に反応容器の底部に金属シリコン
をしきつめ、弗化ソーダ100gに水200gを加えた300gを入
れ、これにPH13の苛性カリ液50ccをいれても、順をか
え、苛性カリ液を容器に入れ、次いで金属シリコンを投
入し、更に前記弗化ソーダ液300gを除々に投入しても、
前記塩類であるので、即時に反応を開始することはな
く、徐々に反応を生じた。但し気温18℃、水温16℃であ
った。
(Example-3) Metallic silicon was squeezed at the bottom of the reaction vessel in the same manner as in Example-1, 300 g of 200 g of water was added to 100 g of sodium fluoride, and 50 cc of PH13 caustic potash was added to it. In order, put the caustic potash solution in a container, then add metallic silicon, and gradually add 300 g of the sodium fluoride solution,
Since it was the above-mentioned salts, the reaction did not start immediately, but the reaction gradually occurred. However, the temperature was 18 ℃ and the water temperature was 16 ℃.

(実施例−4) 気温21℃、水温18℃の条件下で、250のステンレスド
ラムに、15kgのフレーク状苛性ソーダを投入し、ついで
50の水を注いだ。直ちに底部にフレークが一部拡散
し、濃厚溶液を形成する様を観察できた。然し、全部溶
解することなく、白く固形のまゝ底部に残存した。次
に、直径5〜10cmの金属シリコン塊25kgを投入したとこ
ろ、底部の苛性濃厚溶液との反応で、シリコン表面か
ら、連続して気泡を生じた。次に、20の水に硼砂10水
塩25kgを混合し、その45kgを前記ステンレスドラムに投
入し、更に100となる迄水を加えた。ドラム壁の温度
は、90℃となり沸騰したので、更に50の水を加えて放
置した。翌日には、上澄のPH12.6、比重1.23、固形分24
%の透明溶液を別のステンレスドラムに移送し100を
得た。
(Example-4) Under conditions of an air temperature of 21 ° C and a water temperature of 18 ° C, 15 kg of flaky caustic soda was put into a 250 stainless steel drum, and then,
50 water was poured. Immediately, it was observed that flakes partially diffused to the bottom to form a concentrated solution. However, all remained undissolved and remained at the white, solid, bottom. Next, when 25 kg of a metal silicon block having a diameter of 5 to 10 cm was charged, bubbles were continuously generated from the silicon surface due to the reaction with the concentrated caustic solution at the bottom. Next, 25 kg of borax 10 hydrate was mixed with 20 water, and 45 kg thereof was put into the stainless steel drum, and water was further added until the water became 100. The temperature of the drum wall reached 90 ° C and boiled, so 50 more water was added and left to stand. The next day, the supernatant PH12.6, specific gravity 1.23, solids 24
% Transparent solution was transferred to another stainless drum to obtain 100.

底部に、金属シリコンと未反応苛性ソーダが未溶解で残
存したので、硼砂15kgを投入し、全量が150となる迄
注水した後、生スチームを吹込み50℃に昇温したとこ
ろ、反応を再開した。翌日にはPH12.2、比重1.203、固
形分21%の透明液、100を得た。即ち反応成分が過剰
であっても比重が1.1以上PHが12.6以下に達した上澄液
を移送すれば同一反応物が得られた。
Since metallic silicon and unreacted caustic soda remained undissolved at the bottom, 15 kg of borax was added, water was poured until the total amount reached 150, and then raw steam was blown in to raise the temperature to 50 ° C, and the reaction was restarted. . The next day, 100 was obtained, which was a clear liquid with a pH of 12.2, a specific gravity of 1.203 and a solid content of 21%. That is, even if the reaction components were excessive, the same reaction product was obtained by transferring the supernatant liquid having a specific gravity of 1.1 or more and PH of 12.6 or less.

(実施例−5) 気温25℃、水温21℃の条件で、金属シリコン塊直径30m/
m以下を22kg、硼酸10kg、苛性カリ3kgを固体混合し、前
実施例のステンレスドラムに投入して更に水70を注い
だ。直ちに50℃以上の発熱反応を開始し、翌日には結晶
状固形物を折出した。これに苛性カリ1kgを加えたとこ
ろ透明な粘稠な溶液となったので、棉布濾過した。PH1
2.2比重1.44の透明液12.5(約18kg)を得た。残余を
放置し、上澄液を得た。PH12.2比重1.45の透明液であっ
た。残渣は微粒金属シリコンが多く5.5kgであった。
(Example-5) Under conditions of an air temperature of 25 ° C and a water temperature of 21 ° C, a diameter of metallic silicon is 30 m /
22 kg of m or less, 10 kg of boric acid, and 3 kg of caustic potash were mixed in solid form, put into the stainless steel drum of the previous example, and water 70 was further poured. Immediately, an exothermic reaction at 50 ° C or higher was started, and the next day, a crystalline solid matter was broken out. When 1 kg of caustic potash was added to this, a transparent viscous solution was obtained, which was filtered with cotton cloth. PH1
2.2 Clear liquid 12.5 (about 18 kg) with a specific gravity of 1.44 was obtained. The residue was left to stand and a supernatant was obtained. It was a transparent liquid with a pH of 12.2 and a specific gravity of 1.45. The residue contained 5.5 kg of fine-grained metallic silicon.

(実施例−6) 前実施例−4の硼酸砂配合量を10kg、15kg、20kg、30k
g、40kg、50kgと変えて反応液がPH12.6以下で比重1.2以
上となれば反応をとめ分析した。何れもPH12〜12.6、比
重1.2以上、固形分20%以上の透明液を得た。反応容器
底部の溶解積の理論に従った反応結果を示し反応物は畧
同一である。
(Example-6) The amount of the borate sand compound of Example-4 was changed to 10 kg, 15 kg, 20 kg, 30 k.
The reaction was stopped when pH of the reaction solution was 12.6 or less and the specific gravity was 1.2 or more, instead of g, 40 kg, and 50 kg. In all cases, a transparent liquid having a pH of 12 to 12.6, a specific gravity of 1.2 or more and a solid content of 20% or more was obtained. The reaction results according to the theory of dissolution product at the bottom of the reaction vessel are shown, and the reactants are the same.

以上の実施例−4〜6を島津製分光器により分析した
が、Si、B、Na、K以外の元素はなかった。
The above Examples-4 to 6 were analyzed by a Shimadzu spectroscope, but there were no elements other than Si, B, Na and K.

(実施例−7) 前記実施例−4〜6の硼砂を弗化ソーダに替えて上澄液
がPH12〜12.6以下比重1.2以上となれば之を別のステン
レスドラムに移送したが何れも、PH12〜12.6、比重1.2
〜1.35、固形分20〜35%の透明液を得た。
(Example-7) The borax of Examples-4 to 6 was replaced with sodium fluoride, and when the supernatant became PH12 to 12.6 or less and the specific gravity of 1.2 or more, it was transferred to another stainless steel drum. ~ 12.6, specific gravity 1.2
A transparent liquid having a content of ˜1.35 and a solid content of 20 to 35% was obtained.

その一例を示す、前記実施例に用いたステンレスドラム
に、径20m/m〜100m/mの金属シリコン塊40kgをしきつ
め、次にフレーク状苛性ソーダ15kgをふりかけ、水温15
℃の水50を加えたところ、直ちにアルカリ濃厚溶液を
形成し、金属シリコンとの表面反応を生じ、連続して気
泡を生じた。次に50の水に弗化ソーダ40kgを混合し、
之を上記反応槽に投入した。活発に反応し、沸騰しかけ
たので、水60を加えて冷却した。その後液温は40℃以
下となったので生蒸気を吸込んで50℃以上に加温したと
ころ再び反応は活発となった。上澄液はPH12.6、比重1.
24となったので、その透明な上澄液を別のステンレスド
ラムに移送し静置した。常温時にはPH12.4、比重1.25と
なった。之から100ccをとり、弗酸20%液20ccを除々に
加えても、相溶しゲル化しなかった。比較の為に硅酸ソ
ーダ35%液に前記の弗酸を加えたところゲル化した。こ
の発明による製品は、元素がSi、F、Naであっても透明
液であった。
An example thereof, the stainless steel drum used in the above example, the metal silicon lump of diameter 20m / m ~ 100m / m 40kg, and then sprinkled with flake caustic soda 15kg, water temperature 15
When 50 ° C. water was added, an alkaline concentrated solution was immediately formed, a surface reaction with metallic silicon was caused, and bubbles were continuously generated. Next, mix 40 kg of sodium fluoride with 50 parts of water,
Was charged into the above reaction tank. Since it reacted vigorously and started to boil, water 60 was added to cool it. After that, the liquid temperature became 40 ° C or lower, so when the raw steam was sucked in and heated to 50 ° C or higher, the reaction became active again. The supernatant is PH12.6, specific gravity 1.
Since it became 24, the transparent supernatant was transferred to another stainless steel drum and allowed to stand. At room temperature, it had a pH of 12.4 and a specific gravity of 1.25. Even if 100 cc was taken and 20 cc of 20% hydrofluoric acid solution was gradually added, they did not become compatible and did not gel. For comparison, the above hydrofluoric acid was added to a 35% sodium silicate solution to cause gelation. The product according to the present invention was a clear liquid even if the elements were Si, F and Na.

(実施例−8) 前記実施例−2において、金属アルミニウム300gにジル
コン10gを加え、苛性リチウムの5倍液を100cc投入する
と、固体金属とアルカリ濃厚溶液が発熱反応を生じ、こ
れに80℃の35%硼砂を3m/mステンレスパイプを通じて容
器底部に除々に吹きこんだ。PH9.5になるまで続けると
粘稠な液となったので、上澄液を別容器にとり密閉放置
した。1日後PH7.8、比重1.6の半透明粘稠液を得た。
(Example-8) In Example-2, when 10 g of zircon was added to 300 g of metallic aluminum and 100 cc of a 5 times solution of caustic lithium was added, the solid metal and the concentrated alkali solution caused an exothermic reaction, which was heated to 80 ° C. 35% borax was gradually blown into the bottom of the container through a 3 m / m stainless pipe. Since it became a viscous liquid when it was kept at PH 9.5, the supernatant was put in another container and left to seal. One day later, a semitransparent viscous liquid having a pH of 7.8 and a specific gravity of 1.6 was obtained.

(実施例−9) 耐圧密閉のステンレスドラムよりなる反応容器(5)
に、径10m/m前後の金属シリコン1kgとフレーク苛性カリ
150gを混合していれ、排気はパイプで水溶器に導入し外
気に排出しない様にセットした。注水孔から2の水を
いれ、発熱して80℃となったので、気体の無水弗酸を底
部に除々に注入し、反応液温が50℃以下とならぬ様に、
時には加温し、PH10以内の9.5となるまで続けた後、反
応をとめ上澄液を取出し静置した。比重1.3、PH7.6の粘
度ある透明品を得た。無水弗酸に替えて、硼弗酸を使用
しても、又苛性カリに替えて苛性ソーダ、苛性リチウム
を使用しても同様の粘度ある透明品を得た。順を替えて
シリコンと38%弗酸に加温しながら固形アルカリ金属を
散布してPH10としたが、同様にPH8、比重1.35の結果を
得た。島津製分光機分析によっても、Si、F、Na、K、
Li以外分析されず、硅酸ソーダに弗化物を加えれば硬化
するが、この発明による製品は弗化物があっても溶液
で、公知物質ではない事が解った。
(Example-9) A reaction vessel (5) made of a pressure-tightly sealed stainless steel drum.
In addition, 1 kg of metal silicon with a diameter of around 10 m / m and flake caustic potash
Even if 150g was mixed, the exhaust was piped into the water tank and set so that it would not be discharged into the atmosphere. Pour 2 water from the water injection hole and heat up to 80 ° C, so slowly inject gaseous hydrofluoric acid to the bottom so that the reaction liquid temperature does not fall below 50 ° C.
After occasionally warming and continuing until pH was within 9.5, the reaction was stopped and the supernatant was taken out and allowed to stand. A transparent product with a specific gravity of 1.3 and a pH of 7.6 was obtained. A transparent product having the same viscosity was obtained by using boric hydrofluoric acid instead of anhydrous hydrofluoric acid or caustic soda or caustic lithium instead of caustic potash. In order, PH10 was obtained by spraying solid alkali metal while heating to silicon and 38% hydrofluoric acid, and PH8 and specific gravity of 1.35 were also obtained. According to Shimadzu spectroscopic analysis, Si, F, Na, K,
Other than Li was not analyzed, it was hardened by adding fluoride to sodium silicate, but it was found that the product according to the present invention is a solution even if there is fluoride, and is not a known substance.

(実施例−10) 前記実施例−4〜6による製品に、金属成分として硅酸
ソーダを0%、3%、10%、30%、40%と置きかえ配合
し、ステンレス箔に塗り、100℃で加熱養生し、5m/m屈
曲90度を試みた。塗厚は20ミクロン以下で硅酸ソーダ40
%を除きクラックを生じなかった。硬度は5H〜9Hであっ
た。
(Example-10) The products of Examples-4 to 6 were mixed with 0%, 3%, 10%, 30%, and 40% of sodium silicate as a metal component, and the mixture was coated on a stainless steel foil, and the temperature was 100 ° C. It was cured by heating at 5m / m and tried to bend at 90 degrees. The coating thickness is 20 microns or less and sodium silicate 40
%, No cracks occurred. The hardness was 5H-9H.

同様に、触媒化成のカタロイドSA(SiO230%)を1%〜
35%加えて塗厚10ミクロン以下にステンレス箔に塗り加
熱乾燥した後、2m/m屈曲した。何れも剥離はなかった。
Similarly, catalytic conversion of cataloid SA (SiO 2 30%) from 1% to
After adding 35% and applying a coating thickness of 10 μm or less onto a stainless steel foil and heating and drying, it was bent at 2 m / m. There was no peeling in either case.

(実施例−11) 前記実施例−8の鉱酸を弗酸、弗化ソーダに替えて生成
したPH7〜10、PH11〜12.6の比重1.1〜1.6の各製品に、
その固形分に対し、アルミナゾルを固形分換算0〜100
%加え、又アルミン酸ソーダを0〜50%を加え、50ミク
ロン鉄箔に12ミクロン厚さに塗り、80℃で乾燥し、2m/m
屈曲試験したが、剥離、クラックを生じなかった。硬度
は3H〜9Hであった。
(Example-11) PH7 to 10 produced by replacing the mineral acid of Example-8 with hydrofluoric acid and sodium fluoride, and each product having a specific gravity of 1.1 to 1.6 of PH11 to 12.6,
Alumina sol is converted to solid content based on solid content 0-100
%, And 0 to 50% of sodium aluminate, applied to a 50 micron iron foil to a thickness of 12 microns, dried at 80 ° C., 2 m / m
A bending test was conducted, but no peeling or cracking occurred. The hardness was 3H-9H.

(実施例−12) 前記実施例−6、7の比重1.25、PH12.2の製品に、水40
部、I.P.A20部、PH2の塩酸20部の混合水を20部加えて静
置した。上澄液をすてた沈降物の比重は1.43で収率は55
%であった。96%メタノールを10%加えると、比重1.46
の収率は45%であった。エタノールを加えて比重1.42の
収率は57%であった。変性エタノールでも収率は畧同様
であった。
(Example-12) 40 parts of water was added to the products of the specific gravity of 1.25 and PH12.2 of the above-mentioned Examples-6 and 7.
Part, 20 parts of IPA, 20 parts of a mixed water of 20 parts of hydrochloric acid of PH2 were added and allowed to stand. The specific gravity of the sediment containing the supernatant was 1.43 and the yield was 55.
%Met. When 96% methanol 10% is added, the specific gravity is 1.46.
The yield was 45%. The yield with a specific gravity of 1.42 after adding ethanol was 57%. Even with denatured ethanol, the yield was similar.

(実施例−13) 前実施例のP−Si−F−Na100部の粘度は420CPSであっ
た。これにカオリン20部、ポゾラン40部、硅藻土2.5部
を混合すると、粘度は1200CPSとなった。鉄板(10m/m)
に団子づけしてアルミナシリカブランケット12.5m/mを
圧着し、1200℃迄加熱したが、2時間後においても剥
離、クラックは生じなかった。更に上記にフィラーを加
えて100部以上とすると粘度は2000CPSとなった。
(Example-13) The viscosity of 100 parts of P-Si-F-Na of the previous example was 420 CPS. When 20 parts of kaolin, 40 parts of pozzolan and 2.5 parts of diatomaceous earth were mixed with this, the viscosity became 1200 CPS. Iron plate (10m / m)
Alumina-silica blanket (12.5 m / m) was pressure-bonded and heated to 1200 ° C., but no peeling or cracking occurred even after 2 hours. Furthermore, when a filler was added to the above to make it 100 parts or more, the viscosity became 2000 CPS.

(実施例−14) 前記水性造膜性無機化合物の固形分を除く余剰水を、セ
メントの混錬水とし、混錬水/セメント=0.35〜1とな
る様に配合した。これを硅酸カルシウム板に0.5m/m厚に
塗付した結果を表2に示す。
(Example-14) Excess water excluding the solid content of the aqueous film-forming inorganic compound was used as cement mixing water, and was mixed so that mixing water / cement = 0.35-1. Table 2 shows the results of applying this to a calcium silicate plate at a thickness of 0.5 m / m.

(実施例−15) 前記実施例の表2のを、大河原工機のスプレー
ドドライヤーで、入口温度を200℃から600℃に変化し
て、粒子サイズを観察したが50〜100ミクロンのほぼ球
形品が、固形分に対し95%以上の収率があった上、水分
は前記実施例の量が2〜5%に減少した。
Example 15 In Table 2 of the above example, the inlet temperature was changed from 200 ° C. to 600 ° C. with a spray dryer of Okawara Koki Co., Ltd., and the particle size was observed. The product had a yield of 95% or more based on the solid content, and the water content was reduced to 2 to 5% in the above-mentioned example.

(実施例−16) PVA10%液20gと、実施例−14の20gと混合するとゲル
体が分離され、これを乾燥して後もゴム状彈性を示し、
ライターで着火してもフラッシュを生じなかった。
(Example-16) When 20 g of PVA 10% liquid and 20 g of Example-14 were mixed, a gel body was separated, and this was dried to show rubber-like elasticity,
Ignition with a lighter did not cause a flash.

(実施例−17) PVA5%液に100g/m2の日東紡製ガラスクロスを含浸乾燥
(70℃)して後、実施例−14のを含浸し、しぼって後
乾燥(120℃)した製品はフレキシブルで1000℃のバー
ナーで加熱したが、熔融貫通はしなかった。
(Example-17) A product obtained by impregnating and drying (70 ° C) 100g / m 2 of Nitto Boseki glass cloth in 5% PVA liquid, and then impregnating the product of Example-14, squeezing and post-drying (120 ° C). Was flexible and heated with a 1000 ° C burner, but did not penetrate through the melt.

(実施例−18) PVA10%液に、カオリンを10部配合し硅カル板に下塗し
た。実施例−14のを上塗し、100℃乾燥したが、フク
レを生じることなく、シリンダーによる耐透水試験によ
っても、0.1g/cm2にすぎなかった。
(Example-18) 10 parts of PVA was mixed with 10 parts of kaolin to undercoat a silica plate. Example 14 was overcoated and dried at 100 ° C., but it did not cause blistering, and it was only 0.1 g / cm 2 in a water permeation resistance test using a cylinder.

(実施例−19) エチレングリコールに、杉、桧、スプルス、ラワン等の
10cm×20cm×0.1cmの板を含浸させ、6時間後に引揚
げ、付着した表面ゲルを洗いおとし乾燥して後、実施例
−14のに再び含浸し12時間後に引揚げ乾燥した。850
℃のバーナーで加熱したが、カーボン化はするがフラッ
シュオーバーにはならなかった。
(Example-19) Add ethylene glycol to cedar, Japanese cypress, spruce, lauan, etc.
A plate of 10 cm × 20 cm × 0.1 cm was impregnated, lifted after 6 hours, the surface gel adhering thereto was washed and dried, then impregnated again in Example-14 and lifted and dried after 12 hours. 850
When heated with a burner at ℃, carbonization occurred but flashover did not occur.

(実施例−20) 第1図は実施例−14ののDTGである。170℃と470℃と5
70℃と670℃に吸熱ピーク、脱水があるが、300℃以降の
重量変化は微量である。第2図はDTGの概畧図である。
(Example-20) Fig. 1 is a DTG of Example-14. 170 ° C and 470 ° C and 5
There is an endothermic peak and dehydration at 70 ℃ and 670 ℃, but the weight change after 300 ℃ is very small. Figure 2 is a schematic diagram of DTG.

表3は、実施例−14の、、、を現している。Table 3 shows the results of Example-14 ,.

【図面の簡単な説明】[Brief description of drawings]

第1図は表3のの示差熱、分析を示す図。 第2図は第1図における減量と吸熱パターンの概畧図。 FIG. 1 is a diagram showing the differential heat and analysis of Table 3. FIG. 2 is a schematic diagram of the weight loss and endothermic pattern in FIG.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】金属アルミニウム又は金属シリコンと、水
和して硼酸や弗酸を解離する硼砂、硼酸、弗化ソーダ又
は弗酸などの鉱酸化合物と、苛性カリ、苛性ソーダ又は
苛性リチウムのアルカリ金属とを反応させるに際し、水
中又は前記鉱酸化合物の溶液中で、前記金属固体と前記
アルカリ金属との濃厚溶液反応を生ぜしめ、更に前記鉱
酸化合物を反応せしめ、該反応熱を50℃以上100℃以内
に制御すると共に、生成物の比重を1.1以上として造膜
することを特徴とした水性造膜性無機化合物の製造方
法。
1. A metal aluminum or silicon, a mineral acid compound such as borax, boric acid, sodium fluoride or hydrofluoric acid which hydrates to dissociate boric acid or hydrofluoric acid, and an alkali metal of caustic potash, caustic soda or caustic lithium. When reacting, in water or a solution of the mineral acid compound, to cause a concentrated solution reaction of the metal solid and the alkali metal, further react the mineral acid compound, the reaction heat 50 ℃ or more 100 ℃ A method for producing an aqueous film-forming inorganic compound, which comprises controlling the temperature within the range and forming a film with a specific gravity of the product of 1.1 or more.
【請求項2】生成した水性造膜性無機化合物に、金属の
化合物を加えて、金属成分を過剰ならしめることを特徴
とした請求項1記載の水性造膜性無機化合物の製造方
法。
2. The method for producing an aqueous film-forming inorganic compound according to claim 1, wherein a metal compound is added to the produced aqueous film-forming inorganic compound to make the metal component excessive.
【請求項3】水性造膜性無機化合物に、鉱酸を加え又は
加えないアルコール類を、混合して生成した、比重1.3
以上の沈降物としたことを特徴とする請求項1又は2記
載の水性造膜性無機化合物の製造方法。
3. A specific gravity of 1.3, which is produced by mixing an aqueous film-forming inorganic compound with an alcohol with or without a mineral acid.
The method for producing an aqueous film-forming inorganic compound according to claim 1 or 2, wherein the above-mentioned sediment is used.
【請求項4】水性造膜性無機化合物に、天然又は合成の
鉱物粉や鉱物繊維、鉱物層状物を加えて、増粘したこと
を特徴とする請求項1、2、3の何れか1つ記載の水性
造膜性無機化合物の製造方法。
4. The aqueous film-forming inorganic compound is added with natural or synthetic mineral powder, mineral fibers, or a mineral layered product to increase the viscosity. A method for producing the aqueous film-forming inorganic compound described.
【請求項5】水性無機化合物に、水酸化物となる金属化
合物か水硬性組成物を加えることを特徴とした請求項
1、2、3、4の何れか1つ記載の水性造膜性無機化合
物の製造方法。
5. The aqueous film-forming inorganic material according to any one of claims 1, 2, 3 and 4, characterized in that a metal compound which becomes a hydroxide or a hydraulic composition is added to the aqueous inorganic compound. Method for producing compound.
【請求項6】水性無機化合物を上塗材とし、アルコール
基を有する合成樹脂含有物を下塗材としたことを特徴と
する請求項1、2、3、4、5の何れか1つ記載の水性
造膜性無機化合物の製造方法。
6. The aqueous solution according to claim 1, wherein the water-based inorganic compound is used as a top coating material and the synthetic resin-containing material having an alcohol group is used as a base coating material. A method for producing a film-forming inorganic compound.
【請求項7】水性造膜性無機化合物を、150℃〜600℃の
入力ドライヤー温度でスプレードライヤー処理して生成
したことを特徴とする請求項1、2、3の何れか1つ記
載の水性造膜性無機化合物の製造方法。
7. The aqueous solution according to claim 1, which is produced by spray-drying the aqueous film-forming inorganic compound at an input dryer temperature of 150 ° C. to 600 ° C. A method for producing a film-forming inorganic compound.
JP14439788A 1988-06-10 1988-06-10 Method for producing aqueous film-forming inorganic compound Expired - Fee Related JPH0714801B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP14439788A JPH0714801B2 (en) 1988-06-10 1988-06-10 Method for producing aqueous film-forming inorganic compound
AU36281/89A AU634962B2 (en) 1988-06-10 1989-06-09 Water-Soluble, film-forming inorganic compounds
DE68925756T DE68925756T2 (en) 1988-06-10 1989-06-12 Water-soluble film-forming inorganic compounds, fire-resistant and fire-resistant composite materials and fire-resistant flexible film composite materials for coatings from these compounds and methods for producing a fire-resistant coating
EP89305928A EP0346162B1 (en) 1988-06-10 1989-06-12 Water-soluble, film-forming inorganic compounds, fireproof and fire-resistance composites and fire-resistance, flexible, sheet composite covering materials formed by the use of the compounds, and fire-resistance-covering process
CA000602501A CA1333745C (en) 1988-06-10 1989-06-12 Water-soluble, film-forming inorganic compounds, fireproof and fire-resistance composites and fire-resistance, flexible, sheet composite covering materials formed by the use of the compounds, and fire-resistance-covering process
US07/365,112 US5049316A (en) 1988-06-10 1989-06-12 Water-soluble, film-forming inorganic compounds, fireproof and fire-resistant composites and fire-resistant, flexible, sheet composite covering materials formed by the use of the compounds, and process for preparing fire-resistant coverings
US07/693,480 US5234631A (en) 1988-06-10 1991-04-30 Fireproof or refractory materials containing fire-resistant, water soluble, film-forming inorganic compounds
US08/066,223 US5368950A (en) 1988-06-10 1993-05-25 Water-soluble, film-forming inorganic compounds, fireproof and fire-resistance composites and fire-resistance, flexible, sheet composite covering materials formed by the use of the compounds, and fire-resistance-covering process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14439788A JPH0714801B2 (en) 1988-06-10 1988-06-10 Method for producing aqueous film-forming inorganic compound

Publications (2)

Publication Number Publication Date
JPH01313303A JPH01313303A (en) 1989-12-18
JPH0714801B2 true JPH0714801B2 (en) 1995-02-22

Family

ID=15361209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14439788A Expired - Fee Related JPH0714801B2 (en) 1988-06-10 1988-06-10 Method for producing aqueous film-forming inorganic compound

Country Status (1)

Country Link
JP (1) JPH0714801B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058815A (en) * 1999-08-22 2001-03-06 Hiroshi Kokuta Molding precursor of aqueous film-forming inorganic compound increased in molecular weight and molding thereof
JPWO2002062916A1 (en) * 2001-02-08 2004-06-10 博 穀田 Inorganic dissolution accelerator that makes metals or inorganic substances water-soluble
JP2008307485A (en) * 2007-06-15 2008-12-25 Hiroshi Kokuta Method of controlling colloid particle diameter in water based film forming inorganic colloid solution
JP2010019051A (en) * 2008-07-14 2010-01-28 Misera:Kk Asbestos antiscattering agent and asbestos antiscattering method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1445289A4 (en) * 2001-06-22 2006-05-31 Hiroshi Kokuta Aqueous film forming inorganic composition inorganic foam thermally insulating composite and method for production thereof
JP4439234B2 (en) * 2003-10-10 2010-03-24 学校法人金沢工業大学 Aqueous solution of boron compound stable at room temperature, its production method and its use
WO2006075805A1 (en) * 2005-01-17 2006-07-20 Yasutalou Fujii Inorganic adhesive composition to be mixed before using
JP2013082586A (en) * 2011-10-11 2013-05-09 Saibun Hayashi Modifier production apparatus and modifier

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001058815A (en) * 1999-08-22 2001-03-06 Hiroshi Kokuta Molding precursor of aqueous film-forming inorganic compound increased in molecular weight and molding thereof
JPWO2002062916A1 (en) * 2001-02-08 2004-06-10 博 穀田 Inorganic dissolution accelerator that makes metals or inorganic substances water-soluble
JP2010065228A (en) * 2001-02-08 2010-03-25 Hiroshi Kokuta Inorganic dissolution accelerator, amorphous high-concentration water-soluble inorganic compound, solventless inorganic foam, nonflammable organic-inorganic foam and composition rapidly curable by heating
JP4555394B2 (en) * 2001-02-08 2010-09-29 博 穀田 Inorganic dissolution promoter, amorphous high-concentration aqueous solution inorganic compound, solvent-free inorganic foam, noncombustible organic-inorganic foam, and heat-curable composition
JP2008307485A (en) * 2007-06-15 2008-12-25 Hiroshi Kokuta Method of controlling colloid particle diameter in water based film forming inorganic colloid solution
JP2010019051A (en) * 2008-07-14 2010-01-28 Misera:Kk Asbestos antiscattering agent and asbestos antiscattering method

Also Published As

Publication number Publication date
JPH01313303A (en) 1989-12-18

Similar Documents

Publication Publication Date Title
Weldes et al. Properties of soluble silicates
Temuujin et al. Preparation and thermal properties of fire resistant metakaolin-based geopolymer-type coatings
US5049316A (en) Water-soluble, film-forming inorganic compounds, fireproof and fire-resistant composites and fire-resistant, flexible, sheet composite covering materials formed by the use of the compounds, and process for preparing fire-resistant coverings
US4030939A (en) Cement composition
US4415364A (en) One-package inorganic binder composition
JPH0714801B2 (en) Method for producing aqueous film-forming inorganic compound
US3788885A (en) Fibrous materials
CN101525247A (en) Method for processing aluminium refractory material by nanometer mullite
JP2010065228A (en) Inorganic dissolution accelerator, amorphous high-concentration water-soluble inorganic compound, solventless inorganic foam, nonflammable organic-inorganic foam and composition rapidly curable by heating
US8167995B2 (en) Inorganic phosphate resins and method for their manufacture
CN112830748A (en) Preparation method of intrinsic hydrophobic non-intumescent steel structure fireproof coating
RU2248385C1 (en) Method for production of polysilicate binder for adhesives and coats, polysilicate binder, and adhesive composition for adhesives and coats using the same
WO1987005288A1 (en) Basic refractory composition
JP2002128527A (en) Method of manufacturing synthetic silicate and the use in production of glass
JP2001089127A (en) Inorganic co-condensed sol and coating and adhesive agent produced by using the sol
KR100351346B1 (en) Moncombustible coating and manufacturing process for building
JPS61117181A (en) Coating composition
US20190218149A1 (en) Porous molded body in the form of an insulating plaster layer or an insulating panel
CN113321435A (en) Alkali-activated fluidized bed fly ash geopolymer and preparation method thereof
JPS61117168A (en) Refractory composition
JPH07224272A (en) Heat-resistant binder and coating material emitting small amount of exhaust gas and their use
JPH08188442A (en) Low temperature curing composition and formation of glassy coating membrane
JP2003286068A (en) Hardening accelerator for inorganic adhesive composition, inorganic adhesive composition and method of producing compact thereof
Karpukhin et al. A mechanism for phosphate hardening and prospects for the use of metal phosphate materials (an overview). Part II. Adhesive properties of binding phosphate materials
US712807A (en) Process of treating mineral substances by heat and pressure.

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees