JPH07147800A - Variable speed equipment - Google Patents

Variable speed equipment

Info

Publication number
JPH07147800A
JPH07147800A JP5294848A JP29484893A JPH07147800A JP H07147800 A JPH07147800 A JP H07147800A JP 5294848 A JP5294848 A JP 5294848A JP 29484893 A JP29484893 A JP 29484893A JP H07147800 A JPH07147800 A JP H07147800A
Authority
JP
Japan
Prior art keywords
current
component
voltage
magnetic flux
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5294848A
Other languages
Japanese (ja)
Other versions
JP3265768B2 (en
Inventor
Yasuhiro Yamamoto
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP29484893A priority Critical patent/JP3265768B2/en
Priority to US08/286,245 priority patent/US5594670A/en
Publication of JPH07147800A publication Critical patent/JPH07147800A/en
Application granted granted Critical
Publication of JP3265768B2 publication Critical patent/JP3265768B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable highly accurate measurement even with a load connected to an induction motor, by calculating at an operation unit the error in magnetic flux phase between actual magnetic flux axis and control axis from secondary time constants, voltages before and immediately after current cut-off and frequency components among stored measurement data obtained by a first and a second measuring means. CONSTITUTION:A measurement and storage unit 12 measures and stores output current detection values i1d, i1q in the ordinary operation state before a select switch 11 rapidly changes a current command to zero, voltage control signals V1d, V1q and angular frequency omega1. A measurement and storage unit 13 measures and stores output current detection values i1d, i1q in the transitional state immediately after the select switch 11 rapidly changes a current command to zero, voltage control signal V1d, V1q and variations in angular frequency omega1 on a time basis. A constant operation unit 15 calculates the secondary time constant tau2, magnetic flux phase error theta, exciting inductance M' and leakage reactance Lsigma of an induction motor 1. This enables highly accurate measurement of constants.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘導電動機の可変速装
置に係り、特に電流制御系を有してベクトル制御する誘
導電動機の定数測定機能を持つようにした可変速装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction motor variable speed device, and more particularly to a variable speed device having a constant control function of an induction motor having a current control system for vector control.

【0002】[0002]

【従来の技術】誘導電動機の定数測定法としては、JE
C37等の規格がある。このJEC37では、直流電位
降下法により一次抵抗を、拘束試験により漏れインダク
タンスと二次抵抗を、無負荷試験により励磁インダクタ
ンスを計測する。
2. Description of the Related Art As a constant measuring method for an induction motor, JE
There are standards such as C37. In this JEC37, the primary resistance is measured by the DC potential drop method, the leakage inductance and the secondary resistance are measured by the restraint test, and the exciting inductance is measured by the no-load test.

【0003】[0003]

【発明が解決しようとする課題】従来の定数測定法にお
いて、拘束試験には電動機の出力軸を固定する手段が必
要であり、測定に大掛かりな器具を必要とすることが多
い。
In the conventional constant measuring method, the constraint test requires means for fixing the output shaft of the electric motor, and often requires a large-scale instrument for measurement.

【0004】また、計測条件については計測電圧が低い
ため、実際の運転時に二次回路に発生する周波数成分よ
り高い周波数で計測することにより、所期の電圧精度を
得ている。
Regarding the measurement conditions, since the measured voltage is low, the desired voltage accuracy is obtained by measuring at a frequency higher than the frequency component generated in the secondary circuit during actual operation.

【0005】このため、二次導体が二重かご形等の特殊
形状になる誘導電動機の拘束試験では、表皮効果の影響
により、運転周波数より高い周波数で計測した漏れイン
ダクタンスの値と実際の運転時の値との間に誤差を生じ
てしまう。
Therefore, in a constraint test of an induction motor in which the secondary conductor has a special shape such as a double squirrel cage, due to the effect of the skin effect, the value of the leakage inductance measured at a frequency higher than the operating frequency and the actual operating time There is an error with the value of.

【0006】したがって、JEC37のような拘束試験
による測定定数を用いたベクトル制御や、ベクトル制御
における二次抵抗の温度変動補償などの高機能制御を行
った場合に出力トルク等に誤差が発生し、高精度制御が
難しくなる。
Therefore, when vector control using measurement constants by a restraint test such as JEC37 or high-performance control such as temperature fluctuation compensation of secondary resistance in vector control is performed, an error occurs in output torque, etc. High precision control becomes difficult.

【0007】以上のように、従来の定数測定では、実際
の運転条件での誘導機定数が正確に求められないため、
ベクトル制御では実際に負荷トルク特性試験を行い、ト
ルク特性結果や、過渡応答特性等の運転特性が理想的な
特性と一致するよう作業者の感により誘導機定数を調整
していた。
As described above, in the conventional constant measurement, since the induction machine constant under the actual operating conditions cannot be accurately obtained,
In the vector control, the load torque characteristic test was actually conducted, and the induction machine constant was adjusted according to the operator's feeling so that the torque characteristic result and the operating characteristics such as the transient response characteristics would match the ideal characteristics.

【0008】本願発明者等は、過渡現象を利用して誘導
機の定数を高精度に測定する方法を既に提案している
(平成5年電気学会全国大会、講演論文集[6]、22
頁、636、インバータを用いた誘導機定数測定)。
The inventors of the present application have already proposed a method of measuring the constant of an induction machine with high accuracy by utilizing a transient phenomenon (1993 Annual Meeting of the Institute of Electrical Engineers, Proceedings [6], 22.
Page, 636, Induction machine constant measurement using an inverter).

【0009】この測定方法では、無負荷運転という計測
条件があるのに対し、実際の可変速設備では誘導機がギ
ヤ装置などに組み込まれた後では完全な無負荷運転がで
きないため、定数測定に多少の負荷トルクが存在し、無
負荷運転条件での測定ができないことがある。
In this measuring method, there is a measurement condition of no-load operation, but in an actual variable speed equipment, no complete no-load operation is possible after the induction machine is incorporated into a gear device, so that constant measurement is required. There may be some load torque and it may not be possible to measure under no-load operating conditions.

【0010】本発明の目的は、誘導電動機に負荷が接続
されている場合にも高精度の電動機定数測定を行うこと
ができ、しかも定数測定を容易にする可変速装置を提供
することにある。
An object of the present invention is to provide a variable speed device which can perform highly accurate motor constant measurement even when a load is connected to the induction motor, and which facilitates constant measurement.

【0011】[0011]

【課題を解決するための手段】本発明は、前記課題の解
決を図るため、半導体電力変換装置から誘導機に供給す
る電流を制御する電流制御系を有して該誘導機を制御す
る可変速装置において、定常運転状態での誘導機の一次
電圧と電流及び周波数成分を計測・記憶する第1の計測
手段と、前記定常運転状態で前記電流制御系の電流指令
を零に急変した後の誘導機の一次電圧と電流及び周波数
成分を時間別に計測・記憶する第2の計測手段と、前記
両計測手段の計測・記憶データのうち、電流指令を零に
急変した後の電圧計測値の減衰係数から誘導機の二次時
定数τ2を演算し、この二次時定数τ2と電流零の変化前
及び変化直後の電圧と周波数成分より実磁束軸と制御軸
の磁束位相誤差Δφを演算する演算部とを備えたことを
特徴とする可変速装置。
In order to solve the above-mentioned problems, the present invention has a variable speed control system for controlling an induction machine having a current control system for controlling a current supplied from a semiconductor power converter to the induction machine. In the apparatus, first measuring means for measuring and storing the primary voltage, current and frequency components of the induction machine in a steady operation state, and induction after suddenly changing the current command of the current control system to zero in the steady operation state Second measuring means for measuring and storing the primary voltage, current and frequency components of the machine according to time, and an attenuation coefficient of the voltage measured value after the current command is suddenly changed to zero among the measured and stored data of both measuring means. The secondary time constant τ 2 of the induction machine is calculated from this, and the magnetic flux phase error Δφ between the actual magnetic flux axis and the control axis is calculated from this secondary time constant τ 2 and the voltage and frequency components before and immediately after the change of zero current. Variable speed equipment characterized by having an arithmetic unit .

【0012】また、本発明は、前記演算部は、前記電流
指令を零に急変した後の前記一次電圧計測値を指数関数
で近似し、該近似式の係数成分から電流指令を零に変化
させた直後の出力電圧成分を推定する電圧初期値推定演
算手段と、前記推定する電圧成分のうち速度起電力成分
を分離演算する速度起電力成分演算手段と、前記定常運
転状態の電流成分から前記磁束位相誤差によって実磁束
軸に対応する励磁電流成分を抽出する磁束軸電流成分演
算手段と、前記各演算手段による速度起電力と磁束軸電
流成分及び電流指令を零に急変したときの角速度より励
磁インダクタンスM’を演算する演算手段と、定常運転
時の電圧計測値と前記速度起電力との差電圧のうち電流
に直交する電圧成分と定常運転時の電流値及び前記角速
度より漏れインダクタンスLσを演算する演算手段とを
備えたことを特徴とする。
In the present invention, the arithmetic unit approximates the primary voltage measurement value after the current command is suddenly changed to zero by an exponential function, and changes the current command to zero from the coefficient component of the approximate expression. Voltage initial value estimation calculation means for estimating the output voltage component immediately after the operation, speed electromotive force component calculation means for separately calculating the speed electromotive force component of the estimated voltage component, and the magnetic flux from the current component in the steady operation state. A magnetic flux axis current component calculating means for extracting an exciting current component corresponding to an actual magnetic flux axis due to a phase error, and an exciting inductance from an angular velocity when the speed electromotive force and the magnetic flux axis current component and the current command by each calculating means are suddenly changed to zero. M'calculates a leakage component from the voltage component orthogonal to the current in the voltage difference between the voltage measurement value during steady operation and the speed electromotive force, the current value during steady operation, and the angular velocity. And a calculating means for calculating the closet Lσ.

【0013】[0013]

【作用】以下、本発明の可変速装置を使った誘導機の定
数計測を原理的に説明する。
In principle, the constant measurement of the induction machine using the variable speed device of the present invention will be described below.

【0014】(1)等価回路の近似 ベクトル制御では、簡略化のために、鉄損成分をT−I
型等価回路の励磁インダクタンスM’と並列な鉄損抵抗
として取り扱う。これは、鉄損電流回路と二次回路とは
励磁インダクタンスM’で密結合しており、漏れ成分が
無いと近似したものである。
(1) In the approximate vector control of the equivalent circuit, the iron loss component is represented by TI for simplification.
It is treated as an iron loss resistance in parallel with the exciting inductance M ′ of the mold equivalent circuit. This is an approximation that the iron loss current circuit and the secondary circuit are tightly coupled by the exciting inductance M ′ and there is no leakage component.

【0015】制御の簡略化のために、この近似条件を二
軸上の等価回路にも適用し、d−q軸回路を分離してT
−I型等価回路を表す図2に示すように、二次抵抗
2’と鉄損抵抗Rm’の並列抵抗として取り扱う。
For simplification of control, this approximation condition is also applied to an equivalent circuit on two axes, and the dq axis circuit is separated and T is separated.
As shown in FIG. 2 which represents a -I-type equivalent circuit, treated as parallel resistance of 'the iron loss resistance R m and' secondary resistance R 2.

【0016】(2)基本回路方程式 図2の等価回路において、電源周波数ω1に同期した二
軸座標上の電圧・電流方程式は次の(1)式で表せる。
(2) Basic circuit equation In the equivalent circuit of FIG. 2, the voltage / current equation on the biaxial coordinate synchronized with the power supply frequency ω1 can be expressed by the following equation (1).

【0017】[0017]

【数1】 [Equation 1]

【0018】V1d、V1q:d,q軸一次電圧 i1d、i1q:d,q軸一次電流 λ2d、λ2q:d,q軸二次鎖交磁束 ω1:一次角周波数 ωS:すべり角周波数 R1:一次抵抗 R2:T−I型等価回路二次抵抗 Lσ:T−I型等価回路一次漏れインダクタンス M’:T−I型等価回路一次励磁インダクタンス Rm':T−I型等価回路鉄損抵抗 M:T型等価回路の励磁インダクタンス P:微分演算子 R2m’=1/(1/R2’+1/Rm’) λ2/M=i1−(i2’+iRM’) (3)定常運転時の状態 電流制御系を持つベクトル制御可変速装置は、定常運転
には、誘導電動機には電圧形インバータ等になる半導体
電力変換器から交流電圧を供給し、その電流をベクトル
制御演算する電流制御系によって制御する。電流制御系
への電流指令は、トルク電流分I1qと、励磁電流分I1d
とを与える。
V 1d , V 1q : d, q-axis primary voltage i 1d , i 1q : d, q-axis primary current λ 2d , λ 2q : d, q-axis secondary interlinkage magnetic flux ω 1 : primary angular frequency ω S : slip angular frequency R 1: primary resistance R 2: T-I type equivalent rotor resistance Lσ: T-I type equivalent circuit primary leakage inductance M ': T-I type equivalent circuit primary magnetizing inductance R m': T- I-type equivalent circuit iron loss resistance M: Exciting inductance of T-type equivalent circuit P: Differential operator R 2m '= 1 / (1 / R 2 ' + 1 / R m ') λ 2 / M = i 1- (i 2 '+ IRM') (3) State during steady operation In a vector control variable speed device having a current control system, the AC motor is supplied to the induction motor from a semiconductor power converter such as a voltage source inverter during steady operation. The current is controlled by a current control system that performs vector control calculation. The current command to the current control system is the torque current component I 1q and the exciting current component I 1d.
And give.

【0019】任意速度及び負荷トルクとする定常運転に
おいて、d軸及びq軸の電流成分は次の(2)式に示す
ように、d軸成分に励磁電流が、q軸成分にトルク電流
成分と鉄損電流成分が存在する。各成分は、定常運転時
として()-0記号を付す。
In steady operation with an arbitrary speed and load torque, the d-axis and q-axis current components are the exciting current in the d-axis component and the torque current component in the q-axis component, as shown in the following equation (2). There is an iron loss current component. Each component is given a () -0 symbol during normal operation.

【0020】[0020]

【数2】 (i1d-0=(λ2d/M)-0、 (λ2q/M)-0=0 (i1q-0=(i2q’)-0+(iRMq’)-0 ……(2) (i1d-0:定常時の一次d軸電流成分 (i1q-0:定常時の一次q軸電流成分 (λ2d/M)-0、(λ2q/M)-0:二次鎖交磁束をMで
割ったd,q軸成分 (i2q’)-0:二次トルク電流成分 (iRMq’)-0:二次鉄損電流成分 この条件を図2の等価回路に当てはめると図3に示すも
のになる。実磁束軸をd軸とし、定常運転状態において
磁束成分としては、 (a)励磁電流により二次に鎖交する磁束成分(λ2d
M)-0 (b)励磁電流による二次に鎖交しない漏れ磁束成分L
σ・(i1d-0 (c)トルク電流による二次に鎖交しない漏れ磁束成分
Lσ・(i1q-0 の3種類の成分が存在している。(λ2q/M)-0は零と
なっている。
(2) (i 1d ) -0 = (λ 2d / M) -0 , (λ 2q / M) -0 = 0 (i 1q ) -0 = (i 2q ') -0 + (iRM q ') -0 …… (2) (i 1d ) -0 : Steady state primary d-axis current component (i 1q ) -0 : Steady state primary q-axis current component (λ 2d / M) -0 , (λ 2q / M) -0 : d, q-axis component obtained by dividing the secondary flux linkage by M (i 2q ') -0 : secondary torque current component (iRM q ') -0 : secondary iron loss current component When applied to the equivalent circuit of FIG. 2, it becomes that shown in FIG. The actual magnetic flux axis is the d-axis, and the magnetic flux component in the steady operation state is (a) the magnetic flux component (λ 2d /
M) -0 (b) Leakage flux component L that does not interlink with the secondary due to the exciting current L
σ · (i 1d ) −0 (c) There are three types of leakage flux component Lσ · (i 1q ) −0 that do not interlink to the secondary due to the torque current. (Λ 2q / M) −0 is zero.

【0021】ここで、定常運転時の電圧・電流成分を空
間ベクトル図で表すと図4に示すようになる。
Here, the voltage / current components during steady operation are represented in a space vector diagram as shown in FIG.

【0022】(3)電流零急変直後の状態 定常運転状態から電流制御系への電流指令を零に急変さ
せると、電流制御系の応答が十分に速く、また、電流制
御系の出力電圧容量が十分に大きい場合には、一次電流
も瞬時に零に変化する。このとき、漏れインダクタンス
Lσに鎖交していたd,q軸成分の漏れ磁束の磁気エネ
ルギーも電源に吸収され零となる。
(3) State immediately after sudden change in current zero When the current command to the current control system is suddenly changed to zero from the steady operation state, the response of the current control system is sufficiently fast, and the output voltage capacity of the current control system is high. If it is large enough, the primary current also instantly changes to zero. At this time, the magnetic energy of the leakage magnetic flux of the d and q axis components, which is linked to the leakage inductance Lσ, is also absorbed by the power source and becomes zero.

【0023】しかし、d軸の二次鎖交磁束成分は一次電
流が零になっても一次回路と鎖交していないためその磁
束成分を維持しようとする。そのため、d軸一次電流
(i1d-0成分が零となるときにd軸の二次回路に転流
する。各成分は、電流零運転時として()+0記号を付
す。
However, since the d-axis secondary interlinkage magnetic flux component does not interlink with the primary circuit even when the primary current becomes zero, it tries to maintain the magnetic flux component. Therefore, when the d-axis primary current (i 1d ) -0 component becomes zero, it is commutated to the d-axis secondary circuit. Each component is added with () +0 symbol at zero current operation.

【0024】[0024]

【数3】 (λ2d/M)+0=−(i2d’)+0=(i1d-0 ……(3) この電流急変直後の状態を図5に、また同図に対応する
空間ベクトルを図6に示す。
(3) (λ 2d / M) +0 =-(i 2d ') +0 = (i 1d ) -0 (3) The state immediately after this sudden current change is shown in FIG. 5 and corresponds to FIG. The space vector is shown in FIG.

【0025】このように、電流零急変時には一次電流が
零であるため、磁束成分としては、前記の二次鎖交磁束
のみとなる。電流成分は、二次に転流した励磁電流成分
(i2d’)+0と鉄損電流成分(iRMq’)+0が存在す
る。ここで、鉄損電流成分は励磁電流成分に比べて十分
に小さく無視できるものとする。
As described above, since the primary current is zero when the current suddenly changes, the magnetic flux component is only the secondary interlinkage magnetic flux. The current component has an exciting current component (i 2d ') +0 and a core loss current component (iRM q ') +0 that are secondarily commutated. Here, the iron loss current component is sufficiently smaller than the exciting current component and can be ignored.

【0026】(4)電流零急変後の過渡現象 一次電流を零に急変したままに維持し、d,q制御軸が
誘導機の回転子に同期して回転しているものとする。こ
のとき、一次電流は零に維持されており、二次回路は一
次電流の影響を受けない。
(4) Transient Phenomenon after Sudden Change in Current It is assumed that the primary current is kept abruptly changed to zero and the d and q control shafts are rotating in synchronization with the rotor of the induction machine. At this time, the primary current is maintained at zero, and the secondary circuit is not affected by the primary current.

【0027】このため、回転子と同期した座標上での二
次磁束成分と二次電流成分とは(3)式の条件を初期値
とし、二次抵抗R2’によりエネルギーを消費する単純
な直流過渡現象として変化する。
For this reason, the secondary magnetic flux component and the secondary current component on the coordinate synchronized with the rotor are initialized by the condition of the equation (3), and energy is consumed by the secondary resistance R 2 '. It changes as a DC transient phenomenon.

【0028】そのため、二次鎖交磁束は次の(4)式の
ような指数関数的に減衰する方程式となる。
Therefore, the secondary interlinkage magnetic flux becomes an exponentially decaying equation such as the following equation (4).

【0029】[0029]

【数4】 λ2d/M(t)=(λ2d/M)-0・exp(−1/τ2・t) λ2d/M(t)=0 ……(4) τ2:二次時定数(=M’/R2’) この二次磁束により一次回路に発生する電圧は、d軸電
圧成分(磁束成分自体の変化による変圧器起電力)とq
軸電圧成分(回転子上の磁束と固定子との相対運動によ
る速度起電力)があり、それぞれは次の(5)式にな
る。
Λ 2d / M (t) = (λ 2d / M) −0 · exp (−1 / τ 2 · t) λ 2d / M (t) = 0 (4) τ 2 : Secondary time constant (= M '/ R 2' ) voltage generated in the primary circuit by the secondary magnetic flux, a d-axis voltage component (a transformer electromotive force due to a change in magnetic flux component itself) q
There is an axial voltage component (velocity electromotive force due to relative motion between the magnetic flux on the rotor and the stator), and each is given by the following equation (5).

【0030】[0030]

【数5】 V1d(t)=p{λ2d/M)+0・exp(−1/τ2・t)} =−1/τ2・M'・(λ2d/M)+0・exp(−1/τ2・t) ……(5−1) V1q(t)=ω1(t)・M'・(λ2d/M)+0・exp(−1/τ2・t) ……(5−2) 図7は、実際に可変速システムを用いて電流を零に急変
したときの電流制御系の出力電圧の制御軸のd*、q*
軸成分の計測波形を示す。
V 1d (t) = p {λ 2d / M) + 0 · exp (−1 / τ 2 · t)} = −1 / τ 2 · M ′ · (λ 2d / M) + 0 · exp (-1 / τ 2 · t) (5-1) V 1q (t) = ω 1 (t) · M ′ · (λ 2d / M) + 0 · exp (−1 / τ 2 · t) ) (5-2) FIG. 7 shows d *, q * of the control axis of the output voltage of the current control system when the current is suddenly changed to zero using the variable speed system.
The measurement waveform of an axis component is shown.

【0031】この計測波形からも明らかなように、上記
(5−1)、(5−2)式の指数関数の電圧が各軸に発
生している。これらd*,q*軸電圧成分を約二次時定
数程度の間計測記憶する。
As is clear from this measurement waveform, the voltage of the exponential function of the equations (5-1) and (5-2) is generated on each axis. These d * and q * axis voltage components are measured and stored for about a quadratic time constant.

【0032】(5)誘導機定数演算 (5a)指数関数の近似により二次時定数と電流急変直
後の電圧値を推定 ここで注意することは、実磁束軸d,qと、制御系内部
で仮定している磁束軸d*とは一致しているとは限らな
い。実際には、図4や図6にも示すように、これらの軸
間には軸ずれΔφが存在することもある。そこで、制御
軸をd*,q*の記号で定義し、計測はこのd*,q*
軸で行う。
(5) Induction machine constant calculation (5a) Estimating the secondary time constant and the voltage value immediately after the sudden current change by approximation of the exponential function Note that the actual magnetic flux axes d and q and the control system internal It does not always match the assumed magnetic flux axis d *. Actually, as shown in FIGS. 4 and 6, there may be an axis deviation Δφ between these axes. Therefore, the control axis is defined by the symbols d * and q *, and the measurement is performed using these d * and q *
Do it on the axis.

【0033】電流零への急変時の計測データより、過渡
時のd*,q*軸電圧計測値を次の(6)式の指数関数
で近似し、(V1d*)+0、(V1q*)+0、τ2q*の係数
から電流を零に急変直後の初期値及び二次時定数を求め
る。
From the measured data when the current suddenly changes to zero, the d * and q * axis voltage measurements during transient are approximated by the exponential function of the following equation (6) to obtain (V 1d *) +0 , (V From the coefficients of 1q *) +0 and τ 2q *, find the initial value and the secondary time constant immediately after the sudden change of the current to zero.

【0034】[0034]

【数6】 V1d*(t)=(V1d*)+0・exp(−1/τ2d*・t) V1q*(t)=(V1q*)+0・exp(−1/τ2q*・t) ……(6) ここで、通常にはd軸成分よりq軸成分(速度起電力)
の方が計測電圧が大きく、計測精度の観点から二次時定
数はτ2≒τ2q*の方を使用する。また、(V1d*)+0
と(V1q*)+0は電流急変時の過渡現象の初期値の近似
値とみなせる。
[Equation 6] V 1d * (t) = (V 1d *) + 0 · exp (-1 / τ 2d * · t) V 1q * (t) = (V 1q *) + 0 · exp (-1 / τ 2q * · t) (6) Here, usually the q-axis component (velocity electromotive force) rather than the d-axis component
Since the measured voltage is larger, the secondary time constant τ 2 ≈ τ 2q * is used from the viewpoint of measurement accuracy. Also, (V 1d *) +0
And (V 1q *) +0 can be regarded as an approximate value of the initial value of the transient phenomenon when the current changes suddenly.

【0035】 (5b)制御軸と実磁束軸との軸ずれ位相を演算 上記(6)式において、回転数(ωr=ω1)≒一定と近
似すると、(5−1),(5−2)式の関係よりd*,
q*軸電圧成分の比は次式のように一定となる。
(5b) Calculating the axis shift phase between the control axis and the actual magnetic flux axis In the above equation (6), if the rotation speed (ω r = ω 1 ) is approximated to be constant, (5-1), (5- From the relationship of equation 2), d *,
The ratio of the q * axis voltage component is constant as in the following equation.

【0036】[0036]

【数7】 (V1d*)+0/(V1q*)+0=(−1/τ2)/ω1≒一定 このため、回転数の減衰が少なければ、どの時刻でも各
軸の電圧比は一定となる。これを実例で示したものが図
8である。同図は図7で計測した各軸の電圧成分をd
*,q*軸の平面座標上に変換したものである。
[ Equation 7] (V 1d *) +0 / (V 1q *) +0 = (-1 / τ 2 ) / ω 1 ≈ constant Therefore, if there is little attenuation of the rotation speed, the voltage of each axis at any time The ratio is constant. This is shown in FIG. 8 as an example. This figure shows the voltage component of each axis measured in FIG.
It is converted to the plane coordinates of the * and q * axes.

【0037】電流零急変時には電圧成分は急変するもの
の、それ以降は時間の経過とともに原点を通る次の
(7)式の直線上を電圧ベクトルが移動する。
Although the voltage component changes abruptly when the current zero changes suddenly, after that, the voltage vector moves on the straight line of the following equation (7) passing through the origin with the passage of time.

【0038】[0038]

【数8】 V1q(t)=(−τ2・ω1)V1d(t) ……(7) 逆に言うと、計測している電圧は、q軸の速度起電力V
1qとd軸の変圧器起電力V1dの成分との合成V1をd
*、q*の制御軸を基準として計測したものになる。
[ Equation 8] V 1q (t) = (− τ 2 · ω 1 ) V 1d (t) (7) Conversely, the measured voltage is the q-axis speed electromotive force V
1q and the component of the d-axis transformer electromotive force V 1d are combined V 1 to d
Measured with the control axes of * and q * as the reference.

【0039】ここで、実際の磁束軸と直交したq軸位相
は、上記(7)式の関係より、計測電圧ベクトル
(V1+0の位相から次の(8)式の位相だけ回転した
位相に存在することが分かる。
Here, the q-axis phase orthogonal to the actual magnetic flux axis is rotated from the phase of the measured voltage vector (V 1 ) +0 by the phase of the following equation (8) from the relationship of the above equation (7). It can be seen that it exists in the phase.

【0040】[0040]

【数9】θa=tan-1(τ2’・ω1) ……(8) また、制御軸上における実磁束の位相は、[Equation 9] θ a = tan −12 '· ω 1 ) (8) Further, the phase of the actual magnetic flux on the control axis is

【0041】[0041]

【数10】 (φV*)+0=tan-1{(V1q*)+0/(V1d*)+0} Δφ=(φV*)+0−θa−90゜ ……(9) ここで、ω1は運転条件から既知であり、τ2は上記
(6)式の近似式の係数を用いることができ、現在まで
の計測・演算結果から軸ずれ角Δφが計算可能である。
V *) +0 = tan -1 {(V 1q *) +0 / (V 1d *) +0 } Δφ = (φ V *) +0 −θ a −90 ° ...... ( 9) Here, ω 1 is known from the operating condition, τ 2 can use the coefficient of the approximate expression of the above equation (6), and the axis deviation angle Δφ can be calculated from the measurement and calculation results up to now. is there.

【0042】(5c)励磁インダクタンスM’と漏れリ
アクタンスLσの演算 軸ずれ位相成分Δφが求まれば、励磁インダクタンス
M’は速度起電力成分(V1q+0=E2の振幅成分とそ
れに直交する励磁電流成分から演算可能となる。
(5c) Calculation of Excitation Inductance M ′ and Leakage Reactance Lσ If the axis shift phase component Δφ is obtained, the excitation inductance M ′ is orthogonal to the amplitude component of velocity electromotive force component (V 1q ) +0 = E 2. It is possible to calculate from the exciting current component.

【0043】速度起電力成分は、The velocity electromotive force component is

【0044】[0044]

【数11】 |E2|={(V1d*)+0 2+(V1q*)+0 21/2・cos(θa) となり、励磁電流成分は、[Equation 11] | E 2 | = {(V 1d *) +0 2 + (V 1q *) +0 2 } 1/2 · cos (θ a ), and the exciting current component is

【0045】[0045]

【数12】 (I0+0=|(i1-0|・cos(φi−Δφ)} となる。これらより、励磁インダクタンスM’は、次式
から求められる。
(12) (I 0 ) +0 = | (i 1 ) -0 | · cos (φ i −Δφ)}. From these, the magnetizing inductance M ′ is obtained from the following equation.

【0046】[0046]

【数13】 M’=|E2|/{ω1・|(i1-0|・cos(φi−Δφ)} ……(10) 漏れリアクタンスLσも定常運転時の電圧(V1-0
2との差電圧の電流に対して直交する成分(δ軸)
と、定常運転時の電流成分より次の(11)式より求め
ることができる。
[Equation 13] M ′ = | E 2 | / {ω 1 · | (i 1 ) −0 | · cos (φ i −Δφ)} (10) The leakage reactance Lσ is also the voltage (V 1 ) A component orthogonal to the current of the voltage difference between -0 and E 2 (δ axis)
Then, it can be obtained from the current component at the time of steady operation by the following equation (11).

【0047】[0047]

【数13】 ΔV1δ=|(V1-0|・sin{(φV*)-0−(φi*)-0} −|E2|・sin{(φV*)+0−(φi*)-0−θa} Lσ=ΔV1δ/{ω1・|(i1-0|} ……(11) (5d)無負荷条件での励磁インダクタンスM’と漏れ
リアクタンスLσの演算 無負荷では軸ずれを無視することができ、次の条件、
[Formula 13] ΔV 1 δ = | (V 1 ) −0 | · sin {(φ V *) −0 − (φ i *) −0 } − | E2 | · sin {(φ V *) +0 − (Φ i *) −0 −θ a } Lσ = ΔV 1 δ / {ω 1 · | (i 1 ) −0 |} (11) (5d) Excitation inductance M ′ and leakage reactance under no load condition Calculation of Lσ The axis deviation can be ignored under no load.

【0048】[0048]

【数14】 (i1-0≒(I1d*)-0、θa≒0、|E2|≒(V1q*)+0、 ΔVδ≒(V1q*)-0−(V1q*)+0 が成立し、次の簡略式となる。[Number 14] (i 1) -0 ≒ (I 1d *) -0, θ a ≒ 0, | E 2 | ≒ (V 1q *) +0, ΔVδ ≒ (V 1q *) -0 - (V 1q *) +0 holds, and the following simplified formula is obtained.

【0049】[0049]

【数15】 M’=(V1q*)+0/{ω1・(I1d*)-0} Lσ={(V1q*)-0−(V1q*)+0}/{ω1・(I1d*)-0} ……(12) 以上のことより、本発明では定常運転時の電流・電圧計
測値と電流零急変時の電流・電圧計測値から、負荷トル
クが存在する誘導機の定数を演算で求める。
[Equation 15] M ′ = (V 1q *) +0 / {ω 1 · (I 1d *) −0 } Lσ = {(V 1q *) −0 − (V 1q *) +0 } / {ω 1・ (I 1d *) -0 } (12) From the above, according to the present invention, the induction in which the load torque exists from the measured current / voltage value during steady operation and the measured current / voltage value during sudden current zero change. Calculate the machine constant.

【0050】[0050]

【実施例】図1は、本発明の一実施例を示すブロック図
である。誘導電動機1には半導体電力変換装置2からベ
クトル制御したPWM波形の交流電圧を供給する。誘導
電動機1のロータ速度ωrは速度検出器3によって検出
する。誘導電動機1の一次電流は電流検出器4によって
トルク電流成分と励磁電流成分とに分離して検出する。
FIG. 1 is a block diagram showing an embodiment of the present invention. The induction motor 1 is supplied with a vector-controlled AC voltage having a PWM waveform from the semiconductor power converter 2. The rotor speed ω r of the induction motor 1 is detected by the speed detector 3. The primary current of the induction motor 1 is detected by the current detector 4 by separating it into a torque current component and an exciting current component.

【0051】電流制御系5、6は、励磁電流指令i1d
とトルク電流指令i1q*とそれぞれの検出電流成分を比
較して指令電流どおりに電流が発生するよう半導体電力
変換装置2へ励磁電圧制御信号V1d、トルク電圧制御信
号V1qを与える。
The current control systems 5 and 6 use the exciting current command i 1d *
And the torque current command i 1q * are compared with the respective detected current components, and the exciting voltage control signal V 1d and the torque voltage control signal V 1q are given to the semiconductor power converter 2 so that the current is generated according to the command current.

【0052】励磁電流演算部7は、速度検出信号ωr
入力とし、励磁電流指令(又は励磁磁束)i1dを出力す
る。トルク電流演算部8は、速度制御系等からのトルク
指令と励磁電流指令から磁束軸と直交したトルク電流成
分を求め、トルク電流指令i1qを出力する。
The exciting current calculator 7 receives the speed detection signal ω r as an input and outputs an exciting current command (or exciting magnetic flux) i 1d . The torque current calculator 8 obtains a torque current component orthogonal to the magnetic flux axis from the torque command from the speed control system and the exciting current command, and outputs the torque current command i 1q .

【0053】すべり周波数演算部9は、励磁電流指令i
1dとトルク電流指令i1qからすべり周波数ωsを求め
る。周波数・位相演算部10は、すべり周波数ωsとロ
ータ速度検出値ωrを加算して誘導電動機1に供給する
交流電圧の周波数を求めると共に、その周波数を積分し
て磁束軸の位相θを求める。
The slip frequency calculating section 9 determines the exciting current command i
The slip frequency ω s is obtained from 1d and the torque current command i 1q . The frequency / phase calculator 10 adds the slip frequency ω s and the rotor speed detection value ω r to find the frequency of the AC voltage supplied to the induction motor 1, and integrates the frequency to find the phase θ of the magnetic flux axis. .

【0054】以上までの構成になるベクトル制御の可変
速装置に誘導電動機1の定数測定手段として、本実施例
では演算・計測要素11〜15を設ける。
The vector control variable speed device configured as described above is provided with the calculation / measurement elements 11 to 15 as constant measuring means of the induction motor 1 in this embodiment.

【0055】切換スイッチ11は、定常運転状態では励
磁電流演算部7及びトルク電流演算部8からの電流指令
1d*、i1q*を電流制御系5、6へ与え、その切換に
よって電流指令i1d*、i1q*を零に急変する。
The changeover switch 11 gives the current commands i 1d *, i 1q * from the exciting current calculator 7 and the torque current calculator 8 to the current control systems 5 and 6 in the steady operation state, and the current command i is switched by the changeover. Suddenly change 1d * and i1q * to zero.

【0056】計測・記憶部12は、切換スイッチ11が
電流指令を零に急変する切換前の定常状態における出力
電流検出値i1d,i1q(又は電流指令i1d*、i1q*)
と電圧制御信号V1d,V1q(又は誘導電動機1への印加
電圧)及び角周波数ω1を計測・記憶する。
The measuring / storing unit 12 stores the output current detection values i 1d , i 1q (or the current commands i 1d *, i 1q *) in the steady state before switching, in which the changeover switch 11 suddenly changes the current command to zero.
And voltage control signals V 1d and V 1q (or voltage applied to the induction motor 1) and angular frequency ω 1 are measured and stored.

【0057】計測・記憶部13は、切換スイッチ11が
電流指令を零に急変する切換後の過渡状態における出力
電流検出値i1d,i1q(又は電流指令i1d*、i1q*)
と電圧制御信号V1d,V1q(又は誘導電動機1への印加
電圧)及び角周波数ω1の変化を時間別に計測・記憶す
る。
The measuring / storing unit 13 stores the detected output current values i 1d , i 1q (or current commands i 1d *, i 1q *) in the transitional state after the changeover switch 11 suddenly changes the current command to zero.
And the changes in the voltage control signals V 1d and V 1q (or the voltage applied to the induction motor 1) and the angular frequency ω 1 are measured and stored by time.

【0058】計測指令部14は、定数測定に際し、定常
運転状態での計測・記憶部12へのデータ取得指令と、
切換スイッチ11の切換と同時の計測・記憶部13への
データの取得指令とを発生する。
The measurement commanding unit 14 sends a data acquisition command to the measurement / storage unit 12 in the steady operation state during constant measurement,
At the same time when the changeover switch 11 is switched, a data acquisition command is issued to the measurement / storage unit 13.

【0059】定数演算部15は、両計測・演算部12、
13が計測・記憶するデータを読み込み、誘導電動機1
の各定数を演算で求める。この演算は、前記(6)式に
よる二次時定数τ2の演算と、前記(9)式による磁束
位相誤差Δφの演算と、前記(10)式による励磁イン
ダクタンスM’の演算及び前記(11)式による漏れリ
アクタンスLσの演算を行う。
The constant calculation unit 15 includes the two measurement / calculation units 12,
Induction motor 1 reads the data measured and stored by 13
Each constant of is calculated. This calculation is performed by calculating the secondary time constant τ 2 by the equation (6), calculating the magnetic flux phase error Δφ by the equation (9), calculating the exciting inductance M ′ by the equation (10), and (11) ) The leak reactance Lσ is calculated by the equation.

【0060】本実施例における実験として、電流制御系
5、6を回転座標上でPI制御する構成とし、22KW
−6P,325V−1180rpmの供試誘導電動機を
1000rpmで運転して定数測定を行った。
As an experiment in this embodiment, the current control systems 5 and 6 were configured to be PI-controlled on the rotating coordinates, and 22 KW was used.
The test induction motor of -6P, 325V-1180 rpm was operated at 1000 rpm to measure the constants.

【0061】図7は、無負荷運転中に電流を零に急変し
たときの電圧V1d*,V1q*波形を示し、この電圧波形
を20ms毎に17点サンプル(約τ2/2時間)して
各定数を求めた。この結果、前記(8)式で近似して求
めた軸ずれはΔφ=0.3°であり、軸ずれのない条件
の(12)式を用いて各定数を計算した。その結果を下
記表1に示す。
[0061] Figure 7 is a no-load voltage V when the sudden change of the current to zero during operation 1d *, V 1q * indicates a waveform, 17 points samples (about tau 2/2 hours) to 20ms for each of the voltage waveform Then, each constant was obtained. As a result, the axis deviation obtained by approximating with the above equation (8) is Δφ = 0.3 °, and each constant was calculated using the equation (12) under the condition that there is no axis deviation. The results are shown in Table 1 below.

【0062】[0062]

【表1】 [Table 1]

【0063】この定数測定結果の精度を検証するため、
ベクトル制御の可変速装置に適用してトルク特性を測定
した。この特性は図9に示す。ここで、鉄損電流の補償
値は零とし、補正を行っていない。また、負荷装置の都
合により定格の75%トルクまでの測定を行い、それ以
上の負荷領域は補外して点線で示す。
In order to verify the accuracy of this constant measurement result,
The torque characteristics were measured by applying it to a vector-controlled variable speed device. This characteristic is shown in FIG. Here, the iron loss current compensation value is set to zero and is not corrected. Further, due to the convenience of the load device, measurement was performed up to 75% of the rated torque, and the load region beyond that was extrapolated and indicated by the dotted line.

【0064】この特性から、二次抵抗R2の補償がない
場合には、定格時に約10%のトルク誤差が生じてお
り、トルク特性より二次時定数τ2が実機より低く計測
されていると推定される。これは、二次抵抗R2と並列
に存在する鉄損抵抗や多少変化する磁気飽和の影響と考
えられる。
From this characteristic, when the secondary resistance R 2 is not compensated, a torque error of about 10% occurs at the time of rating, and the secondary time constant τ 2 is measured to be lower than the actual machine from the torque characteristic. It is estimated to be. This is considered to be due to the iron loss resistance existing in parallel with the secondary resistance R 2 and the magnetic saturation which changes a little.

【0065】しかし、モデルと出力の誤差電圧を利用し
た二次抵抗補償を追加した場合は、トルク誤差は約3%
に改善でき、モデルに用いた励磁インダクタンスM’や
漏れリアクタンスLσの計測値は1000rpm程度で
は実用上十分な精度が得られることがわかった。
However, when the secondary resistance compensation using the model and the output error voltage is added, the torque error is about 3%.
It was found that when the measured values of the exciting inductance M ′ and the leak reactance Lσ used in the model are about 1000 rpm, sufficient accuracy can be obtained for practical use.

【0066】二次時定数自体は、運転中の温度により変
化するものであり、実際に運転中にトルク精度を維持し
ようとすると、二次抵抗補償などのフィードバック制御
をかけることになる。
The secondary time constant itself changes depending on the temperature during operation, and if the torque accuracy is actually maintained during operation, feedback control such as secondary resistance compensation will be applied.

【0067】換言すると、二次時定数は運転中に変化す
るものであり、初期設定の精度はあまり要求されず、概
略値が設定されていれば良い。
In other words, the secondary time constant changes during operation, accuracy of initial setting is not so required, and a rough value may be set.

【0068】これに対して、M’とLσの成分は、二次
抵抗補償制御の精度に直接に影響する。このため、トル
ク精度を維持するために二次抵抗補償等を行う場合に
は、精度の良い誘導機定数が必要となる。
On the other hand, the components of M ′ and Lσ directly affect the accuracy of the secondary resistance compensation control. Therefore, when performing secondary resistance compensation or the like in order to maintain torque accuracy, an accurate induction machine constant is required.

【0069】本発明による定数測定は、二次抵抗補償が
無い場合でも不安定になることなく、R2’の計測値と
しては初期設定値として十分使用可能な精度があるとい
える。
The constant measurement according to the present invention does not become unstable even without secondary resistance compensation, and it can be said that the measured value of R 2 'has sufficient accuracy as an initial setting value.

【0070】また、M’,Lσの成分も二次抵抗補償制
御を行った場合のトルク特性よりもトルク精度が向上し
ており、十分実用化可能な精度が得られていることがわ
かった。
Further, it was found that the torque accuracy of the components of M ′ and Lσ was also improved as compared with the torque characteristics when the secondary resistance compensation control was performed, and the accuracy which can be sufficiently put into practical use was obtained.

【0071】[0071]

【発明の効果】以上のとおり、本発明によれば、誘導機
を制御する可変速装置を使い、定常運転状態での誘導機
の一次電圧と電流及び周波数成分の計測値と、定常運転
状態から電流制御系の電流指令を零に急変したときの誘
導機の一次電圧と電流及び周波数成分の計測値から誘導
機の各定数を演算で求めるようにしたため、以下の効果
がある。
As described above, according to the present invention, by using the variable speed device for controlling the induction machine, the measured values of the primary voltage, the current and the frequency component of the induction machine in the steady operation state and the steady operation state can be obtained. Since the constants of the induction machine are calculated from the measured values of the primary voltage, current and frequency components of the induction machine when the current command of the current control system is suddenly changed to zero, the following effects are obtained.

【0072】(1)電流指令を零に急変することにより
転流現象を利用して二次電流を発生させ、これにより高
い周波数でも確実な二次電流を発生させることができ
る。また、高い周波数により速度起電力成分も大きくな
り、電圧検出誤差も少なくして高い精度の定数測定がで
きる。
(1) By suddenly changing the current command to zero, a secondary current is generated by utilizing the commutation phenomenon, whereby a reliable secondary current can be generated even at a high frequency. In addition, the velocity electromotive force component increases due to the high frequency, and the voltage detection error is reduced, so that highly accurate constant measurement can be performed.

【0073】(2)電流指令を零にして出力電流を零に
維持するため、電流制御系の出力としては誘導機の誘起
起電力と等しい電圧を発生できる。これにより、電流制
御系の出力電圧を計測して誘導機の端子電圧と等価な計
測値を得ることができる。つまり、外部に電圧計などの
計測装置を不要にし、可変速装置単体で計測可能とな
る。
(2) Since the current command is set to zero and the output current is maintained at zero, a voltage equal to the induced electromotive force of the induction machine can be generated as the output of the current control system. This makes it possible to measure the output voltage of the current control system and obtain a measured value equivalent to the terminal voltage of the induction machine. That is, it is possible to eliminate the need for an external measuring device such as a voltmeter, and measure the variable speed device alone.

【0074】(3)二次回路の減衰現象を利用している
ため、磁束変化の周波数成分は二次時定数程度を見なす
ことができる。したがって、漏れリアクタンス成分Lσ
に影響する表皮効果も実際の運転状態に近い条件で計測
でき、その計測精度を高めることができる。
(3) Since the attenuation phenomenon of the secondary circuit is used, the frequency component of the magnetic flux change can be regarded as a secondary time constant. Therefore, the leakage reactance component Lσ
The skin effect that affects the can be measured under conditions close to the actual operating condition, and the measurement accuracy can be improved.

【0075】(4)可変速装置に少しの計測手段を設け
ることで高精度の定数計測ができるため、(a)製造工
程でバラツキをもつ各誘導機毎に定数を測定でき、最適
な運転が可能となること、(b)従来の人手により行っ
ていた調整が不要となり、調整工数の削減が可能となる
こと、(c)既設誘導機など、定数の不明な誘導機でも
最適な定数設定ができること、(d)定数計測を定期的
に行って定数の変動を調べることにより誘導機の異常判
定等を行うこと等の効果がある。
(4) Since the variable speed device can be provided with a small amount of measuring means to measure constants with high accuracy, (a) constants can be measured for each induction machine having variations in the manufacturing process, and optimum operation can be performed. It becomes possible, (b) the conventional manual adjustment becomes unnecessary, and the adjustment man-hours can be reduced. (C) The optimum constant setting can be made even for induction machines whose constants are unknown, such as existing induction machines. What can be done, (d) there is an effect that the constant of the induction machine is regularly measured and the fluctuation of the constant is checked to judge the abnormality of the induction machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】d,q軸回路を分離した誘導機のT−I型等価
回路図。
FIG. 2 is a TI type equivalent circuit diagram of an induction machine in which d and q axis circuits are separated.

【図3】定常運転状態での一次、二次回路の電流と磁束
を示す図。
FIG. 3 is a diagram showing current and magnetic flux in the primary and secondary circuits in a steady operation state.

【図4】図3の電圧ベクトル図。FIG. 4 is a voltage vector diagram of FIG.

【図5】電流零に急変時の一次、二次回路の電流と磁束
を示す図。
FIG. 5 is a diagram showing the current and magnetic flux of the primary and secondary circuits when the current suddenly changes to zero.

【図6】図5の電圧ベクトル図。FIG. 6 is a voltage vector diagram of FIG.

【図7】電流零急変時の過渡電圧波形図。FIG. 7 is a transient voltage waveform diagram at the time of sudden change in current.

【図8】電圧ベクトルの軌跡。FIG. 8 is a voltage vector locus.

【図9】ベクトル制御時のトルク特性図。FIG. 9 is a torque characteristic diagram during vector control.

【符号の説明】[Explanation of symbols]

1…誘導機 2…半導体電力変換器 5、6…電流制御系 7…励磁電流演算部 8…トルク電流演算部 11…切換スイッチ 12、13…計測・記憶部 14…計測指令部 15…定数演算部 DESCRIPTION OF SYMBOLS 1 ... Induction machine 2 ... Semiconductor power converter 5, 6 ... Current control system 7 ... Excitation current calculation part 8 ... Torque current calculation part 11 ... Changeover switch 12, 13 ... Measurement / storage part 14 ... Measurement command part 15 ... Constant calculation Department

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 半導体電力変換装置から誘導機に供給す
る電流を制御する電流制御系を有して該誘導機を制御す
る可変速装置において、 定常運転状態での誘導機の一次電圧と電流及び周波数成
分を計測・記憶する第1の計測手段と、 前記定常運転状態で前記電流制御系の電流指令を零に急
変した後の誘導機の一次電圧と電流及び周波数成分を時
間別に計測・記憶する第2の計測手段と、 前記両計測手段の計測・記憶データのうち、電流指令を
零に急変した後の電圧計測値の減衰係数から誘導機の二
次時定数τ2を演算し、この二次時定数τ2と電流零の変
化前及び変化直後の電圧と周波数成分より実磁束軸と制
御軸の磁束位相誤差Δφを演算する演算部とを備えたこ
とを特徴とする可変速装置。
1. A variable speed device having a current control system for controlling a current supplied from a semiconductor power converter to an induction machine, the primary speed and current of the induction machine in a steady operation state, and A first measuring means for measuring and storing a frequency component; and a primary voltage, a current and a frequency component of the induction machine after the current command of the current control system is suddenly changed to zero in the steady operation state and measured and stored by time. The second time constant τ 2 of the induction machine is calculated from the attenuation coefficient of the voltage measurement value after the current command is suddenly changed to zero among the measurement and storage data of the second measurement means and the two measurement means. A variable speed device comprising: a calculation unit that calculates a magnetic flux phase error Δφ between an actual magnetic flux axis and a control axis based on a voltage and a frequency component before and immediately after a change of the next time constant τ 2 and zero current.
【請求項2】 前記演算部は、 前記電流指令を零に急変した後の前記一次電圧計測値を
指数関数で近似し、該近似式の係数成分から電流指令を
零に変化させた直後の出力電圧成分を推定する電圧初期
値推定演算手段と、 前記推定する電圧成分のうち速度起電力成分を分離演算
する速度起電力成分演算手段と、 前記定常運転状態の電流成分から前記磁束位相誤差によ
って実磁束軸に対応する励磁電流成分を抽出する磁束軸
電流成分演算手段と、 前記各演算手段による速度起電力と磁束軸電流成分及び
電流指令を零に急変したときの角速度より励磁インダク
タンスM’を演算する演算手段と、 定常運転時の電圧計測値と前記速度起電力との差電圧の
うち電流に直交する電圧成分と定常運転時の電流値及び
前記角速度より漏れインダクタンスLσを演算する演算
手段とを備えたことを特徴とする請求項1記載の可変速
装置。
2. The calculation unit approximates the primary voltage measurement value after the current command is suddenly changed to zero by an exponential function, and outputs an output immediately after changing the current command to zero from a coefficient component of the approximate expression. A voltage initial value estimation calculation means for estimating a voltage component, a speed electromotive force component calculation means for separately calculating a speed electromotive force component of the estimated voltage component, and a magnetic flux phase error from a current component in the steady operation state. A magnetic flux axis current component calculating means for extracting an exciting current component corresponding to the magnetic flux axis, and an exciting inductance M ′ is calculated from the velocity electromotive force by each calculating means, the magnetic flux axis current component, and the angular velocity when the current command is suddenly changed to zero. And a leakage inductance Lσ from the voltage component orthogonal to the current in the voltage difference between the voltage measurement value during steady operation and the speed electromotive force, the current value during steady operation, and the angular velocity. Variable speed device according to claim 1, further comprising a calculating means for calculation for.
JP29484893A 1993-09-03 1993-11-25 Variable speed device Expired - Lifetime JP3265768B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29484893A JP3265768B2 (en) 1993-11-25 1993-11-25 Variable speed device
US08/286,245 US5594670A (en) 1993-09-03 1994-08-08 Apparatus for measuring circuit constant of induction motor with vector control system and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29484893A JP3265768B2 (en) 1993-11-25 1993-11-25 Variable speed device

Publications (2)

Publication Number Publication Date
JPH07147800A true JPH07147800A (en) 1995-06-06
JP3265768B2 JP3265768B2 (en) 2002-03-18

Family

ID=17813039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29484893A Expired - Lifetime JP3265768B2 (en) 1993-09-03 1993-11-25 Variable speed device

Country Status (1)

Country Link
JP (1) JP3265768B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213331A (en) * 2008-03-06 2009-09-17 Fuji Electric Systems Co Ltd Controller for induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009213331A (en) * 2008-03-06 2009-09-17 Fuji Electric Systems Co Ltd Controller for induction motor

Also Published As

Publication number Publication date
JP3265768B2 (en) 2002-03-18

Similar Documents

Publication Publication Date Title
US5594670A (en) Apparatus for measuring circuit constant of induction motor with vector control system and method therefor
US9188648B2 (en) Method and arrangement for determining inductances of synchronous reluctance machine
KR100222358B1 (en) Apparatus and method for controlling torque of induction motor through vector control type inverter
US4777422A (en) Induction motor flux estimator/controller
JP2001352800A (en) Constant identification method of synchronous motor and control unit with constant identification function therefor
Ohm Dynamic model of induction motors for vector control
JP3099159B2 (en) Method and apparatus for measuring motor constants
JPH0775399A (en) Variable speed device
JP3265768B2 (en) Variable speed device
CN107615641B (en) Power conversion device, secondary time constant measurement method, and speed control method for induction motor
Extremiana et al. Rotor flux oriented control of induction machine based drives with compensation for the variation of all machine parameters
JP3337039B2 (en) Tuning method of vector control inverter for induction motor
Kondo Parameter measurements for permanent magnet synchronous machines
JP3092839B2 (en) Inverter device with constant measurement setting function
JPH07298697A (en) Method for auto-tuning electric constants of motor
JP2730017B2 (en) Inverter device
Diab Novel robust simultaneous estimation of stator and rotor resistances and rotor speed to improve induction motor efficiency
Levi et al. Detuned operation of vector controlled induction machines due to stray load losses
JP2759932B2 (en) Inverter device with constant measurement setting function
JPH0570394B2 (en)
Pereira et al. Estimation of parameters of induction machines based on instantaneous impedance
JP2743337B2 (en) Inverter device with constant measurement setting function
KR970009056B1 (en) Rotor time constant detecting method of im
JPH0570395B2 (en)
JP3123304B2 (en) Induction motor vector control device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100111

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 12

EXPY Cancellation because of completion of term