JPH07147128A - Cold cathode electron element - Google Patents

Cold cathode electron element

Info

Publication number
JPH07147128A
JPH07147128A JP29335793A JP29335793A JPH07147128A JP H07147128 A JPH07147128 A JP H07147128A JP 29335793 A JP29335793 A JP 29335793A JP 29335793 A JP29335793 A JP 29335793A JP H07147128 A JPH07147128 A JP H07147128A
Authority
JP
Japan
Prior art keywords
cold cathode
electron source
source element
substrate
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29335793A
Other languages
Japanese (ja)
Other versions
JP3444943B2 (en
Inventor
Atsushi Hagiwara
萩原  淳
Masato Usuda
真人 薄田
Katsuto Nagano
克人 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP29335793A priority Critical patent/JP3444943B2/en
Priority to EP95900936A priority patent/EP0681312B1/en
Priority to DE69432174T priority patent/DE69432174T2/en
Priority to PCT/JP1994/001976 priority patent/WO1995015002A1/en
Priority to US08/347,133 priority patent/US5760536A/en
Publication of JPH07147128A publication Critical patent/JPH07147128A/en
Priority to US08/962,735 priority patent/US5860844A/en
Application granted granted Critical
Publication of JP3444943B2 publication Critical patent/JP3444943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To provide a cold cathode electron source element which can be driven at low voltage, provides high emission current stably, has good workability of a cold cathode, and is made to have large surface area. CONSTITUTION:A cold cathode electron source element consists of a cold cathode substrate 10 and a conductive material whose work function is lower than that of the cold cathode substrate 10 and with which the cold cathode substrate 10 is doped. With this structure, since electrons are emitted at low voltage, a high emission current is obtained and driving by IC, TFT, etc., is made possible and high performance with low electric energy consumption of the device is also made possible. Furthermore, the cold cathode substrate can be processed by conventional photoprocess and etching and the shapes can be set easily optionally and the surface area of the element can be made wide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷陰極電子源素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold cathode electron source device.

【0002】[0002]

【従来の技術】電界放射型電子源は、半導体の微細加工
技術を利用してミクロンサイズに製造でき、しかも集積
化やバッチ加工が容易であるため、熱電子放射型電子源
では不可能であったGHz帯増幅器や大電力・高速スイ
ッチング素子、更には高精細度フラットパネルディスプ
レイ用電子源への応用が期待されており、国内外におい
て盛んに研究開発がなされている。
2. Description of the Related Art A field emission type electron source cannot be manufactured with a thermionic emission type electron source because it can be manufactured to a micron size by utilizing a semiconductor fine processing technique and is easily integrated and batch processed. It is expected to be applied to GHz band amplifiers, high-power / high-speed switching elements, and electron sources for high-definition flat panel displays, and research and development are being actively conducted in Japan and overseas.

【0003】このような電界放射型電子源の従来例を以
下に説明する。
A conventional example of such a field emission electron source will be described below.

【0004】図9に示す薄膜電界放射型の電子源は、冷
陰極52と対向するゲート電極53とを0.3乃至2μ
mの間隔をあけて絶縁体基板51上に成膜し、真空中で
前記冷陰極52とゲート電極53間に電圧をかけること
により電子放出を起こすものである(特開昭63−27
4047号)。前記冷陰極52はFIB(Focusd IonBe
am )技術を用いて形成されており、特に凸状部の先端
は尖鋭に形成している。
The thin film field emission type electron source shown in FIG. 9 has a cold cathode 52 and a gate electrode 53 facing each other in an amount of 0.3 to 2 μm.
Films are formed on an insulating substrate 51 at intervals of m, and electrons are emitted by applying a voltage between the cold cathode 52 and the gate electrode 53 in vacuum (Japanese Patent Laid-Open No. 63-27).
No. 4047). The cold cathode 52 is a FIB (Focusd IonBe).
am) technology, and in particular, the tip of the convex portion is sharply formed.

【0005】しかし、FIB技術を用いた場合、素子の
大面積化が困難でかつ製造コストも高くなってしまう。
However, when the FIB technique is used, it is difficult to increase the area of the element and the manufacturing cost becomes high.

【0006】一方、大面積化,製造コストを考えた場
合、フォトリソグラフィー技術を用いたパターニングが
妥当である。しかし、現在のフォトリソググラフィー技
術では、電子ビームスポット径が最小のパターンニング
径となるため、直径0.5μm程度が限界である。この
ため冷陰極52の先端を尖鋭に形成するには、更に様々
なプロセスを加えなくてはならない。
On the other hand, in consideration of the increase in area and the manufacturing cost, patterning using the photolithography technique is appropriate. However, in the current photolithography technique, the electron beam spot diameter is the minimum patterning diameter, so the diameter is about 0.5 μm. Therefore, in order to form the tip of the cold cathode 52 sharp, various processes must be added.

【0007】この場合、プロセスが増加するほど、その
間の素子損傷、特に冷陰極先端部を損傷する可能性が高
まり、素子の歩留まりの低下の原因となっている。また
それら冷陰極尖鋭化プロセスのほとんどは煩雑であり、
形状制御が困難である。
In this case, as the number of processes increases, the possibility of damage to the device during the process, especially the damage to the tip of the cold cathode increases, which causes a decrease in device yield. Also, most of those cold cathode sharpening processes are complicated,
Shape control is difficult.

【0008】図10に示す薄膜電界放射型の電子源は、
絶縁体基板61上の絶縁層62の表面に、超音波による
壁開,破断の方法で冷陰極63,ゲート電極64を平行
に形成したものである(特開平3−49129号)。
The thin film field emission type electron source shown in FIG.
A cold cathode 63 and a gate electrode 64 are formed in parallel on the surface of an insulating layer 62 on an insulating substrate 61 by a method of wall opening and breaking by ultrasonic waves (JP-A-3-49129).

【0009】しかし、この図10に示す薄膜電界放射型
の電子源の場合、超音波による破断を伴うものであるた
め、冷陰極63の形状の均一化を図ることが技術的に困
難であるとともに、冷陰極63を形成する薄膜に対する
ダメージが大きいという問題がある。
However, in the case of the thin film field emission type electron source shown in FIG. 10, it is technically difficult to make the shape of the cold cathode 63 uniform because it is broken by ultrasonic waves. There is a problem that the thin film forming the cold cathode 63 is greatly damaged.

【0010】図11,図12に示す薄膜電界放射型の電
子源は、フォトエッチング技術を用いて絶縁体基板71
上の絶縁層72の上に多数の凸状部を持つ冷陰極73を
形成した後に、等方性エッチング技術を利用して凸状部
の先端を尖鋭化したものである(特開平3−25202
5号)。尚、図11中、74は冷陰極73と対向するゲ
ート電極である。しかし、この電子源の場合、エッチン
グ条件による冷陰極73の形状の制御が困難である。さ
らに、側壁保護膜の形成等によりアンダーカットが進行
しないような場合には適用できない。
The thin film field emission type electron source shown in FIGS. 11 and 12 is made of an insulating substrate 71 using a photoetching technique.
After forming a cold cathode 73 having a large number of convex portions on the upper insulating layer 72, the tip of the convex portion is sharpened by using an isotropic etching technique (Japanese Patent Laid-Open No. 3-25202).
No. 5). In FIG. 11, 74 is a gate electrode facing the cold cathode 73. However, in the case of this electron source, it is difficult to control the shape of the cold cathode 73 depending on the etching conditions. Furthermore, it cannot be applied to the case where the undercut does not proceed due to the formation of the side wall protective film.

【0011】また、化学的に安定であり、真空中に電子
を放出し易い低仕事関数材料である遷移金属炭化物,金
属酸化物あるいは希土類酸化物を冷陰極73の表面に被
覆することも考えられている(特開平2−220337
号)。しかし、冷陰極73等に限定して被覆することは
困難である。
It is also conceivable to coat the surface of the cold cathode 73 with a transition metal carbide, a metal oxide or a rare earth oxide which is a chemically stable and low work function material which easily emits electrons in a vacuum. (JP-A-2-220337)
issue). However, it is difficult to cover only the cold cathode 73 and the like.

【0012】[0012]

【発明が解決しようとする課題】上述したように、従来
の電界放射型電子源の場合、冷陰極先端の尖鋭化をはじ
めとする冷陰極の形状を適切に設定できなかったり、低
仕事関数を有し化学的に安定な材料を、微細加工の困難
性から冷陰極として用いることができなかった。このた
め、特性が良好で、かつ、安定した電界放射型電子源を
得ることができないという問題があった。
As described above, in the case of the conventional field emission electron source, the shape of the cold cathode such as sharpening of the tip of the cold cathode cannot be appropriately set, or the low work function is not achieved. A chemically stable material could not be used as a cold cathode because of the difficulty of microfabrication. Therefore, there is a problem that it is not possible to obtain a stable field emission type electron source having good characteristics.

【0013】そこで、本発明は、低電圧駆動が可能でか
つ高い放出電流が安定して得られ、冷陰極の加工性に優
れ、素子の大面積化が可能な冷陰極電子源素子を提供す
るものでる。
Therefore, the present invention provides a cold cathode electron source device which can be driven at a low voltage, stably obtains a high emission current, has excellent workability of a cold cathode, and can have a large area. It comes.

【0014】[0014]

【課題を解決するための手段】請求項1記載の冷陰極電
子源素子は、冷陰極基体と、この冷陰極基体に分散含有
させた仕事関数が前記冷陰極基体の仕事関数よりも低い
導電性材料とを有するものである。
A cold cathode electron source element according to claim 1, wherein the cold cathode substrate and the work function dispersedly contained in the cold cathode substrate are lower than the work function of the cold cathode substrate. And a material.

【0015】請求項2記載の冷陰極電子源素子は、前記
導電性材料が冷陰極表面に突出状態で分散しているもの
である。
In the cold cathode electron source element according to the second aspect, the conductive material is dispersed on the surface of the cold cathode in a protruding state.

【0016】請求項3記載の冷陰極電子源素子は、前記
導電性材料の平均粒径が0.1μm以下としたものであ
る。
In the cold cathode electron source element according to the third aspect of the present invention, the conductive material has an average particle size of 0.1 μm or less.

【0017】[0017]

【作用】請求項1記載の冷陰極電子源素子によれば、冷
陰極基体に対して仕事関数が前記冷陰極基体の仕事関数
よりも低い導電性材料を分散含有させたので、低電圧で
電子を引き出せるとともに高い放出電流が得られる。ま
た、通常のフォトプロセスと、エッチングにより前記冷
陰極基体を加工できるため、任意の形状を簡易に設定で
き、冷陰極電子源素子の大面積化が可能である。
According to the cold cathode electron source device of the present invention, since the conductive material having a work function lower than the work function of the cold cathode substrate is dispersedly contained in the cold cathode substrate, the electron is applied at a low voltage. And a high emission current can be obtained. Further, since the cold cathode substrate can be processed by a normal photo process and etching, an arbitrary shape can be easily set, and the area of the cold cathode electron source element can be increased.

【0018】請求項2記載の冷陰極電子源素子によれ
ば、前記導電性材料が冷陰極表面に突出状態で分散して
いるので、電界の集中により低電圧で電子が引き出せる
とともに、高い放出電流が得られる。
According to the cold cathode electron source element of the present invention, since the conductive material is dispersed on the surface of the cold cathode in a protruding state, electrons can be extracted at a low voltage due to the concentration of an electric field, and a high emission current is obtained. Is obtained.

【0019】請求項3記載の冷陰極電子源素子によれ
ば、前記導電性材料の平均粒径を0.1μm以下として
いるので、高い放出電流が得られるとともに、多数の電
子放出点を形成でき、安定した放出電流特性を得られ
る。
According to the cold cathode electron source element of the third aspect, since the average particle diameter of the conductive material is 0.1 μm or less, a high emission current can be obtained and a large number of electron emission points can be formed. A stable emission current characteristic can be obtained.

【0020】また、陰極形状を従来のように複雑なプロ
セスで曲率半径の小さい尖端部を有するように形成する
必要がない。
Further, it is not necessary to form the cathode shape to have the tip portion having a small radius of curvature by a complicated process as in the conventional case.

【0021】[0021]

【実施例】以下に本発明の実施例を詳細に説明する。EXAMPLES Examples of the present invention will be described in detail below.

【0022】(実施例1)図1に示す冷陰極電子源素子
は、絶縁性基板1の表面に、SiO2 の絶縁層2とゲー
ト電極7とを設け、このゲート電極7に近接する前記絶
縁層2上に冷陰極(エミッタ)10を形成したものであ
る。冷陰極10は、導電性微粒子8を分散含有させた導
電性マトリックス体4により構成している。
[0022] (Example 1) the cold cathode electron source element of FIG. 1, the insulation on the surface of an insulating substrate 1 is provided with an insulating layer 2 and the gate electrode 7 of SiO 2, adjacent to the gate electrode 7 The cold cathode (emitter) 10 is formed on the layer 2. The cold cathode 10 is composed of a conductive matrix body 4 containing conductive fine particles 8 dispersed therein.

【0023】特性の良い冷陰極電子源素子を作製するた
めには仕事関数が低くかつ化学的に安定な材料を用い
て、極力,曲率半径の小さい前記導電性微粒子8を形成
するとともに、冷陰極10とゲート電極7との距離を近
接させて配置するように設計すればよい。
In order to manufacture a cold cathode electron source device having good characteristics, a material having a low work function and a chemically stable property is used to form the conductive fine particles 8 having a radius of curvature as small as possible, and at the same time, a cold cathode is used. The gate electrode 7 and the gate electrode 7 may be designed to be close to each other.

【0024】前記導電性微粒子8としては、化学的に安
定であり、真空中に電子を放出し易い低仕事関数の材料
を用いる。即ち、TiC,ZrC,HfC,TaC,N
bC,MoC,WC等の金属炭化物、TaN,TiN,
ZrN,HfN等の金属窒化物、LaB6 ,TiB2
ZrB2 ,HfB2 等の希土類、金属ほう化物、Y2
3 ,ZrO2 ,ThO2 等の金属酸化物、La2 3
CeO2 ,Pr2 3等の希土類酸化物、またはこれら
を少なくとも一種類以上含んだものを用いる。
As the conductive fine particles 8, a material having a low work function which is chemically stable and easily releases electrons in vacuum is used. That is, TiC, ZrC, HfC, TaC, N
Metal carbides such as bC, MoC, WC, TaN, TiN,
Metal nitrides such as ZrN and HfN, LaB 6 , TiB 2 ,
Rare earths such as ZrB 2 and HfB 2 , metal borides, Y 2 O
3 , metal oxides such as ZrO 2 , ThO 2 , La 2 O 3 ,
A rare earth oxide such as CeO 2 or Pr 2 O 3 or a material containing at least one of these is used.

【0025】前記導電性マトリックス体4の材料として
は、前記導電性微粒子8が炭化物である場合には、炭化
されにくい良導体材料、例えば、Au,Ag,Pt,C
u,Ni,Al等を用いる。
As the material of the conductive matrix body 4, when the conductive fine particles 8 are a carbide, a good conductor material which is hard to be carbonized, for example, Au, Ag, Pt, C.
u, Ni, Al or the like is used.

【0026】前記導電性微粒子8が窒化物である場合に
は、窒化されにくい良導体材料、例えば、Au,Ag,
Pt,Cu,Ni等又はこれらを少なくとも一種類以上
含んだものを用いる。
When the conductive fine particles 8 are nitrides, a good conductor material which is not easily nitrided, such as Au, Ag,
Pt, Cu, Ni, or the like, or one containing at least one of these is used.

【0027】また、前記導電性微粒子8がほう化物であ
る場合には、ほう化されにくい良導体材料、例えば、A
u,Ag,Pt,Cu,Ni等又はこれらを少なくとも
一種類以上含んだものを用いる。
Further, when the conductive fine particles 8 are boride, a good conductor material which is not easily borated, for example, A
u, Ag, Pt, Cu, Ni, or the like containing at least one or more of these is used.

【0028】さらに、前記導電性微粒子8が酸化物であ
る場合には、酸化されにくい良導体材料、例えば、A
u,Pt等、またはこれらを少なくとも一種類以上含ん
だものを用いる。
Further, when the conductive fine particles 8 are oxides, a good conductor material that is not easily oxidized, such as A
u, Pt, or the like, or one containing at least one of these is used.

【0029】次に、前記冷陰極電子源素子の製造工程を
説明する。
Next, a manufacturing process of the cold cathode electron source element will be described.

【0030】まず、図2に示すように、ガラス製の絶縁
性基板1の表面に、スパッタリング法を用いてSiO2
の絶縁層2を1μmの厚さに成膜する。次に、反応性イ
オンプレーティング法により、図3に示すように、導電
性微粒子8であるTiC粒子が導電性マトリックス体4
であるNi中に微細分散した薄膜を厚さを0.3μm成
膜し冷陰極10とする。
First, as shown in FIG. 2, SiO 2 is formed on the surface of the insulating substrate 1 made of glass by a sputtering method.
The insulating layer 2 is formed to a thickness of 1 μm. Next, by the reactive ion plating method, as shown in FIG. 3, the TiC particles which are the conductive fine particles 8 are converted into the conductive matrix body 4.
A thin film finely dispersed in Ni is formed to a thickness of 0.3 μm to form the cold cathode 10.

【0031】前記反応性イオンプレーティング法につい
ては、基板温度673K、蒸着源としてNi−50%T
i合金を電子ビーム加熱し、C源としてC2 2 ガスを
0.11Paで導入し、また、イオン化するためのプロ
ーブ電流2A、基板−ハース間バイアス2kVとした。
Regarding the reactive ion plating method, the substrate temperature is 673 K, and the evaporation source is Ni-50% T.
The i alloy was heated with an electron beam, C 2 H 2 gas was introduced as a C source at 0.11 Pa, and a probe current for ionization was 2 A and a bias between the substrate and the hearth was 2 kV.

【0032】次に、図4に示すように、冷陰極10上に
レジスト5を設けた後、前記冷陰極10に対してフォト
プロセス及び硝酸−りん酸系ウェットエッチングを用い
た成形を行い、更に、絶縁層2をBHFによりウエット
エッチングする(この時冷陰極10上のレジスト5はそ
のまま除去しない)。
Next, as shown in FIG. 4, after a resist 5 is provided on the cold cathode 10, the cold cathode 10 is molded using a photo process and nitric acid-phosphoric acid wet etching. The insulating layer 2 is wet-etched with BHF (at this time, the resist 5 on the cold cathode 10 is not removed as it is).

【0033】更に、図5に示すように、全面にCr膜6
及びゲート電極7としてのCr膜を蒸着法により0.3
μmの厚さに形成する。この後、図6に示すように、レ
ジスト5,前記Cr膜6を剥離液によって除去する。
Further, as shown in FIG. 5, a Cr film 6 is formed on the entire surface.
And a Cr film as the gate electrode 7 by a vapor deposition method to 0.3.
It is formed to a thickness of μm. Thereafter, as shown in FIG. 6, the resist 5 and the Cr film 6 are removed by a stripping solution.

【0034】また、前記フォトプロセスによる冷陰極1
0のパターニングの一例を図7に示す。
The cold cathode 1 produced by the photo process is also used.
An example of 0 patterning is shown in FIG.

【0035】また、特に限定するわけではないが、好ま
しくは導電性マトリックス体4に対して導電性微粒子8
を25vol%以下になるようにすることで、導電性微
粒子8間の分散性が高まり、導電性マトリックス体4の
エッチングを容易にするとともに、各導電性微粒子8ご
とへの電界の集中を可能にする。
Although not particularly limited, the conductive fine particles 8 are preferably added to the conductive matrix body 4.
Is 25 vol% or less, the dispersibility between the conductive fine particles 8 is enhanced, the conductive matrix body 4 is easily etched, and the electric field can be concentrated on each conductive fine particle 8. To do.

【0036】従来の冷陰極電子源素子の場合、ゲート電
圧120V付近から電子放出が確認され、放出電流変動
が30%程度であったのに対し、実施例1の冷陰極電子
源素子の場合、ゲート電圧40V付近から電子放出が確
認され、放出電流変動は5%以下であった。これは、仕
事関数が低く、吸着ガス等のよる影響を受けにくい非常
に化学的に安定なTiCを曲率半径50nm以下の導電
性微粒子8として形成できたこと、また、導電性マトリ
ックス体4に対して分散含有させ、かつ、導電性マトリ
ックス体4の表面に突出させた導電性微粒子8を高密度
に形成できたことにより、低電圧から電子放出が起こ
り、電子放出量が増加し、電子放出特性が平均化されて
安定な電子放出特性を得ることができたものと考えられ
る。
In the case of the conventional cold cathode electron source element, electron emission was confirmed from around the gate voltage of 120 V, and the emission current fluctuation was about 30%, whereas in the case of the cold cathode electron source element of Example 1, Electron emission was confirmed around a gate voltage of 40 V, and the emission current fluctuation was 5% or less. This is because TiC, which has a low work function and is not easily influenced by an adsorbed gas or the like, can be formed as the conductive fine particles 8 having a radius of curvature of 50 nm or less. Since the conductive fine particles 8 dispersedly contained in the conductive matrix body 4 and protruding on the surface of the conductive matrix body 4 can be formed at a high density, electron emission occurs from a low voltage, the electron emission amount increases, and the electron emission characteristics are increased. It is considered that stable electron emission characteristics were obtained by averaging.

【0037】さらに、前記導電性微粒子8自体は化学的
に安定であるため、エッチング等の微細加工プロセスを
施すことが困難であるが、導電性マトリックス体4をエ
ッチングすることで容易に冷陰極電子源素子を形成でき
る。
Further, since the conductive fine particles 8 themselves are chemically stable, it is difficult to perform a fine processing process such as etching. However, by etching the conductive matrix body 4, cold cathode electrons can be easily obtained. The source element can be formed.

【0038】この際、導電性微粒子8の曲率半径が小さ
く、突出状態にあるために、冷陰極10の端部を特に尖
鋭に形成する必要がなくなり、製造プロセスが技術的に
簡易化されることになり、歩留まりの向上を図ることに
もなる。
At this time, since the radius of curvature of the conductive fine particles 8 is small and the conductive fine particles 8 are in a protruding state, it is not necessary to form the end portion of the cold cathode 10 particularly sharply, and the manufacturing process is technically simplified. Therefore, the yield will be improved.

【0039】(実施例2)ガラス基板の表面に、スパッ
タリング法を用いてSiO2 からなる絶縁層を1μmの
厚さに形成する。更に、前記絶縁層の表面に図8に示す
スパッタリング装置を用いて同時スパッタリング法によ
り薄膜を0.3μmの厚さに形成し、冷陰極とする。前
記薄膜はNi中にTiC粒子を微細分散させたものであ
る。
Example 2 An insulating layer made of SiO 2 is formed on the surface of a glass substrate by sputtering to have a thickness of 1 μm. Further, a thin film having a thickness of 0.3 μm is formed on the surface of the insulating layer by the co-sputtering method using the sputtering apparatus shown in FIG. 8 to form a cold cathode. The thin film is obtained by finely dispersing TiC particles in Ni.

【0040】同時スパッタリング法におけるスパッタリ
ング条件は、図8に示すように、Ni製のターゲット1
1上にTiチップ12を載置し、このターゲット11に
対峙した絶縁製基板1に対してNi中にTiC粒子を微
細分散させた薄膜を形成するものである。
The sputtering conditions for the simultaneous sputtering method are as shown in FIG.
The Ti chip 12 is placed on the target substrate 1, and a thin film in which TiC particles are finely dispersed in Ni is formed on the insulating substrate 1 facing the target 11.

【0041】この場合、真空度は0.5Pa、雰囲気は
エチレンガス(メタンガス,プロパンガス,アセチレン
ガスとしてもよい。)、電源13のRFパワーは500
W、基板温度は摂氏200度、Tiチップ(またはTi
Cチップ)12は例えば10×10×1mmのものを4
個とする。
In this case, the degree of vacuum is 0.5 Pa, the atmosphere is ethylene gas (may be methane gas, propane gas, or acetylene gas), and the RF power of the power source 13 is 500.
W, substrate temperature is 200 degrees Celsius, Ti chip (or Ti
C chip) 12 is, for example, 4 × 10 × 10 × 1 mm
To be individual.

【0042】次に、実施例1の場合と同様、前記冷陰極
をフォトプロセス及びリン酸硝酸系によるウェットエッ
チングにより成形し、更に、SiO2 をBHFによりウ
ェットエッチングする。更にこの上から、垂直入射の条
件でゲート電極用のCr膜を0.3μmの厚さに蒸着す
る。
Next, as in the case of Example 1, the cold cathode is formed by photoprocess and wet etching with a phosphoric acid / nitric acid system, and further SiO 2 is wet etched with BHF. Further, a Cr film for a gate electrode is vapor-deposited thereon to a thickness of 0.3 μm under the condition of vertical incidence.

【0043】この後、実施例1の場合と同様、レジスト
及びこのレジスト上の不用のCr膜を剥離液により除去
し冷陰極電子源素子を得る。
Thereafter, as in the case of Example 1, the resist and the unnecessary Cr film on this resist are removed by a stripping solution to obtain a cold cathode electron source element.

【0044】また、特に限定するわけではないが、好ま
しくは導電性マトリックス体4に対して導電性微粒子8
を25vol%以下になるようにすることで、導電性微
粒子8間の分散性が高まり、導電性マトリックス体4の
エッチングを容易にするとともに、各導電性微粒子8ご
とへの電界の集中を可能にする。
Although not particularly limited, the conductive fine particles 8 are preferably added to the conductive matrix body 4.
Is 25 vol% or less, the dispersibility between the conductive fine particles 8 is enhanced, the conductive matrix body 4 is easily etched, and the electric field can be concentrated on each conductive fine particle 8. To do.

【0045】従来の冷陰極電子源素子の場合、ゲート電
圧120V付近から電子放出が確認され、放出電子流変
動が30%程度であったの対し、実施例1の冷陰極電子
源素子の場合、ゲート電圧40V付近から電子放出が確
認され、放出電子流変動は5%以下であった。
In the case of the conventional cold cathode electron source element, electron emission was confirmed from around the gate voltage of 120 V, and the variation of the emitted electron flow was about 30%, whereas in the case of the cold cathode electron source element of Example 1, Electron emission was confirmed near the gate voltage of 40 V, and the variation of the emitted electron flow was 5% or less.

【0046】これは、仕事関数が低く、吸着ガス等によ
る影響を受けにくい非常に化学的に安定なTiCを曲率
半径50nm以下の導電性微粒子8として形成できたこ
と、また、導電性マトリックス体4に対して分散含有さ
せ、かつ、導電性マトリックス体4の表面に突出させた
導電性微粒子8を高密度に形成できたことにより、低電
圧から電子放出が起こり、電子放出量が増加し、電子放
出特性が平均化されて安定な電子放出特性を得ることが
できたものと考えられる。
This is because TiC, which has a low work function and is not easily affected by the adsorbed gas or the like, can be formed as the electrically conductive fine particles 8 having a radius of curvature of 50 nm or less. Since the conductive fine particles 8 dispersedly contained and protruding on the surface of the conductive matrix body 4 can be formed at a high density, electron emission occurs from a low voltage, the electron emission amount increases, and It is considered that the emission characteristics were averaged and stable electron emission characteristics could be obtained.

【0047】さらに、導電性微粒子8自体は化学的に安
定なため、エッチング等の微細加工プロセスを施すこと
が困難であるが、導電性マトリックス体4をエッチング
することで、容易に冷陰極電子源素子を形成できる。
Further, since the conductive fine particles 8 themselves are chemically stable, it is difficult to perform a fine processing process such as etching. However, by etching the conductive matrix body 4, the cold cathode electron source can be easily formed. An element can be formed.

【0048】この際、導電性微粒子8の曲率半径が小さ
く、突出状態にあるために、冷陰極10の端部を特に尖
鋭に形成する必要がなくなり、製造プロセスが技術的に
簡易化されることになり、歩留まりの向上を図ることに
もなる。
At this time, since the radius of curvature of the conductive fine particles 8 is small and the conductive fine particles 8 are in a protruding state, it is not necessary to form the end portion of the cold cathode 10 particularly sharply, and the manufacturing process is technically simplified. Therefore, the yield will be improved.

【0049】[0049]

【発明の効果】請求項1記載の発明によれば、低電圧で
電子を引き出すことができるので高い放出電流が得ら
れ、IC,TFT等による駆動が可能になり、デバイス
の高性能化と低消費電力化が図れるとともに、通常のフ
ォトプロセスとエッチングにより冷陰極基体を加工で
き、任意の形状を簡易に設定でき、素子の大面積化が可
能な冷陰極電子源素子を提供することができる。
According to the first aspect of the present invention, since electrons can be drawn out at a low voltage, a high emission current can be obtained, and driving by ICs, TFTs, etc. becomes possible, and device performance and low It is possible to provide a cold cathode electron source element that can reduce power consumption, can process a cold cathode substrate by a normal photo process and etching, can easily set an arbitrary shape, and can increase the area of the element.

【0050】請求項2記載の発明によれば、前記導電性
材料が冷陰極表面に突出状態で分散しているので、電界
の集中により低電圧で電子が引き出せるとともに、高い
放出電流を得ることができる冷陰極電子源素子を提供す
ることができる。
According to the second aspect of the invention, since the conductive material is dispersed on the surface of the cold cathode in a protruding state, electrons can be extracted at a low voltage due to the concentration of the electric field, and a high emission current can be obtained. A cold cathode electron source device that can be provided can be provided.

【0051】請求項3記載の発明によれば、前記導電性
材料の平均粒径を0.1μm以下とすることで、高い放
出電流が得られるとともに、安定した放出電流特性を発
揮する冷陰極電子源素子を提供することができる。
According to the third aspect of the present invention, by setting the average particle diameter of the conductive material to 0.1 μm or less, a high emission current can be obtained and a cold cathode electron exhibiting stable emission current characteristics. A source element can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における冷陰極電子源素子を
示す部分拡大斜視図
FIG. 1 is a partially enlarged perspective view showing a cold cathode electron source device according to a first embodiment of the present invention.

【図2】本発明の実施例1の冷陰極電子源素子の製造工
程を示す断面図
FIG. 2 is a sectional view showing a manufacturing process of a cold cathode electron source element according to Example 1 of the present invention.

【図3】本発明の実施例1の冷陰極電子源素子の製造工
程を示す断面図
FIG. 3 is a cross-sectional view showing the manufacturing process of the cold cathode electron source element according to the first embodiment of the present invention.

【図4】本発明の実施例1の冷陰極電子源素子の製造工
程を示す断面図
FIG. 4 is a cross-sectional view showing the manufacturing process of the cold cathode electron source element according to the first embodiment of the present invention.

【図5】本発明の実施例1の冷陰極電子源素子の製造工
程を示す断面図
FIG. 5 is a sectional view showing a manufacturing process of the cold cathode electron source element according to the first embodiment of the present invention.

【図6】本発明の実施例1の冷陰極電子源素子の製造工
程を示す断面図
FIG. 6 is a cross-sectional view showing the manufacturing process of the cold cathode electron source element according to the first embodiment of the present invention.

【図7】本発明の実施例1の冷陰極電子源素子のパター
ニングの一例を示す平面図
FIG. 7 is a plan view showing an example of patterning of the cold cathode electron source element according to the first embodiment of the present invention.

【図8】本発明の実施例2に用いる同時スパッタリング
装置を示す概略配置図
FIG. 8 is a schematic layout diagram showing a simultaneous sputtering device used in Example 2 of the present invention.

【図9】従来の電子源の一例を示す部分斜視図FIG. 9 is a partial perspective view showing an example of a conventional electron source.

【図10】従来の電子源の他例を示す部分斜視図FIG. 10 is a partial perspective view showing another example of a conventional electron source.

【図11】従来の電子源の更に他例を示す部分斜視図FIG. 11 is a partial perspective view showing still another example of the conventional electron source.

【図12】従来の電子源の更に他例を示す部分斜視図FIG. 12 is a partial perspective view showing still another example of the conventional electron source.

【符号の説明】[Explanation of symbols]

1 絶縁性基板 2 絶縁層 4 電気導電性マトリックス体 7 ゲート電極 8 電子放出微粒子 10 冷陰極 1 Insulating Substrate 2 Insulating Layer 4 Electrically Conductive Matrix Body 7 Gate Electrode 8 Electron Emitting Fine Particles 10 Cold Cathode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷陰極基体と、この冷陰極基体に分散含
有させた仕事関数が前記冷陰極基体の仕事関数よりも低
い導電性材料とを有することを特徴とする冷陰極電子源
素子。
1. A cold cathode electron source element comprising a cold cathode substrate and a conductive material having a work function dispersed and contained in the cold cathode substrate lower than the work function of the cold cathode substrate.
【請求項2】 前記導電性材料が冷陰極表面に突出状態
で分散している請求項1記載の冷陰極電子源素子。
2. The cold cathode electron source element according to claim 1, wherein the conductive material is dispersed on the surface of the cold cathode in a protruding state.
【請求項3】 前記導電性材料の平均粒径が0.1μm
以下である請求項1又は2記載の冷陰極電子源素子。
3. The average particle diameter of the conductive material is 0.1 μm.
The cold cathode electron source device according to claim 1 or 2, wherein:
JP29335793A 1993-11-24 1993-11-24 Cold cathode electron source device Expired - Fee Related JP3444943B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP29335793A JP3444943B2 (en) 1993-11-24 1993-11-24 Cold cathode electron source device
EP95900936A EP0681312B1 (en) 1993-11-24 1994-11-22 Cold-cathode electron source element and method for producing the same
DE69432174T DE69432174T2 (en) 1993-11-24 1994-11-22 COLD CATHODE ELECTRODE SOURCE ELEMENT AND METHOD FOR PRODUCING THE SAME
PCT/JP1994/001976 WO1995015002A1 (en) 1993-11-24 1994-11-22 Cold-cathode electron source element and method for producing the same
US08/347,133 US5760536A (en) 1993-11-24 1994-11-23 Cold cathode electron source element with conductive particles embedded in a base
US08/962,735 US5860844A (en) 1993-11-24 1997-11-03 Cold cathode electron source element and method for making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29335793A JP3444943B2 (en) 1993-11-24 1993-11-24 Cold cathode electron source device

Publications (2)

Publication Number Publication Date
JPH07147128A true JPH07147128A (en) 1995-06-06
JP3444943B2 JP3444943B2 (en) 2003-09-08

Family

ID=17793749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29335793A Expired - Fee Related JP3444943B2 (en) 1993-11-24 1993-11-24 Cold cathode electron source device

Country Status (1)

Country Link
JP (1) JP3444943B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417606B1 (en) 1998-10-12 2002-07-09 Kabushiki Kaisha Toshiba Field emission cold-cathode device
KR100769721B1 (en) * 2006-10-16 2007-10-24 삼성전기주식회사 Vertically structured field emission display and method of manufacturing the same
US11908962B2 (en) 2012-05-18 2024-02-20 Oxford University Innovation Limited Optoelectronic device comprising perovskites

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417606B1 (en) 1998-10-12 2002-07-09 Kabushiki Kaisha Toshiba Field emission cold-cathode device
KR100769721B1 (en) * 2006-10-16 2007-10-24 삼성전기주식회사 Vertically structured field emission display and method of manufacturing the same
US11908962B2 (en) 2012-05-18 2024-02-20 Oxford University Innovation Limited Optoelectronic device comprising perovskites

Also Published As

Publication number Publication date
JP3444943B2 (en) 2003-09-08

Similar Documents

Publication Publication Date Title
US3998678A (en) Method of manufacturing thin-film field-emission electron source
US6333598B1 (en) Low gate current field emitter cell and array with vertical thin-film-edge emitter
US6448701B1 (en) Self-aligned integrally gated nanofilament field emitter cell and array
US5214346A (en) Microelectronic vacuum field emission device
US6590322B2 (en) Low gate current field emitter cell and array with vertical thin-film-edge emitter
US6899584B2 (en) Insulated gate field emitter array
Kanemaru et al. Fabrication and characterization of lateral field-emitter triodes
US5760536A (en) Cold cathode electron source element with conductive particles embedded in a base
Rakhshandehroo et al. Fabrication of self-aligned silicon field emission devices and effects of surface passivation on emission current
KR100243990B1 (en) Field emission cathode and method for manufacturing the same
US6924158B2 (en) Electrode structures
Rakhshandehroo et al. High current density Si field emission devices with plasma passivation and HfC coating
JP3444943B2 (en) Cold cathode electron source device
US6777169B2 (en) Method of forming emitter tips for use in a field emission display
JP2601091B2 (en) Electron-emitting device
JP2005310724A (en) Field emission type electron source and manufacturing method for it
JP3452222B2 (en) Cold cathode electron source device and method of manufacturing the same
Yun et al. Novel lateral field emission device fabricated on silicon-on-insulator material
JP4312326B2 (en) Electron emission device
US6664721B1 (en) Gated electron field emitter having an interlayer
JPH1154025A (en) Cold electron emitting element and its manufacture
JP2738197B2 (en) Electron-emitting device
KR100701750B1 (en) Field Emission Array and method for fabricating same
JPH0785397B2 (en) Electron-emitting device
Wang et al. Fabrication and emission properties of LaB6 field emission microtriodes

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030617

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees