JPH07146174A - Photometer - Google Patents

Photometer

Info

Publication number
JPH07146174A
JPH07146174A JP29110093A JP29110093A JPH07146174A JP H07146174 A JPH07146174 A JP H07146174A JP 29110093 A JP29110093 A JP 29110093A JP 29110093 A JP29110093 A JP 29110093A JP H07146174 A JPH07146174 A JP H07146174A
Authority
JP
Japan
Prior art keywords
light
integrating sphere
photometric
photometric device
shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29110093A
Other languages
Japanese (ja)
Inventor
Hideo Nishiyama
英夫 西山
Kenichi Suzuki
健一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29110093A priority Critical patent/JPH07146174A/en
Publication of JPH07146174A publication Critical patent/JPH07146174A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a photometer for optically reducing a system error generated when giving values to all fluxes of light between light sources with different distribution of light and shape using an integrating sphere. CONSTITUTION:Based on the concept of the mutual reflection incidence illuminance coefficient within an integrating sphere, a cylindrical oblique incidence light shielding ring 7 is provided at a position surrounding the periphery of a light receiver 5 for providing an optical means for improving the incidence angle characteristics of the light receiver of a band with the integrating sphere at the light-reception part of the integrating sphere and the cylinder height of the oblique incidence light shielding ring 7 is set to shield the oblique incidence angle at a light reception angle of approximately 70-90.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、全光束測定用積分球よ
りなる測光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric device comprising an integrating sphere for measuring total luminous flux.

【0002】[0002]

【従来の技術】積分球を用いて光源の全光束を測定しよ
うとするとき、全光束標準と同種の光源の測定データに
は測定誤差はほとんど現われない。すなわち全光束標準
には現在では電球を用いているので、電球の全光束測定
は比較的高精度で実現できる。しかし、蛍光ランプのよ
うに電球と形状、配光、分光分布および自己吸収特性な
どが異なる光源の全光束測定には数々の測定誤差が介在
する。このうち、形状および配光による誤差について
は、いままで部分的に実験などにより確認されてきてい
るが一般的な補正方法を見いだすまでには至っていな
い。
2. Description of the Related Art When an integrated sphere is used to measure the total luminous flux of a light source, almost no measurement error appears in the measurement data of a light source of the same type as the total luminous flux standard. That is, since the light bulb is currently used as the total luminous flux standard, the total luminous flux measurement of the light bulb can be realized with relatively high accuracy. However, a number of measurement errors are involved in measuring the total luminous flux of a light source such as a fluorescent lamp, which has a different shape, light distribution, spectral distribution, and self-absorption characteristic from the light bulb. Of these, errors due to shape and light distribution have been partially confirmed by experiments, etc., but a general correction method has not been found yet.

【0003】積分球による全光束測定の原理は図6で説
明される。図6において、積分球の内壁面は硫酸バリウ
ムなどで白色塗装されており、その反射率は0.95〜
1.00の値をとるのが一般的である。積分球1の中心
には直管蛍光ランプ2が取り付けられている。また積分
球1には受光窓4があって、ここに受光器5が取り付け
られている。この受光窓4と直管蛍光ランプ2の間に
は、遮光板3が設けられ、直管蛍光ランプ2の光が直接
受光窓4に入射しないようにしている。また、全光束の
値付けされた全光束標準電球も積分球の中心に取り付け
られるため、遮光板3は、図7に示すように、電球でも
直管蛍光ランプでも受光器へ直射光が届かないような蛍
光ランプ遮光部分3aと電球遮光部分3bを有する形状
としている。
The principle of total luminous flux measurement with an integrating sphere is illustrated in FIG. In FIG. 6, the inner wall surface of the integrating sphere is painted white with barium sulfate or the like, and its reflectance is 0.95 to
Generally, it takes a value of 1.00. A straight tube fluorescent lamp 2 is attached to the center of the integrating sphere 1. Further, the integrating sphere 1 has a light receiving window 4, and a light receiver 5 is attached thereto. A light shielding plate 3 is provided between the light receiving window 4 and the straight tube fluorescent lamp 2 so that the light of the straight tube fluorescent lamp 2 does not directly enter the light receiving window 4. Further, since the total luminous flux standard light bulb with the value of the total luminous flux attached to the center of the integrating sphere, the light shield plate 3 does not reach the light receiver of the light bulb or the straight tube fluorescent lamp as shown in FIG. The shape is provided with such a fluorescent lamp light-shielding portion 3a and a light bulb light-shielding portion 3b.

【0004】[0004]

【発明が解決しようとする課題】このような積分球の構
成において、光源から放射された光は積分球内で相互反
射を繰り返し、積分球内の各点はそれぞれ或る輝度を持
つようになる。この輝度分布は一様であるのが理想的で
あるが、遮光板3が介在するために一様とはならない。
すなわち、電球と蛍光ランプの形状や配光が異なるため
に、たとえ双方の光源が同じ全光束を持っていたとして
も、積分球の各点における照度は異なった値をとり、受
光窓4においても照度は異なってくる。このため、結果
的に測定値に系統誤差が混入することとなる。この誤差
は光源の形状や配光が異なればそれに応じて変化する。
In such an integrating sphere, the light emitted from the light source repeats mutual reflection in the integrating sphere, and each point in the integrating sphere has a certain brightness. . This brightness distribution is ideally uniform, but it is not uniform because the light shielding plate 3 is interposed.
That is, even if both light sources have the same total luminous flux, the illuminance at each point of the integrating sphere takes different values even in the light receiving window 4 because the light bulb and the fluorescent lamp have different shapes and light distributions. The illuminance will be different. Therefore, as a result, a systematic error is included in the measured value. This error changes according to the shape of the light source and the light distribution.

【0005】本発明は上記問題を解決しようとするもの
で、積分球を用いて配光や形状の異なる光源間の全光束
の値付けを行う場合に発生する系統誤差を、測定光学系
のなかで改善することができるようにした測光装置を提
供することを目的とする。
The present invention is intended to solve the above-mentioned problems. A systematic error that occurs when the total light flux between light sources having different light distributions and shapes is valued by using an integrating sphere is considered to be a systematic error in the measurement optical system. It is an object of the present invention to provide a photometric device that can be improved.

【0006】[0006]

【課題を解決するための手段】この課題を解決するた
め、本発明による測光装置は、積分球内の相互反射入射
照度係数の概念に基づき、積分球分帯の受光器の入射角
度特性を改善する手段を講じたもので、照度計受光部の
周りを取り囲む位置に円筒状の斜め入射光遮光リングを
設けたり、円形測光窓の円形より大きい直径をもつ円錐
上げ底部付き円筒を設け、この円筒内にあって円錐上げ
底部の頂部に受光器を設置したり、前記円形測光窓に、
積分球に設けられた遮光板による相互反対入射照度係数
の急変部を除外するための一対の遮光突起を形成した
り、円形測光窓を環状に形成したり、この環状の円形測
光窓を2分割の形状にしたりするものである。
In order to solve this problem, the photometric device according to the present invention improves the incident angle characteristic of the light receiver in the integrating sphere band based on the concept of the mutual reflection incident illuminance coefficient in the integrating sphere. A cylindrical oblique incident light blocking ring is provided at a position surrounding the light receiving part of the illuminometer, or a cylinder with a conical raised bottom having a diameter larger than that of the circular photometric window is provided. Install a light receiver on the top of the conical raised bottom inside, or in the circular photometric window,
Forming a pair of light-shielding projections to eliminate sudden changes in the illuminance coefficient of mutually opposite incidents by a light-shielding plate provided on the integrating sphere, forming a circular photometric window in an annular shape, or dividing this annular circular photometric window into two It is also made into a shape.

【0007】[0007]

【作用】これにより、測定値への個々の電気的補正を主
体的に行ってきた従来の方法に代わって光学的に補正
し、系統誤差の本質に立ち帰った、より正確な補正がで
きるようになる。
As a result, it becomes possible to perform more accurate correction by returning to the essence of the systematic error by optically correcting the measured values individually instead of the conventional method that has been mainly performed. become.

【0008】[0008]

【実施例】以下に、本発明の一実施例について説明す
る。積分球内に遮光板があるときの相互反射特性は反射
面(内壁面・遮光板・測光窓)を凸多角形の要素面の集
合体とした計算モデルを作成し、要素面間の形態係数を
算出する方法によって表わせる。要素面は照度および反
射率が均一である均等拡散反射面と仮定し、要素jの要
素iに対する形態係数Fjiは、単位光束発散度をもつ要
素jが要素iに与える照度値であるとして計算できる。
また、Eai、E(a+1)iを、要素iにおけるa回および
(a+1)回反射後の拡散照度の増分とすると、実効反
射率raiはrai=E(a+1)i/Eaiと表わすことができ、
要素面の反射率や初期照度値によらずに、ほぼ一定の反
射回数で収束することが明かになっている。したがっ
て、相互反射計算は実効反射率が収束するまで計算すれ
ばよく、要素iにおける最終的な照度値Eiは、実効反
射率が収束する反射回数をb回とすると、次式で表わせ
る。
EXAMPLES An example of the present invention will be described below. The mutual reflection characteristics when there is a shading plate in the integrating sphere is calculated by using a reflection surface (inner wall surface, shading plate, photometric window) as a set of convex polygonal element surfaces, and calculating the form factor between the element surfaces. Can be represented by the method of calculating The element surface is assumed to be a uniform diffuse reflection surface with uniform illuminance and reflectance, and the form factor F ji of the element j with respect to the element i is calculated as the illuminance value given to the element i by the element j having a unit luminous flux divergence. it can.
Further, if E ai and E (a + 1) i are increments of diffused illuminance after reflection a times and (a + 1) times in the element i, the effective reflectance r ai is r ai = E (a + 1) i. Can be expressed as / E ai ,
It is clear that the light converges at a substantially constant number of reflections regardless of the reflectance of the element surface and the initial illuminance value. Therefore, the mutual reflection calculation may be performed until the effective reflectance converges, and the final illuminance value Ei in the element i can be expressed by the following equation, where b is the number of reflections when the effective reflectance converges.

【0009】[0009]

【数1】 [Equation 1]

【0010】ここで、E0iは要素iの初期照度、ρj
要素jの反射率、r(b-1)iは要素iのb回反射後の実効
反射率を表わす。この計算方法を用いて、点光源が積分
球の中心に位置するときの積分球の相互反射入射照度係
数K(θ,φ)を計算し、θ,φの値を受光窓を起点にと
って一例を図示すると、図8のようになる。すなわち図
8は積分球内壁面の各点から受光窓4に入射する光束に
よる照度を表わすものといえる。図8は積分球の中心に
点光源が存在するときの一計算結果であるが、直管蛍光
ランプのように積分球の中心から外れた位置でも発光し
ている棒状光源の場合は、その位置毎のK(θ,φ)を
計算し、これらの計算結果の総和から受光窓に入射する
照度を求めることができ、光源の中心が積分球の中心に
位置するように設置すれば、図8とほぼ同じような特性
が得られる。図8から、θの値の小さい0°〜30°す
なわち受光窓の周辺はK(θ,φ)がごく小さく、30
°の前後にK(θ,φ)の極大値のあることがわかる。
また、この極大値は遮光板の位置や光源の形状などによ
り大きく変化することがわかっている。なお、上記のシ
ミュレーションは、受光器の斜入射角度特性が余弦則に
合致していることが前提となっているのはいうまでもな
い。
Here, E 0i represents the initial illuminance of the element i, ρ j represents the reflectance of the element j, and r (b-1) i represents the effective reflectance of the element i after b times of reflection. Using this calculation method, the inter-reflection incident illuminance coefficient K (θ, φ) of the integrating sphere when the point light source is located at the center of the integrating sphere is calculated, and an example of the values of θ, φ starting from the light receiving window is used as an example. When illustrated, it becomes like FIG. That is, it can be said that FIG. 8 represents the illuminance by the light flux incident on the light receiving window 4 from each point on the inner wall surface of the integrating sphere. Fig. 8 shows one calculation result when a point light source exists at the center of the integrating sphere, but in the case of a rod-shaped light source that emits light even at a position outside the center of the integrating sphere, such as a straight tube fluorescent lamp, its position If K (θ, φ) is calculated for each time and the illuminance incident on the light receiving window can be obtained from the sum of these calculation results, and if the center of the light source is located at the center of the integrating sphere, The characteristics almost similar to are obtained. It can be seen from FIG. 8 that K (θ, φ) is very small around 0 ° to 30 ° where the value of θ is small, that is, around the light receiving window.
It can be seen that there is a maximum value of K (θ, φ) before and after °.
Further, it is known that this maximum value greatly changes depending on the position of the light shielding plate and the shape of the light source. Needless to say, the above simulation is based on the assumption that the oblique incident angle characteristic of the light receiver matches the cosine law.

【0011】図1は本発明の第1の実施例を示す測光装
置の要部断面図である。図1において、6は受光角度特
性を余弦則に合致させるために受光器5の前面に設けた
ドーム状の拡散板で、ここで拡散された光は受光器5に
入射して光電変換を受け電気信号に変換される。また、
斜め入射光遮光リング7は円筒の形状をもち拡散板6を
中心にしてその周りを取り囲むように設置され、相互反
射入射照度係数の低いθ=0°〜30°付近、ならびに
相互反射入射照度係数の変動の大きいθ=30°〜40
°付近からの入射光、すなわち受光角にして大略70°
〜90°の斜め入射角度を遮光する機能をもたせてい
る。ここで、θが40°のときは受光角は70°に相当
する。これにより、形状などが異なる光源間で全光束の
値付けする際に発生する系統誤差を、著しく低減するこ
とができる。なお、この入射光遮光リング7の内側面は
黒色艶消し塗装とし、受光部拡散面からみて二次光源に
ならないようにしておくことが大切である。また、この
入射光遮光リング7の外側面は積分球内壁面と同様の白
色拡散塗装を施し、積分球内の相互反射効率を落とさな
いようにすることが望ましい。
FIG. 1 is a sectional view of a main part of a photometric device showing a first embodiment of the present invention. In FIG. 1, reference numeral 6 denotes a dome-shaped diffuser plate provided on the front surface of the light receiver 5 in order to match the light-receiving angle characteristic with the cosine law, and the light diffused here enters the light receiver 5 and undergoes photoelectric conversion. It is converted into an electric signal. Also,
The oblique incident light shield ring 7 has a cylindrical shape and is installed so as to surround the diffuser plate 6 as a center, and has a low mutual reflection incident illuminance coefficient in the vicinity of θ = 0 ° to 30 ° and the mutual reflection incident illuminance coefficient. Of large fluctuation of θ = 30 ° -40
Incident light from around °, that is, the acceptance angle is about 70 °
It has a function of blocking the oblique incident angle of ˜90 °. Here, when θ is 40 °, the light receiving angle corresponds to 70 °. As a result, it is possible to significantly reduce the systematic error that occurs when valuing the total luminous flux between light sources having different shapes. In addition, it is important that the inner side surface of the incident light blocking ring 7 is black matte coating so that it does not serve as a secondary light source when viewed from the diffusion surface of the light receiving portion. Further, it is desirable that the outer surface of the incident light shielding ring 7 is coated with white diffusion similar to the inner wall surface of the integrating sphere so as not to reduce the mutual reflection efficiency in the integrating sphere.

【0012】図2は本発明の第2の実施例を示す測光装
置の要部断面図である。図2において、積分球には円形
の受光窓4があって、この円形より大きい直径をもつ円
錐上げ底部付き円筒の円筒部8が積分球の外側に設置さ
れ、この円筒部8の開口部には円錐上げ底部9が接続さ
れている。また、受光器5はこの円錐上げ底部9の頂部
に設置され、この受光器5は受光窓4によって受光角度
を大略0°〜40°に制限し、大略70°〜90°の斜
め入射角度を遮光する機能をもたせて、光源の形状など
が変わっても全光束の値付けする際に発生する系統誤差
を著しく低減することができるようにしている。また、
円筒部8、円錐上げ底部9の内面および円筒部8の内部
の積分球外壁面は黒色塗装を施し、受光窓4からの入射
光で受光器5に到達しない光、すなわち、70°〜90
°の入射光を吸収するとともに、円筒部8ならびに円錐
上げ底部9によって形成されるトラップ空間を利用し
て、反射光を次第に円筒部8と円錐上げ底部9の接続部
に導き、迷光の低減につとめている。この場合、円筒8
の直径が受光窓より十分大きいことが、迷光の低減につ
ながる。
FIG. 2 is a sectional view of a main part of a photometric device showing a second embodiment of the present invention. In FIG. 2, the integrating sphere has a circular light receiving window 4, and a cylindrical portion 8 of a cylinder with a conical raised bottom having a diameter larger than the circular shape is installed outside the integrating sphere, and at the opening of the cylindrical portion 8. Has a conical raised bottom 9 connected thereto. Further, the light receiver 5 is installed on the top of the raised bottom portion 9 of the cone, and the light receiver 5 limits the light receiving angle by the light receiving window 4 to approximately 0 ° to 40 °, and the oblique incident angle of approximately 70 ° to 90 °. By providing the function of blocking light, it is possible to significantly reduce the systematic error that occurs when the total luminous flux is priced, even if the shape of the light source changes. Also,
The inner surface of the cylindrical portion 8, the conical raised bottom portion 9 and the outer wall surface of the integrating sphere inside the cylindrical portion 8 are painted black so that the incident light from the light receiving window 4 does not reach the light receiver 5, that is, 70 ° to 90 °.
In addition to absorbing incident light of 90 °, the trap space formed by the cylindrical portion 8 and the conical raised bottom portion 9 is utilized to gradually guide the reflected light to the connecting portion between the cylindrical portion 8 and the conical raised bottom portion 9 to reduce stray light. I am working. In this case, the cylinder 8
If the diameter of the is larger than the light receiving window, stray light is reduced.

【0013】次に、本発明の第3の実施例として、図8
で示されているような、遮光板による相互反射入射照度
係数の凹部を光学的に除去するための手段について、図
3をもとに説明する。図3は図2の円形受光窓4に設け
た遮光突起を示す平面図で、2つの遮光突起10は遮光
板の長手方向に平行な径方向に設けられており、このこ
とにより、前記凹部の変動による影響を光学的に除去す
ることができる。この場合、円筒部8や円錐上げ底部
9、受光器5の構造および特性は図2と同じであること
はいうまでもない。
Next, as a third embodiment of the present invention, FIG.
A means for optically removing the concave portion of the mutual reflection incident illuminance coefficient by the light shielding plate as shown in FIG. 3 will be described with reference to FIG. FIG. 3 is a plan view showing the light-shielding protrusions provided in the circular light-receiving window 4 of FIG. 2, and the two light-shielding protrusions 10 are provided in a radial direction parallel to the longitudinal direction of the light-shielding plate. The effect of fluctuations can be eliminated optically. In this case, it goes without saying that the structures and characteristics of the cylindrical portion 8, the conical raised bottom portion 9 and the light receiver 5 are the same as those in FIG.

【0014】また、本発明の第4の実施例を図4をもと
に説明する。図4は図2の受光窓の形状を環形受光窓1
1としたもので、これにより、図8に示される0°<θ
<40°および140°<θ<180°にそれぞれ対応
する70°〜90°および0°〜20°の受光角で入射
する斜め入射光を遮光する機能をもたせて、形状などが
異なる光源間で全光束の値付けする際に発生する系統誤
差を著しく低減することができるようにしている。ここ
で、図4の中央遮光部13は0〜20°の受光角で入射
する斜め入射光を遮光する役割をはたしている。
A fourth embodiment of the present invention will be described with reference to FIG. FIG. 4 shows the shape of the light receiving window of FIG.
1 is set, and as a result, 0 ° <θ shown in FIG.
A light source having a different shape or the like is provided with a function of blocking obliquely incident light incident at a light-receiving angle of 70 ° to 90 ° and 0 ° to 20 ° corresponding to <40 ° and 140 ° <θ <180 °, respectively. The systematic error that occurs when valuing the total luminous flux can be significantly reduced. Here, the central light shielding portion 13 of FIG. 4 plays a role of shielding obliquely incident light that is incident at a light receiving angle of 0 to 20 °.

【0015】なおさらに本発明の第5の実施例について
説明する。本実施例は、図5に示すように、図4の環形
受光窓11を2分割環形受光窓12に形成するもので、
中央遮光部13を中央遮光部支持部14によって機械的
に積分球に固定している。この2つの中央遮光部支持部
14を遮光板の長手方向に合わせて設け、これに中央遮
光部13を固定することにより、図8に示される40°
<θ<140°においてφが90°および270°付近
に存在するような、遮光板による相互反射入射照度係数
の凹部の影響を光学的に除去することができるようにし
ている。なお図4および図5においても、円筒8や円錐
上げ底部9、受光器5の構造および特性が、図2と同じ
であることはいうまでもない。
Furthermore, a fifth embodiment of the present invention will be described. In this embodiment, as shown in FIG. 5, the ring-shaped light receiving window 11 of FIG.
The central light shield 13 is mechanically fixed to the integrating sphere by the central light shield support 14. The two central light-shielding portion support portions 14 are provided in alignment with the longitudinal direction of the light-shielding plate, and the central light-shielding portion 13 is fixed to the light-shielding plate 40, so that the 40 ° shown in FIG.
It is possible to optically remove the influence of the concave portion of the inter-reflection incident illuminance coefficient by the light shielding plate, where φ exists in the vicinity of 90 ° and 270 ° when <θ <140 °. It is needless to say that the structures and characteristics of the cylinder 8, the conical raised bottom portion 9 and the light receiver 5 are the same as those in FIG. 2 also in FIGS. 4 and 5.

【0016】[0016]

【発明の効果】以上のように本発明によれば、積分球内
の相互反射入射照度係数の概念に基づき、積分球付帯の
受光器の入射角度特性を改善する光学的な手段を講ずる
ことにより、積分球を用いて配光や形状の異なる光源間
の全光束の値付けを行なう場合に発生する系統誤差につ
いて、その本質に立ち帰ったより正確な補正が実現で
き、産業応用面における実用的な価値は大きい。
As described above, according to the present invention, the optical means for improving the incident angle characteristic of the light receiver attached to the integrating sphere is provided based on the concept of the mutual reflection incident illuminance coefficient in the integrating sphere. , The systematic error that occurs when the total light flux between light sources with different shapes and light distributions is calculated by using an integrating sphere, and it is possible to realize a more accurate correction that returns to its essence, and it is practical. Great value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の測光装置の要部断面図
である。
FIG. 1 is a sectional view of an essential part of a photometric device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の測光装置の要部断面図
である。
FIG. 2 is a cross-sectional view of a main part of a photometric device according to a second embodiment of the present invention.

【図3】本発明の第3の実施例の測光装置の要部平面図
である。
FIG. 3 is a plan view of an essential part of a photometric device according to a third embodiment of the present invention.

【図4】本発明の第4の実施例の測光装置の要部平面図
である。
FIG. 4 is a plan view of a main part of a photometric device according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例の測光装置の要部平面図
である。
FIG. 5 is a plan view of an essential part of a photometric device according to a fifth embodiment of the present invention.

【図6】従来の積分球の概略構成を説明する側面図およ
び上面図である。
FIG. 6 is a side view and a top view illustrating a schematic configuration of a conventional integrating sphere.

【図7】積分球の遮光板の他の例を示す平面図である。FIG. 7 is a plan view showing another example of the light shielding plate of the integrating sphere.

【図8】積分球の相互反射入射照度係数の一例を表わす
図である。
FIG. 8 is a diagram illustrating an example of a mutual reflection incident illuminance coefficient of an integrating sphere.

【符号の説明】[Explanation of symbols]

1 積分球 2 蛍光ランプ 3 遮光板 4 受光窓 5 受光器 6 拡散板 7 斜め入射光遮光リング 8 円筒部 9 円錐上げ底部 10 遮光突起 11 環形受光窓 12 2分割環形受光窓 13 中央遮光部 14 中央遮光部支持部 1 integrating sphere 2 fluorescent lamp 3 light-shielding plate 4 light-receiving window 5 light-receiver 6 diffuser plate 7 oblique incident light light-shielding ring 8 cylindrical portion 9 conical raised bottom 10 light-shielding protrusion 11 ring-shaped light-receiving window 12 2 split ring-shaped light-receiving window 13 central light-shielding portion 14 center Light shield support

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 照度計受光部と、その周りを取り囲む円
筒状の斜め入射光遮光リングとを有する全光束測定用積
分球よりなる測光装置。
1. A photometric device comprising an integrating sphere for measuring the total luminous flux, which has an illuminance meter light-receiving part and a cylindrical oblique incident light shielding ring surrounding the illuminance meter.
【請求項2】 円筒状の斜め入射光遮光リングの円筒高
さが大略70°〜90°の斜め入射光を遮光する機能を
もち、リングの内側面を黒色艶消し塗装し、外側面を白
色拡散塗装を施してなる請求項1記載の測光装置。
2. A cylindrical oblique incident light shielding ring has a function of shielding oblique incident light having a cylindrical height of approximately 70 ° to 90 °, the inner surface of the ring is black matte coated, and the outer surface is white. The photometric device according to claim 1, wherein the photometric device is diffusion coated.
【請求項3】 円形測光窓と、この円形より大きい直径
をもつ円錐上げ底部付き円筒と、この円筒内にあって円
錐上げ底部の頂部に設置した受光器とを有する全光束測
定用積分球よりなる測光装置。
3. A total luminous flux measuring integrating sphere having a circular photometric window, a cylinder with a cone-raised bottom having a diameter larger than the circle, and a light receiver installed in the cylinder at the top of the cone-raised bottom. A photometric device.
【請求項4】 円形測光窓と受光器によって形成される
斜め入射光遮光角が大略70°〜90°であり、円筒内
面および円錐上げ底部の内面は黒色艶消し塗装を施され
て大略70°〜90°の斜め入射光をトラップするトラ
ップ空間を形成している請求項3記載の測光装置。
4. The light blocking angle of oblique incident light formed by the circular photometric window and the light receiver is approximately 70 ° to 90 °, and the inner surface of the cylinder and the inner surface of the conical raised bottom portion are coated with black matte coating to approximately 70 °. The photometric device according to claim 3, wherein a trap space for trapping obliquely incident light of ˜90 ° is formed.
【請求項5】 円形測光窓は、積分球に設けられた遮光
板による相互反射入射照度係数の急変部を除外するため
に、遮光板の長手方向に平行な径方向位置で形成された
一対の遮光突起をもつ請求項4記載の測光装置。
5. The pair of circular photometric windows are formed at a radial position parallel to the longitudinal direction of the shading plate in order to exclude a sudden change in the inter-reflection incident illuminance coefficient due to the shading plate provided on the integrating sphere. The photometric device according to claim 4, further comprising a light-shielding protrusion.
【請求項6】 円形測光窓は、積分球に設けられた遮光
板による相互反射入射照度係数の急変部を除外するため
に、環状に形成されている請求項4記載の測光装置。
6. The photometric device according to claim 4, wherein the circular photometric window is formed in an annular shape so as to exclude a portion where a coefficient of mutual reflection incident illuminance due to a light shielding plate provided on the integrating sphere is excluded.
【請求項7】 遮光板による相互反射入射照度係数の急
変部を除外するための環状の円形測光窓は、遮光板の長
手方向に直角な方向に2分された形状をもつ請求項6記
載の測光装置。
7. The ring-shaped circular photometric window for excluding the portion where the mutual reflection incident illuminance coefficient suddenly changes due to the light-shielding plate has a shape bisected in a direction perpendicular to the longitudinal direction of the light-shielding plate. Photometric device.
JP29110093A 1993-11-22 1993-11-22 Photometer Pending JPH07146174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29110093A JPH07146174A (en) 1993-11-22 1993-11-22 Photometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29110093A JPH07146174A (en) 1993-11-22 1993-11-22 Photometer

Publications (1)

Publication Number Publication Date
JPH07146174A true JPH07146174A (en) 1995-06-06

Family

ID=17764459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29110093A Pending JPH07146174A (en) 1993-11-22 1993-11-22 Photometer

Country Status (1)

Country Link
JP (1) JPH07146174A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283222B1 (en) 2006-04-12 2007-10-16 Matsushita Electric Industrial Co., Ltd. Optical measuring device
WO2019021874A1 (en) * 2017-07-28 2019-01-31 パイオニア株式会社 Electromagnetic wave detecting device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283222B1 (en) 2006-04-12 2007-10-16 Matsushita Electric Industrial Co., Ltd. Optical measuring device
WO2007122674A1 (en) * 2006-04-12 2007-11-01 Panasonic Corporation Optical measuring device
WO2019021874A1 (en) * 2017-07-28 2019-01-31 パイオニア株式会社 Electromagnetic wave detecting device
JPWO2019021874A1 (en) * 2017-07-28 2020-07-30 パイオニア株式会社 Electromagnetic wave detection device
US11047732B2 (en) 2017-07-28 2021-06-29 Pioneer Corporation Electromagnetic wave detection device

Similar Documents

Publication Publication Date Title
US3880528A (en) Light probe
US7663744B2 (en) Integrating photometer for measuring total flux of light generated from light source to be measured, and method for measuring total flux of light through use of the same
JP4216314B2 (en) Optical measuring device
US20120229801A1 (en) Integrating sphere photometer and measuring method of the same
JPH04113235A (en) Photosensor
CN111060289B (en) High-sensitivity coronagraph stray light detection device
JP3014216B2 (en) Spectral radiation flux measuring device and total luminous flux measuring device
JPH06167388A (en) Luminous flux meter
CN105241640B (en) A kind of measuring device and its method of blue light weighting radiance
US4473298A (en) Method for measuring a halftone dot area rate or a halftone picture density
JPH0134137Y2 (en)
CN105675132A (en) Anastigmatic spectrometer
US20190186988A1 (en) Pyranometer and photometric device
JP2002198568A (en) Light projecting unit and photoelectric sensor
CN109283658A (en) A kind of high precision small optical system of star sensor
JPH07146174A (en) Photometer
CN104807616A (en) Spectralon diffuse reflection plate correcting method
JP3114410B2 (en) Image sensor test method
US4465375A (en) Method and device for measuring a halftone dot area rate or a halftone picture density
JPH11264762A (en) Echelle type spectroscope
WO2019232699A1 (en) Self-calibrating weak light detection device and use thereof
JP3255757B2 (en) Irradiance meter
JPH05231931A (en) Light-sensing device for measuing illuminance and radiance meter
JPS63300923A (en) Colorimeter
JPH07294328A (en) Photometry device