JPH07146012A - Heat exchanger device serving as heat generator - Google Patents

Heat exchanger device serving as heat generator

Info

Publication number
JPH07146012A
JPH07146012A JP5315866A JP31586693A JPH07146012A JP H07146012 A JPH07146012 A JP H07146012A JP 5315866 A JP5315866 A JP 5315866A JP 31586693 A JP31586693 A JP 31586693A JP H07146012 A JPH07146012 A JP H07146012A
Authority
JP
Japan
Prior art keywords
heat
oil
hydraulic pump
chamber
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5315866A
Other languages
Japanese (ja)
Other versions
JP2528785B2 (en
Inventor
Hideyasu Takahashi
英安 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinei KK
Original Assignee
Shinei KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinei KK filed Critical Shinei KK
Priority to JP5315866A priority Critical patent/JP2528785B2/en
Publication of JPH07146012A publication Critical patent/JPH07146012A/en
Application granted granted Critical
Publication of JP2528785B2 publication Critical patent/JP2528785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Wind Motors (AREA)

Abstract

PURPOSE:To provide a heat exchanger having heat generating function which has an optimum capacity to supply a small amount of heat and does contravene lows or regulations on electric enterprise, and eliminates the need for an administrator, such as special engineers since the structure is simple and is capable of reducing personal expenses and produces an effect which allows even small- scale farmers to perform a satisfactory operation control. CONSTITUTION:This heat exchanger as well as a heat generation device comprises a hot water storage tank 2, which is rectangular in shape on both sides and constructed in a specified capacity, and a hydraulic pump 3, such as a piston type pump installed outside the hot water storage tank and a heat exchanger main body serving a hot generation device which is connected to the hydraulic pump 3. This device drives the hydraulic pump 3 and provides activity to the heat exchanger device main body which serves as a heat generation device, thereby generating heat from kinetic energy and heat-exchanging with water or oil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な構成を有する熱
発生兼熱交換装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat generating and heat exchanging device having a novel structure.

【0002】[0002]

【従来の技術】従来、この種のものにあっては、下記の
ようなものになっている。 1.農業用灌漑設備を使用して小水力発電事業等の助成
を受けて、水の運動エネルギーから電気を起こし更に電
熱ヒーター等とボイラー装置で熱エネルギーに変換し
て、これを水又は油に熱交換してからポンプ等で圧送し
て暖房に使用するもの(第1方式)。 2.農林水産省の近代化施設整備事業の内、未利用資源
活用の省エネルギー施設として、上記の水力による運動
エネルギーを風力に求めて、熱エネルギーの利用は上記
と同じ技法を用いているもの(第2方式)。
2. Description of the Related Art Heretofore, in this type, the following has been done. 1. Using subsidies such as small hydropower projects using agricultural irrigation equipment, electricity is generated from the kinetic energy of water, and then converted to heat energy by electric heaters and boiler equipment, which is then heat-exchanged into water or oil. After that, it is pumped and used for heating (first method). 2. Among the modernization facility development projects of the Ministry of Agriculture, Forestry and Fisheries, as energy-saving facilities that utilize unused resources, the kinetic energy from the above hydropower is required for wind power, and the same technique is used to use thermal energy (second method).

【0003】3.前2項の技法及び装置のうちから、電
気変換操作の機械装置を除いて、運動エネルギーから直
接熱カロリーに変換して暖房用に使用しているもの(第
3方式)。 4.風車及び水車の運動エネルギーから直接熱カロリー
を求める技法は、殆どの構造装置の形状が油圧ポンプを
閉鎖系のパイプと連結して、油圧ポンプに付帯する吐出
管の先端ノズルを油が通過する際に発生する強力な圧縮
及び摩擦熱と、閉鎖系管路に滞留する油にノズルから噴
射した油どうしの衝突熱量を、閉鎖系のパイプが浸漬さ
れている水又は油に伝導蓄熱させ熱交換を図り、さら
に、この水及び油に熱運搬作用の働きをさせるもの(第
4方式)。
3. Of the techniques and devices in the preceding two paragraphs, those that are used for heating by directly converting kinetic energy into thermal calories, excluding mechanical devices for electrical conversion operation (third method). 4. The technique for directly determining thermal calories from the kinetic energy of wind turbines and water turbines is used when most structural devices have a structure in which a hydraulic pump is connected to a closed pipe and oil passes through the tip nozzle of the discharge pipe attached to the hydraulic pump. The strong compression and frictional heat generated in the pipes and the heat of collision between the oils injected from the nozzles into the oil that stays in the closed pipes are transferred to the water or oil in which the closed pipes are immersed for heat exchange. In addition, the water and oil have a heat transport function (fourth method).

【0004】[0004]

【発明が解決しようとする課題】従来の技術で述べたも
のにあっては、下記のような問題点を有していた。 1.第1方式のものでは、運動エネルギーを熱エネルギ
ーに変換するための工程が、水車動力装置→発電装置→
熱変換装置→熱運搬装置の4工程になっているため設備
費が高額で、また、電気事業法に基づく専門的な管理体
制による人件費などの経費を含めて投資効率が低位のた
め、中間工程の発電部分を除き、運動エネルギーを直接
熱エネルギーに変換する等、装置の単純化に工夫を要す
る。 2.第2方式のものでは、水力を風力に変えた形態のた
め、設備費の投資のうち取水頭首工・導水路・排水路等
の工費が節減できた反面、風力は常に変化して不安定の
ため発生熱量の安定性に欠けていて、風車の大型化によ
って補っているが、結果前項に類似した投資と経費が必
要で工夫改善を要する。 3.第3方式のものでは、上記2方式を改善して運動エ
ネルギーを直接熱エネルギーに変換し、設備費及び管理
経費の節減が図られているが、次項4の構造の内容では
熱発生装置及び熱変換装置の稼働効率が低位で普及に至
っていない。 4.第4方式のものでは、油や水の液体を媒体とした熱
発生及び熱変換装置の基本的な構造に終わっていて、運
動エネルギーが与えられた油等、液体材料の高度な水理
的発熱活動及び熱変換効率を高めるための装置に工夫が
必要である。
The problems described in the prior art have the following problems. 1. In the first method, the process for converting kinetic energy into heat energy is performed by a turbine power plant → power generator →
The equipment cost is high due to the four processes of heat conversion device → heat transfer device, and the investment efficiency is low, including expenses such as personnel expenses due to the specialized management system based on the Electricity Business Act. Except for the power generation part of the process, kinetic energy is directly converted into heat energy, and other simplification of the device is required. 2. In the second method, because the hydraulic power is changed to wind power, the construction cost of the intake head works, headraces, drainage channels, etc. can be saved as part of the investment in equipment costs, but the wind power is constantly changing and unstable. Therefore, the amount of heat generated is lacking in stability, which is compensated for by increasing the size of the wind turbine, but as a result, investment and expenses similar to those in the previous section are required, and devising improvements are required. 3. In the third method, the kinetic energy is directly converted into heat energy by improving the above two methods, and the facility cost and the management cost are saved. The operating efficiency of the converter is low and it has not become popular. 4. In the fourth method, the basic structure of the heat generation and heat conversion device using oil or water liquid as a medium ends up, and advanced hydraulic heat generation of liquid material such as oil to which kinetic energy is applied. It is necessary to devise a device for enhancing activity and heat conversion efficiency.

【0005】本願は、従来の技術の有するこのような問
題点に鑑みなされたものであり、その目的とするところ
は、上述の問題を解決できるものを提供しようとするも
のである。
The present application has been made in view of the above problems of the prior art, and an object of the present application is to provide a device capable of solving the above problems.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は下記のようになるものである。すなわち、
本願のものは、所定容量に構成された左右に横長の貯湯
槽2と、この貯湯槽外に配設されたピストン型などの油
圧ポンプ3と、この油圧ポンプ3と連結され、かつ、貯
湯槽内に配設された熱発生兼熱交換装置本体4からなる
ものにおいて、油圧ポンプ3を駆動して熱発生兼熱交換
装置本体に活動力を与え油類の運動エネルギーから熱を
発生させて、さらに水または油類に熱交換するよう構成
した熱発生兼熱交換装置である。
In order to achieve the above object, the present invention is as follows. That is,
The thing of this application WHEREIN: The horizontally long hot water storage tank 2 comprised in predetermined capacity, the hydraulic pump 3 of the piston type etc. arrange | positioned outside this hot water storage tank, and this hydraulic pump 3 are connected, and also the hot water storage tank In the one consisting of the heat generating and heat exchanging device main body 4 disposed inside, the hydraulic pump 3 is driven to give an active force to the heat generating and heat exchanging device main body to generate heat from the kinetic energy of oils, Further, it is a heat generating and heat exchanging device configured to exchange heat with water or oils.

【0007】[0007]

【実施例】実施例について図面を参照して説明する。A
は本発明の熱発生兼熱交換装置で、所定容量に構成され
た左右に横長の貯湯槽2と、この貯湯槽外に配設された
ピストン型などの油圧ポンプ3と、この油圧ポンプ3と
連結され、かつ、貯湯槽内に配設された熱発生兼熱交換
装置本体4(以下、単に装置本体4と云う)とから構成
されている。また、油圧ポンプ3に接続している吐出管
とこの先端に付帯する1次ノズル14Aの間には、圧力
調整弁3Aが油圧ポンプ3の定格圧力に合わせて配設さ
れていて、圧力調整弁3Aとオイル濾過装置6とは圧抜
パイプ3Cで連結されている。さらに、2次発熱室4D
にも圧力調整弁3Bが3Kg/cm2 以下の低圧力に設
定して配設されていて、圧力調整弁3Bには圧抜パイプ
3Dが付帯して、圧抜パイプ3Cに接続合流する形態に
できている。そして、圧力調整弁3A及び圧力調整弁3
Bには圧力計3Eが付帯し、装置本体4の内部圧力を検
査できる構造になっている。
EXAMPLES Examples will be described with reference to the drawings. A
Is a heat generating and heat exchanging device of the present invention, which is a horizontally long hot water storage tank 2 having a predetermined capacity, a piston type hydraulic pump 3 disposed outside the hot water storage tank, and the hydraulic pump 3. It is composed of a heat generating and heat exchanging device main body 4 (hereinafter, simply referred to as the device main body 4) which is connected and arranged in the hot water storage tank. Further, a pressure adjusting valve 3A is arranged between the discharge pipe connected to the hydraulic pump 3 and the primary nozzle 14A attached to the tip thereof so as to match the rated pressure of the hydraulic pump 3. 3A and the oil filtration device 6 are connected by a pressure release pipe 3C. Furthermore, secondary heating chamber 4D
In addition, the pressure regulating valve 3B is arranged at a low pressure of 3 Kg / cm 2 or less, and the pressure regulating valve 3B is provided with a pressure relief pipe 3D, which is connected to the pressure relief pipe 3C and joins. is made of. Then, the pressure adjusting valve 3A and the pressure adjusting valve 3
A pressure gauge 3E is attached to B so that the internal pressure of the apparatus body 4 can be inspected.

【0008】なお、この場合、装置本体4の終端部であ
るオイル滞留室4Fより貯湯槽外に引き出されたオイル
還元パイプ5は、オイル濾過装置6に連結され、このオ
イル濾過装置6からは一方の放流パイプ7と他方の給油
パイプ8が分岐して引出され、放流パイプ7は冷却タン
ク9内に設けられたオイル冷却タンク9Aに連結され、
給油パイプ8は制油弁10Aを有する給油パイプ10を
介して油圧ポンプ3に連結されていると共に、オイル冷
却タンク9Aは給油パイプ10に連結されていて、オイ
ル冷却タンク9A内に空気またはガスが滞留しないよ
う、空気弁6A1が附帯している。なお、オイル還元パ
イプ5はオイル滞留室4Fの側壁における上方位置で連
結されている。
In this case, the oil reduction pipe 5 drawn out of the hot water storage tank from the oil retention chamber 4F, which is the terminal end of the device body 4, is connected to the oil filtration device 6, and one side from this oil filtration device 6. The discharge pipe 7 and the other oil supply pipe 8 are branched and drawn out, and the discharge pipe 7 is connected to the oil cooling tank 9A provided in the cooling tank 9.
The oil supply pipe 8 is connected to the hydraulic pump 3 via the oil supply pipe 10 having the oil control valve 10A, and the oil cooling tank 9A is connected to the oil supply pipe 10 so that air or gas is not supplied to the oil cooling tank 9A. An air valve 6A1 is attached so as not to stay. The oil reduction pipe 5 is connected at an upper position on the side wall of the oil retention chamber 4F.

【0009】そして、冷却タンク9には外部からの給水
パイプ11が連結され、この冷却タンク9からの給水パ
イプ12は制水弁12Aを介して貯湯槽2の側壁に連通
している。この結果、油圧ポンプ3で圧送されたオイル
は装置本体4を中心として循環することになると共に、
貯湯槽2内には水が充填されることになる。オイル濾過
装置6の構成は、装置本体4の運転中にはオイル還元パ
イプ5から流入したオイルは、濾過器6Aを通過して、
直ちにオイル冷却タンク9Aに流入して低温油となって
給油パイプ10に流入して油圧ポンプ3に吸入され循環
運転される。なお、オイル濾過装置内部の圧力を自然圧
に保つため、装置の頂部に空気弁6A1が設置されてい
る。また、一方、装置本体4の始動時は、オイル濾過装
置6にはオイル還元パイプ5から還元油が停止していて
流入しないから、放流パイプ7方向のオイルの流れは停
止している。
A water supply pipe 11 from the outside is connected to the cooling tank 9, and the water supply pipe 12 from the cooling tank 9 communicates with the side wall of the hot water storage tank 2 via a water control valve 12A. As a result, the oil pressure-fed by the hydraulic pump 3 circulates around the apparatus main body 4 and
The hot water storage tank 2 is filled with water. The configuration of the oil filter device 6 is such that the oil flowing from the oil reduction pipe 5 while the device body 4 is operating passes through the filter 6A,
Immediately, it flows into the oil cooling tank 9A to become low-temperature oil, flows into the oil supply pipe 10, is sucked into the hydraulic pump 3, and is circulated. An air valve 6A1 is installed at the top of the device to keep the internal pressure of the oil filtering device at a natural pressure. On the other hand, when the apparatus main body 4 is started, the reducing oil is stopped from the oil reducing pipe 5 and does not flow into the oil filtering device 6, so that the oil flow toward the discharge pipe 7 is stopped.

【0010】また、オイル濾過装置6内の滞留オイルは
空気弁6A1によって自然圧を保ち、静止沈殿作用が働
くと同時に、放熱して冷却状態にあるから、上澄みオイ
ルを給油パイプ10に直接に送ることができるため、制
油弁10Aを開いて直接油圧ポンプ3に送油し始動す
る。油圧ポンプ3が運転を開始すると直ちにオイル還元
パイプ5からオイルがオイル濾過装置6に流入を開始す
るので、制油弁10Aを閉鎖して、オイルの流れを放流
パイプ7の方向に切り替えて以後装置本体4の運転停止
時まで、そのままオイルの流路を継続させて運転する。
The accumulated oil in the oil filtering device 6 is kept at a natural pressure by the air valve 6A1 so that the stationary settling action works and at the same time, it radiates heat and is in a cooling state. Therefore, the supernatant oil is directly sent to the oil supply pipe 10. Therefore, the oil control valve 10A is opened to directly feed oil to the hydraulic pump 3 to start the operation. As soon as the hydraulic pump 3 starts to operate, the oil starts to flow from the oil reduction pipe 5 into the oil filtration device 6, so the oil control valve 10A is closed and the flow of oil is switched to the discharge pipe 7 for subsequent operation. Until the operation of the main body 4 is stopped, the oil flow path is continued as it is to operate.

【0011】冷却タンク9は、オイル濾過装置6を通過
したオイルが、まだ貯湯槽2の内部温度に近似の熱量が
蓄積しているので、油の粘度低下があるばかりでなく、
高温油を油圧ポンプ3に吸入させると内部で気化現象を
誘発する恐れがあるから、冷却タンク9Aに一旦貯留し
て、冷却タンク9に給水パイプ11から送られる冷水で
冷却してから給油パイプ10に送るよう構成されてい
る。
In the cooling tank 9, the amount of heat of the oil that has passed through the oil filtration device 6 is still close to the internal temperature of the hot water storage tank 2, so that not only the viscosity of the oil decreases but also
When high temperature oil is sucked into the hydraulic pump 3, a vaporization phenomenon may be induced inside the hydraulic pump 3. Therefore, the high temperature oil may be temporarily stored in the cooling tank 9A, cooled to the cooling tank 9 by the cold water sent from the water supply pipe 11, and then supplied to the oil supply pipe 10. Is configured to be sent to.

【0012】以下、装置本体4の構成の詳細を説明す
る。13は貯湯槽2の底部に設置された据付共通ベット
で、型鋼を平面方形に連結して構成され、この据付共通
ベット13上に装置本体4が設置されている。据付共通
ベット13は貯湯槽2の底部に固定設置されていて、型
鋼が平面方向に長方形の梯子状に連結構成されている。
この据付共通ベット13上の装置本体4は各部分毎の鋼
材容積及び質量が異なる発熱体であって、質量の異なる
鋼材に蓄熱作用が働くと、膨張伸縮作用量が異なって、
以下に説明の歯車装置等の回転運動に障害を起こす原因
となる。
The details of the structure of the apparatus body 4 will be described below. Reference numeral 13 denotes an installation common bed installed at the bottom of the hot water storage tank 2, which is configured by connecting steel molds in a plane rectangular shape, and the apparatus main body 4 is installed on the installation common bed 13. The installation common bed 13 is fixedly installed on the bottom of the hot water storage tank 2, and the shape steels are connected in a rectangular ladder shape in the plane direction.
The apparatus main body 4 on the installation common bed 13 is a heating element having a different steel material volume and mass for each part, and when a heat storage effect is exerted on steel materials having different masses, the expansion / contraction effect amount is different,
This will cause a failure in the rotational movement of the gear device described below.

【0013】よって、伸縮可動端13Aを装置本体4の
主要各部に配置して、据付共通ベット13と遊離する事
を防止するが、据付共通ベット13の両側の溝型鋼の上
面の鍔をレールとして伸縮作用に応じて滑動できるよう
構成されている。さらに、伸縮可動端13Aは鋼板固定
脚13Bで装置本体4の各主要部分に固定されているか
ら、伸縮可動端13Aが横方向に滑動して、据付共通ベ
ット13から外れる作用等の発生はない。
Accordingly, the telescopic movable end 13A is arranged at each main part of the apparatus main body 4 to prevent the telescopic movable end 13A from being separated from the common installation bed 13. However, the upper flanges of the grooved steel on both sides of the common installation bed 13 serve as rails. It is constructed so that it can slide according to the expansion and contraction action. Further, since the telescopic movable end 13A is fixed to each main part of the apparatus main body 4 by the steel plate fixing legs 13B, the telescopic movable end 13A does not slide from the installation common bed 13 and the like. .

【0014】装置本体4は、左右に長い円筒状側壁部4
A1の両側面に張設された左右端側面部4A2とで構成
された缶体4Aと、この缶体4A内に張設された第1隔
壁4B1,第2隔壁4C1,第3隔壁4D1,第4隔壁
4E1によって、左方から右方に向けてフランジ4Gに
よって各々連設された1次発熱室4Bと、チョーク室及
び歯車室4Cと、2次発熱室4Dと、3次発熱室4E
と、オイル滞留室4Fとから構成されている。そして、
円筒状側壁部4A1における1次発熱室4Bと、チョー
ク室及び歯車室4Cと、2次発熱室4Dに対応する外周
面には放熱版4A3が所定間隔をもって突設されてい
る。
The apparatus main body 4 includes a cylindrical side wall portion 4 which is long in the left and right directions.
A can body 4A composed of left and right side surface portions 4A2 stretched on both side surfaces of A1, and a first partition wall 4B1, a second partition wall 4C1, a third partition wall 4D1, and a third partition wall 4D1 stretched in the can body 4A. By the four partition walls 4E1, the primary heating chamber 4B, the choke chamber and the gear chamber 4C, the secondary heating chamber 4D, and the tertiary heating chamber 4E which are continuously provided by the flanges 4G from the left to the right.
And an oil retention chamber 4F. And
Radiating plates 4A3 are provided at predetermined intervals on the outer peripheral surface of the cylindrical side wall portion 4A1 corresponding to the primary heat generating chamber 4B, the choke chamber and the gear chamber 4C, and the secondary heat generating chamber 4D.

【0015】3Pはピストン型などの油圧ポンプ3に連
結されたオイル吐出管で、貯湯槽2内に引込まれている
が、貯湯槽2の手前でオイル吐出管3Pに圧力調整弁3
Aがセットされて更に1次発熱室4B内の軸心部に引込
まれ、その先端には1次ノズル14Aが形成されてい
る。チョーク室及び歯車室4Cを形成する第1隔壁4B
1,第2隔壁4C1の軸心位置にはシャフト15が軸受
14で回転自在に支持されて連通しているが、このシャ
フト15は後方の1次部15Aと前方の2次部15Bと
から構成され、1次部15Aのシャフト1次後部端15
A1は1次発熱室4B内に突出され、2次部15Bのシ
ャフト2次前部端15B1は2次発熱室4Dに突出され
ている。
Reference numeral 3P denotes an oil discharge pipe connected to a hydraulic pump 3 of a piston type or the like, which is drawn into the hot water storage tank 2, but before the hot water storage tank 2, the pressure adjusting valve 3 is provided on the oil discharge pipe 3P.
A is set and further drawn into the axial center of the primary heat generating chamber 4B, and a primary nozzle 14A is formed at the tip thereof. First partition wall 4B forming the choke chamber and gear chamber 4C
A shaft 15 is rotatably supported by a bearing 14 and communicates with the shaft center position of the first and second partition walls 4C1. The shaft 15 is composed of a rear primary part 15A and a front secondary part 15B. The shaft primary rear end 15 of the primary portion 15A
A1 projects into the primary heating chamber 4B, and the shaft secondary front end 15B1 of the secondary portion 15B projects into the secondary heating chamber 4D.

【0016】そして、このシャフト1次後部端15A1
における後方には、1次ノズル14Aに対抗する状態で
補助羽根車15Cが取付けられ、また、このシャフト1
次後部端15A1における補助羽根車15Cと前方部の
第1隔壁4B1の間には回転開閉弁15Dが取付けら
れ、シャフト2次前部端15B1には主動羽根車15E
が取付けられている。15Fは主動歯車であって、主動
羽根車15Eの回転力をシャフト2次部15Bを介して
受け取り、遊星歯車15Gに伝達する働きを担当する歯
車で、回転開閉弁歯車15Iの直径の1/5〜1/10
に製作されて、回転開閉弁15Dに間接的に回転力を与
えると共に、回転速度を低下させる作用を営む。
The shaft rear end 15A1
A rear impeller 15C is attached to the rear of the shaft in a state of facing the primary nozzle 14A, and the shaft 1
A rotary on-off valve 15D is attached between the auxiliary impeller 15C at the next rear end 15A1 and the first partition wall 4B1 at the front, and the main impeller 15E is provided at the shaft secondary front end 15B1.
Is installed. Reference numeral 15F is a main driving gear, which is in charge of receiving the rotational force of the main driving impeller 15E via the shaft secondary portion 15B and transmitting it to the planetary gear 15G, and is 1/5 of the diameter of the rotary on-off valve gear 15I. ~ 1/10
The rotary on-off valve 15D is indirectly provided with a rotational force, and the rotational speed is reduced.

【0017】15Gは遊星歯車であって、主動歯車15
Fの回転力を受けて回転開閉弁歯車15Iに伝達する作
用を担当する。この場合、主動歯車15Fの回転方向に
回転開閉弁歯車15Iも同調させる働きを兼ねている。
15Hは回転速度調整ギヤー装置であって、チョーク室
及び歯車室4Cの歯車室4C3内に固定された遊星歯車
軸受振止金具15G1を主構として、これに主動歯車1
5F、遊星歯車15G、回転開閉弁歯車15Iを組み込
み構成して、熱発生効率の向上を図るため、主要回転動
力の調整を維持する一連の装置となっている。
Reference numeral 15G denotes a planetary gear, which is a driving gear 15
It is in charge of receiving the rotational force of F and transmitting it to the rotary on-off valve gear 15I. In this case, the rotary on-off valve gear 15I also has the function of synchronizing the rotational direction of the main drive gear 15F.
Reference numeral 15H is a rotation speed adjusting gear device, which has a planetary gear bearing anti-vibration metal fitting 15G1 fixed in the gear chamber 4C3 of the choke chamber and gear chamber 4C as a main structure, and the driving gear 1
5F, the planetary gear 15G, and the rotary on-off valve gear 15I are built in to constitute a series of devices for maintaining the adjustment of the main rotary power in order to improve the heat generation efficiency.

【0018】15Iは回転開閉弁歯車であって、主動歯
車15Fの回転力を遊星歯車15Gを介して受け取り、
シャフト1次部15Aを介して回転開閉弁15Dに回転
力を与える働きを主担する装置である。なお、歯車室4
C3内部が高温になると、質量の異なる歯車に不同の蓄
熱作用が働き、膨張率も異なって回転作用に支障を来
す。よってオイル還元パイプ5から2本の歯車室冷却油
管4C4を介して低温油が循環する構造とした。15J
は2次チョーク管で、チョーク室及び歯車室4Cを形成
する第1隔壁4B1と第2隔壁4C1の間に配設されて
いる円錐形のパイプであって、先端はノズルのようにな
っているが、ノズルはオリフィス状の欠口で狭窄部が先
鋭であって、摩擦力が極僅かで圧縮と噴射が瞬間的に作
用するのに対して、チョークは狭窄部に或る長さを持た
せているため、流下オイルに圧縮力と摩擦力が時間的に
長く蓄えられ、次に発生する噴射力をより多く与える作
用がある点がノズルと異なっている。
Reference numeral 15I is a rotary on-off valve gear, which receives the rotational force of the main driving gear 15F via the planetary gear 15G,
This is a device mainly responsible for giving a rotational force to the rotary on-off valve 15D via the shaft primary portion 15A. Incidentally, the gear chamber 4
When the temperature inside C3 becomes high, the gears having different masses have different heat storage effects, and the expansion rates also differ, which impedes the rotation operation. Therefore, the low-temperature oil is circulated from the oil reduction pipe 5 through the two gear chamber cooling oil pipes 4C4. 15J
Is a secondary choke pipe, which is a conical pipe disposed between the first partition wall 4B1 and the second partition wall 4C1 forming the choke chamber and the gear chamber 4C, and has a tip like a nozzle. However, the nozzle has an orifice-shaped opening and the constriction is sharp, and the frictional force is extremely small and compression and injection momentarily act, whereas the choke has a certain length in the constriction. Therefore, the compressing force and the frictional force are accumulated in the flowing-down oil for a long time, which is different from the nozzle in that it has an effect of giving more injection force to be generated next.

【0019】第2隔壁4C1と第3隔壁4D1に区切ら
れた2次発熱室4Dには、第2隔壁4C1の中心軸を通
過してシャフト2次前部端15B1に取付固定された主
動羽根車15Eが内蔵される他に、第3隔壁4D1から
2次発熱室4Dの内部に突出する状態で、噴流反転バケ
ット17が5個内蔵されるが、この配置されている位置
は2次チョーク管15Jの噴流出口方向に合わせて4
個、またこれとは別に、主動羽根車15Eの軸心方向に
向けて1個が夫々配置されている。
In the secondary heat generating chamber 4D divided into the second partition wall 4C1 and the third partition wall 4D1, a driving impeller fixed to the shaft secondary front end 15B1 by passing through the central axis of the second partition wall 4C1. In addition to the built-in 15E, five jet reversal buckets 17 are also built in in a state of protruding from the third partition wall 4D1 to the inside of the secondary heat generating chamber 4D. 4 according to the jet outlet direction of
Separately from this, one is arranged in the axial direction of the driving impeller 15E.

【0020】噴流反転バケット17を固定する反転バケ
ット固定環17Aは、棒鋼を円環状に大小2個を作整
し、上下及び左右の対角線上に配置された4個の噴流反
転バケット17の外周と内周に配置し、外輪には4本の
反転バケット固定脚17Bを夫々第3隔壁4D1の外周
沿いに溶接固定されている。またこれとは別に、受け皿
状に小径の鉄輪を作り、噴流反転バケット17が夫々安
定する様に配置して、円環棒鋼の外輪と内輪に固定して
からバケットが溶接されている。中心部の1個について
は受け皿鉄輪に直接脚3個を取付けて、これも第3隔壁
4D1に溶接固定してから、これに噴流反転バケット1
7が接合されている。
The reversing bucket fixing ring 17A for fixing the jet reversing buckets 17 has two large and small bar steels arranged in an annular shape, and the outer circumferences of the four jet reversing buckets 17 arranged vertically and horizontally on the diagonal lines. Four inversion bucket fixing legs 17B are fixed to the outer ring by welding along the outer periphery of the third partition wall 4D1. Separately from this, a small-diameter iron ring is formed in a saucer shape, the jet reversal buckets 17 are arranged so as to be stable, respectively, and the buckets are welded after being fixed to the outer ring and the inner ring of the annular steel bar. For one of the central parts, three legs are attached directly to the iron pan of the saucer, which is also welded and fixed to the third partition wall 4D1, and then the jet reversal bucket 1
7 is joined.

【0021】また、3次発熱室4Eの両端に張設されて
いる第3隔壁4D1と第4隔壁4E1の間には前後方向
に5本の放熱管16が連通配管されている。これら各放
熱管16は2次発熱室4Dに配設されている噴流反転バ
ケット17の背後が油流入口となる様に、夫々外周には
上下左右に合い向かって4個と中心部に1個が配置され
ていて、放熱管16の2次発熱室4D側の端部には、3
次ノズル16Aが装着されている。3次発熱室4Eには
缶体4Aの上下左右に給排水管4E2が設置されてい
て、3次発熱室4Eの内部に侵入した水が、放熱管16
と熱交換をしながら貯湯槽2の水と対流作用を繰り返す
よう構成されている。
Further, between the third partition wall 4D1 and the fourth partition wall 4E1 stretched at both ends of the tertiary heating chamber 4E, five heat radiating pipes 16 are connected in the front-rear direction. Each of these radiating pipes 16 has four on the outer circumference and one on the center so that the oil inlet is behind the jet reversal bucket 17 arranged in the secondary heat generating chamber 4D. Is arranged, and the end portion of the heat radiation pipe 16 on the side of the secondary heat generating chamber 4D has 3
The next nozzle 16A is mounted. Water supply / drainage pipes 4E2 are installed on the upper, lower, left, and right sides of the can body 4A in the tertiary heat generation chamber 4E, and the water that has entered the tertiary heat generation chamber 4E is radiated by the heat radiation pipe 16
It is configured to repeat the convection action with the water in the hot water storage tank 2 while exchanging heat with.

【0022】作用について説明する。 1.水車及び風車を動力源として、油圧ポンプ3を駆動
して、熱発生兼熱交換装置に活動力を与え油類の運動エ
ネルギーから熱を発生させて、さらに水または油類に熱
交換する装置であって、油圧ポンプ3は必要に応じて他
の油圧ポンプも使用できるが、高圧力が必要な場合は、
油圧ポンプ3を使用する。油圧ポンプ3から圧送される
油類を、オイル吐出管3Pに付帯する1次ノズル14A
から1次発熱室4Bの内部に強力に噴射して、まず、補
助羽根車15Cに初期の回転運動を与えると、この作用
に伴って回転開閉弁15Dも回転運動を起こし、回転開
閉弁15Dに付帯する回転オイル流入口15D1から油
が、2次チョーク管15Jに流入して噴射流が、主動羽
根車15Eに衝突して回転力を与えると、シャフト2次
部15Bも同時に回転力が与えられて、回転速度調整ギ
ヤー装置15Hを作動させて、回転開閉弁歯車15Iが
シャフト1次部15Aを介して回転開閉弁15Dに回転
運動を継続させる。
The operation will be described. 1. A device that drives a hydraulic pump 3 using a water turbine and a wind turbine as power sources to give an activating force to a heat generating and heat exchanging device to generate heat from kinetic energy of oils, and further exchange heat with water or oils. So, the hydraulic pump 3 can use other hydraulic pumps if necessary, but if high pressure is required,
The hydraulic pump 3 is used. A primary nozzle 14A for accommodating oils pumped from the hydraulic pump 3 to the oil discharge pipe 3P
When the auxiliary impeller 15C is given an initial rotational motion by strongly injecting it into the primary heat generating chamber 4B from this, the rotary opening / closing valve 15D also causes a rotary motion with this action, and the rotary opening / closing valve 15D When the oil flows into the secondary choke pipe 15J from the incidental rotary oil inlet 15D1 and the jet flow collides with the driving impeller 15E to give a rotational force, the shaft secondary portion 15B is also given a rotational force at the same time. Then, the rotation speed adjusting gear device 15H is operated so that the rotary opening / closing valve gear 15I causes the rotary opening / closing valve 15D to continue the rotary motion via the shaft primary portion 15A.

【0023】2次チョーク管15Jの圧力は油圧ポンプ
3の定格圧力で作動できる様に圧力調整弁3Aで調整さ
れているから、1次発熱室4Bの圧力が油圧ポンプ3の
定格圧力と平行すると、1次ノズル14Aの射出噴流力
が低下して、補助羽根車15Cに回転力を与えられなく
なるから、回転開閉弁15Dに初期回転力を与えた後の
補助羽根車15Cはその役目を主動羽根車15Eに譲っ
て、回転開閉弁15Dと共回りをするが、1次発熱室4
Bのオイルを撹拌する作用を起こして、微量ではあるが
発熱作用に貢献することになる。圧力調整弁3Aの弁開
放度は、1次ノズル14Aに噴射能力を与えた後の1次
発熱室4Bの圧力の最大を油圧ポンプ3の定格圧力とす
るのであるから、オイル吐出管3Pの内部圧力は油圧ポ
ンプ3の定格圧力と、最大圧力の間に定めることにしな
ければならない。
Since the pressure of the secondary choke pipe 15J is adjusted by the pressure adjusting valve 3A so that it can operate at the rated pressure of the hydraulic pump 3, if the pressure of the primary heating chamber 4B is parallel to the rated pressure of the hydraulic pump 3. Since the injection jet force of the primary nozzle 14A is reduced and the rotating force cannot be applied to the auxiliary impeller 15C, the auxiliary impeller 15C after applying the initial rotating force to the rotary opening / closing valve 15D plays its role as a main blade. Give up to the car 15E and rotate with the rotary on-off valve 15D, but the primary heating chamber 4
It causes the action of stirring the oil of B and contributes to the heat generation action although it is a slight amount. The valve opening degree of the pressure adjusting valve 3A is such that the maximum pressure of the primary heat generating chamber 4B after the injection ability is given to the primary nozzle 14A is set to the rated pressure of the hydraulic pump 3, so that the inside of the oil discharge pipe 3P is The pressure must be set between the rated pressure of the hydraulic pump 3 and the maximum pressure.

【0024】1次発熱室4Bのオイルが定格圧力になっ
た場合でも、最大圧力との差のポテンシャルヘットによ
って、1次ノズル14Aは始動時よりも低位な圧力で噴
射作用を継続して、1次発熱室4Bのオイルに熱量の供
給を続けるのである。しかし、この程度の噴射圧力では
補助羽根車15Cが目的とする全体装置に回転力を与え
ることはできない。したがって、主動羽根車15Eの作
用が必要となるのである。運転休止時は発熱体オイルの
劣化防止と不純物の除去を目的として、装置本体4の主
要各部に配設されている排油パイプ25に付帯する排油
閉鎖弁25Aを解放してオイルをオイル濾過装置6に還
元するから、装置本体4の内部は空の状態である。装置
本体4の始動時は油圧ポンプ3が活動を開始すると、1
次ノズル14Aから油圧ポンプ3の最大圧力を以て、空
状態の1次発熱室4Bにオイルが強力に噴射されて、補
助羽根車15Cに衝撃を与えて回転運動が起きると同時
に、回転開閉弁15Dも回転を開始する。
Even if the oil in the primary heat generating chamber 4B reaches the rated pressure, the potential head of the difference from the maximum pressure causes the primary nozzle 14A to continue the injection action at a pressure lower than that at the time of start-up. The amount of heat is continuously supplied to the oil in the next heat generating chamber 4B. However, with the injection pressure of this level, the auxiliary impeller 15C cannot apply the rotational force to the target entire apparatus. Therefore, the action of the driving impeller 15E is required. When the operation is stopped, for the purpose of preventing the deterioration of the heating element oil and removing impurities, the drain oil closing valve 25A attached to the drain oil pipe 25 provided in each main part of the apparatus body 4 is opened to filter the oil. Since it is returned to the device 6, the inside of the device body 4 is empty. When the hydraulic pump 3 starts its activity at the time of starting the device body 4, 1
At the maximum pressure of the hydraulic pump 3 from the next nozzle 14A, the oil is strongly injected into the primary heat generating chamber 4B in the empty state, which gives a shock to the auxiliary impeller 15C to cause a rotary motion, and at the same time, the rotary on-off valve 15D is also Start spinning.

【0025】回転開閉弁15Dは弾み車の機能を持って
いて、この作用は弁に付帯する弾み車錘15D2によっ
て行われるため、1次発熱室4Bのオイル圧力が油圧ポ
ンプ3の定格圧力に達して、補助羽根車15Cの機能が
低下しても回転開閉弁15Dは回転を継続して、2次チ
ョーク管15Jからの射出噴流で、主動羽根車15Eが
回転運動を開始するまで自力回転を続ける能力がある。
2次チョーク管15Jはチョーク室及び歯車室4Cのチ
ョーク室4C2内に納められ、チョーク室4C2の断面
はドーナツ型で、内壁と外壁に挟まれる幅1/2の中心
線に沿って、上下、左右、各2本が配置されている。
Since the rotary on-off valve 15D has a function of a flywheel, and this action is performed by the flywheel weight 15D2 attached to the valve, the oil pressure in the primary heating chamber 4B reaches the rated pressure of the hydraulic pump 3, Even if the function of the auxiliary impeller 15C deteriorates, the rotary on-off valve 15D continues to rotate, and the jet flow from the secondary choke pipe 15J has the ability to continue rotating by itself until the main impeller 15E starts rotating motion. is there.
The secondary choke pipe 15J is housed in the choke chamber and the choke chamber 4C2 of the gear chamber 4C, and the cross section of the choke chamber 4C2 is a donut shape, and is vertically moved along the centerline of the width 1/2 sandwiched between the inner wall and the outer wall, Two on each side, right and left.

【0026】チョーク室4C2は2次チョーク管15J
の油流入側が第1隔壁4B1で、油の吐出側は第2隔壁
4C1で仕切られていて、第2隔壁4C1は2次発熱室
のオイルがチョーク室4C2に自由に出入りできる様
に、2次チョーク管15Jの中心を結ぶ円周に沿って各
出口間隔の1/2の位置、即ちチョーク室4C2の円の
中心位置から放射する対角線上に4個の油対流口4C5
が穿たれている。2次チョーク管15Jのオイル吐出圧
力は、オイル流入側が油圧ポンプ3の定格圧力で、吐出
側の2次発熱室4Dの内部圧力が圧力調整弁3Bによっ
て3Kg/cm2 程度にセットされているから、この圧
力差は数十Kg/cm2 〜百数十Kg/cm2 の高圧力
となって、主動羽根車15Eに噴射して回転力を与え
る。
The choke chamber 4C2 is a secondary choke tube 15J.
The oil inflow side is partitioned by the first partition wall 4B1 and the oil discharge side is partitioned by the second partition wall 4C1. The second partition wall 4C1 is a secondary partition wall so that the oil in the secondary heating chamber can freely flow in and out of the choke chamber 4C2. Four oil convection ports 4C5 are arranged on a diagonal line radiating from a position ½ of each outlet distance along the circumference connecting the centers of the choke pipes 15J, that is, the center position of the circle of the choke chamber 4C2.
Is being worn. The oil discharge pressure of the secondary choke pipe 15J is the rated pressure of the hydraulic pump 3 on the oil inflow side, and the internal pressure of the secondary heat generating chamber 4D on the discharge side is set to about 3 Kg / cm 2 by the pressure adjusting valve 3B. The pressure difference becomes a high pressure of several tens Kg / cm 2 to several hundred tens Kg / cm 2 , and is injected into the driving impeller 15E to give a rotational force.

【0027】この高圧力が装置本体4の活動の原動力を
なすのであるが、然し2次チョーク管15Jに交互にオ
イルを流入させる回転開閉弁15Dの回転速度が高速で
あれば、流入するオイルの流量も少なく期待する射出噴
流力を得ることができないから、回転開閉弁15Dに付
帯する回転オイル流入口15D1の形状は回転開閉弁1
5Dの円周長さの1/6の長楕円形として、左右対称に
2個配置した。熱発生兼熱交換装置の発熱量は、油圧ポ
ンプ3を駆動する水車及び風車等原動機の能力の大小で
決定され、また機械効率の優劣にも左右されるが、これ
らは本発明の装置をセットする地域の気象や地形及び集
水面積で異なるから、本発明は与えられた条件で活動す
る原動機の出力に応じて、熱発生兼熱交換装置の機能を
最大に発揮できる構造の開発に努めた。したがって、熱
発生量は次の計算方法で求められる。
This high pressure drives the activity of the apparatus main body 4. However, if the rotational speed of the rotary on-off valve 15D that causes the oil to alternately flow into the secondary choke pipe 15J is high, the inflowing oil is Since the flow rate is small and the expected injection jet force cannot be obtained, the shape of the rotary oil inlet 15D1 attached to the rotary on-off valve 15D is the rotary on-off valve 1.
Two ellipsoids each having a length of 1/6 of the circumference of 5D were arranged symmetrically. The heat generation amount of the heat generating and heat exchanging device is determined by the capacity of the prime mover such as a water turbine and a wind turbine that drives the hydraulic pump 3, and also depends on the merit of mechanical efficiency, but these set the device of the present invention. The present invention sought to develop a structure capable of maximizing the function of the heat generating and heat exchanging device according to the output of the prime mover that operates under given conditions, because the weather, topography and catchment area of the area vary. . Therefore, the heat generation amount is obtained by the following calculation method.

【0028】1.油圧ポンプ3によるエネルギーの変換 水車及び風車等の機械エネルギーを油圧ポンプで圧力エ
ネルギーに変換する場合、(圧力エネルギー)=(圧
力)×(体積流量)で求められる。オイル吐出管3Pの
圧力は高圧側で、油圧ポンプ3の最大圧力であって、ま
た1次発熱室4Bの圧力は低圧側で、油圧ポンプの定格
圧力とする。 圧力エネルギー:PW 、高圧力:PI 、低圧力:PO
重力の加速度:g、油圧ポンプ回転数:N、ポンプ1回
転当たり吐出量:S、として圧力エネルギーは次の式で
求められる。PW =(PI −PO )・g・N・S、この
式から熱エネルギーに変換するには次の式となる。
1. Energy Conversion by Hydraulic Pump 3 When mechanical energy of a water turbine, a wind turbine, etc. is converted by a hydraulic pump into pressure energy, (pressure energy) = (pressure) × (volume flow rate). The pressure of the oil discharge pipe 3P is the high pressure side, which is the maximum pressure of the hydraulic pump 3, and the pressure of the primary heating chamber 4B is the low pressure side, which is the rated pressure of the hydraulic pump. Pressure energy: P W , high pressure: P I , low pressure: P O ,
The pressure energy is calculated by the following formula, where acceleration of gravity is g, hydraulic pump speed is N, and discharge amount per pump rotation is S. P W = (P I −P O ) · g · N · S. From this formula, the following formula is obtained to convert it into heat energy.

【0029】2.圧力エネルギーから熱エネルギーの変
換 (圧力エネルギー)⇒(運動エネルギー)={(流速)
2 ×油密度}×(体積流量) (運動エネルギー)⇒(熱エネルギー)=(運動エネル
ギー)×0.2389 上記の式で流速はノズル及びチョークの水理流速公式か
ら求めることができる。 一般的には、流速:V、吐出口の断面積:A、油の規定
流量:Qとして、V=Q/Aとなる。
2. Conversion of pressure energy to heat energy (pressure energy) ⇒ (kinetic energy) = {(velocity)
2 × oil density} × (volume flow rate) (kinetic energy) ⇒ (heat energy) = (kinetic energy) × 0.2389 In the above equation, the flow velocity can be obtained from the hydraulic flow velocity formula of the nozzle and choke. Generally, V = Q / A, where V is the flow velocity, A is the cross-sectional area of the discharge port, and Q is the specified flow rate of oil.

【0030】本発明の場合は、この条件に水路勾配に当
たる圧力エネルギーと、管断面の摩擦損失が関係するの
であるが説明を省略して、次に1次ノズル14A、2次
チョーク管15J、3次ノズル16Aの各圧力エネルギ
ーの概数を一般式で示す。 1次ノズル14Aの圧力エネルギー=油圧ポンプ3の最
高圧力−油圧ポンプの定格圧力 2次チョーク管15Jの圧力エネルギー=油圧ポンプの
定格圧力−3.0Kg/cm2 3次ノズル16Aの圧力エネルギー=3.0Kg/cm2 3次ノズル16Aが取付けられている放熱管16は、そ
の下流のオイル滞留室4Fと共に、自然圧力となってい
るため、3次ノズル16Aの圧力エネルギーが3.0Kg/cm
2 となる。
In the case of the present invention, the pressure energy applied to the water channel gradient and the friction loss of the pipe cross section are related to this condition, but the explanation is omitted. Next, the primary nozzle 14A, the secondary choke pipe 15J, and 3 An approximate number of each pressure energy of the next nozzle 16A is shown by a general formula. Pressure energy = maximum pressure of the hydraulic pump 3 of the primary nozzle 14A - the rated pressure -3.0Kg / cm 2 3 primary nozzle 16A of the pressure energy = hydraulic pump rated pressure secondary choke tube 15J of the hydraulic pump pressure energy = 3.0 Kg / cm 2 The heat radiation pipe 16 to which the tertiary nozzle 16A is attached has a natural pressure together with the oil retention chamber 4F located downstream thereof, so the pressure energy of the tertiary nozzle 16A is 3.0 kg / cm 3.
It becomes 2 .

【0031】このように3次に渉って発熱運動を繰り返
す理由は、先に説明の通り1個のノズルに最大の圧力を
加えて、既定流量(油圧ポンプの一定圧力における吐出
量Q=Ltre/min)を噴射した熱エネルギーも、同様圧力
で既定流量を数個のノズルから噴出した熱エネルギーの
和も同一の値であるが、熱量の交換効率は、面積に比例
するため分割噴射した方が、遥かに高い値を示すのであ
る。しかし、この方式の他にも射出噴流を衝突・反転・
撹拌等の作用を繰り返すことで、さらに発熱量が高くな
って、同時に熱交換効率も向上するのである。
As described above, the reason why the heating motion is repeated over the third order is that the maximum pressure is applied to one nozzle and the predetermined flow rate (the discharge amount Q = Ltre at a constant pressure of the hydraulic pump is given. / min) has the same value as the sum of the heat energies ejected from several nozzles at the same flow rate and a fixed flow rate, but since the heat exchange efficiency is proportional to the area, However, it shows a much higher value. However, in addition to this method
By repeating actions such as stirring, the amount of heat generated further increases, and at the same time the heat exchange efficiency improves.

【0032】1次発熱室4Bには1次ノズル14Aで油
が圧縮エネルギーを得てから、噴射された後の衝突エネ
ルギーの和と、補助羽根車15Cの撹拌力から生まれた
エネルギーの総和が、熱エネルギーに変換されて、その
まま回転開閉弁15Dに付帯する回転オイル流入口15
D1から2次チョーク管15Jに流入する。この場合の
1次発熱室4Bの衝突エネルギーは、滞留油層に楔状の
ホールを穿った状態となって、主に摩擦エネルギーに変
化して発熱量が低下する。この場合の運動エネルギーは
油圧ポンプ3の最大出力と定格出力の差であるから、数
十Kg/cm2 の範囲内に止まる関係上油圧ポンプ3の
最大運動エネルギーの28%程度であって、次の2次チ
ョーク管15Jの活動によって発熱量は最大となる。
In the primary heat generating chamber 4B, the sum of the collision energy after the oil has been compressed by the primary nozzle 14A and then injected, and the total energy generated by the stirring force of the auxiliary impeller 15C are The rotary oil inlet 15 that is converted into heat energy and is attached to the rotary on-off valve 15D as it is
It flows into the secondary choke pipe 15J from D1. In this case, the collision energy of the primary heat generating chamber 4B becomes a state in which a wedge-shaped hole is formed in the staying oil layer, and mainly changes into friction energy, and the amount of heat generation is reduced. Since the kinetic energy in this case is the difference between the maximum output and the rated output of the hydraulic pump 3, it is about 28% of the maximum kinetic energy of the hydraulic pump 3 because it stays within the range of several tens Kg / cm 2. The amount of heat generated is maximized by the activity of the secondary choke tube 15J.

【0033】2次チョーク管15Jの圧力エネルギーは
次の式となる。 (油圧ポンプ3の定格圧力)−(3.0Kg/cm2)=(百数十
Kg/cm2) この高圧力で2次発熱室4Dの滞留オイルに2次チョー
ク管15Jからオイルを噴射した場合、楔状ホール形の
油層分離は1次発熱室4Bよりも更に大となって、油ど
うしの衝突点が後退し衝突エネルギーが減少して、摩擦
エネルギーを主体にした状態に変化するから、2次チョ
ーク管15Jを4本に分割して吐出口を絞りオイル流量
を1/4にして2本一対で噴射する。
The pressure energy of the secondary choke tube 15J is given by the following equation. (Rated pressure of hydraulic pump 3)-(3.0Kg / cm 2 ) = (
(Kg / cm 2 ) When oil is injected from the secondary choke pipe 15J to the retained oil in the secondary heat generating chamber 4D at this high pressure, the wedge-shaped hole type oil layer separation becomes even larger than in the primary heat generating chamber 4B. The collision points of the oils recede, the collision energy decreases, and the friction energy mainly changes. Therefore, the secondary choke pipe 15J is divided into four, and the discharge port is throttled to reduce the oil flow rate to 1/4. Two pairs are injected.

【0034】チョーク室及び歯車室4Cのチョーク室4
C2には、第2隔壁4C1の油対流口4C5を介してオ
イルが流入し、室内にセットされている2次チョーク管
15Jを浸漬している。また一方、2次チョーク管15
Jに流入したオイルは高圧力で圧縮されて高熱を発生さ
せ、2次チョーク管15Jを浸漬する外部のオイルに伝
熱して、第2隔壁4C1の油対流口4C5から2次発熱
室4D内のオイルと対流を起こして混合される。所謂チ
ョーク室4C2でも発熱作用があって、熱交換効率を助
長している。
Choke chamber and choke chamber 4 of gear chamber 4C
Oil flows into C2 through the oil convection port 4C5 of the second partition wall 4C1 and the secondary choke pipe 15J set in the room is immersed therein. On the other hand, the secondary choke tube 15
The oil flowing into J is compressed at a high pressure to generate high heat, and is transferred to the external oil in which the secondary choke pipe 15J is immersed, and the oil flows from the oil convection port 4C5 of the second partition wall 4C1 into the secondary heating chamber 4D. It is mixed with oil by convection. The so-called choke chamber 4C2 also has a heat generating effect, which promotes heat exchange efficiency.

【0035】3次発熱室4Eの放熱管16のオイル流入
口にセットされている3次ノズル16Aに加わる圧力は
3Kg/cm2 程度の低圧で、発熱量は僅かであるが、
この主たる目的は、2次発熱室4Dの滞留オイルに3K
g/cm2 の圧力が干渉するから、流下速度が阻まれて
2次チョーク管15Jの噴流衝突力を助長する働きがあ
る。また、放熱管16を5本に分割している理由は、2
次発熱室4Dの熱量は缶体4Aに付帯する放熱版4A3
から貯湯槽2の水に熱交換されているが、まだ更に残存
熱量があって、この熱量を速やかに貯湯槽2に放熱して
交換効率を高めるためには、放熱面積の拡大が必要であ
るため、放熱管16を5本に分割した。
The pressure applied to the tertiary nozzle 16A set at the oil inlet of the heat radiation pipe 16 of the tertiary heating chamber 4E is a low pressure of about 3 kg / cm 2 , and the amount of heat generated is small.
The main purpose of this is 3K for accumulated oil in the secondary heating chamber 4D.
Since the pressure of g / cm 2 interferes, the flow velocity is blocked and the jet impinging force of the secondary choke pipe 15J is promoted. The reason why the heat radiation pipe 16 is divided into five is 2
The amount of heat in the next heating chamber 4D is the heat radiation plate 4A3 attached to the can body 4A.
Although the heat is exchanged with the water in the hot water storage tank 2 from the above, there is still a residual heat quantity, and in order to quickly radiate this heat quantity to the hot water storage tank 2 and improve the exchange efficiency, it is necessary to expand the heat radiation area. Therefore, the radiation pipe 16 is divided into five.

【0036】3次発熱室4Eの缶体4の上下左右には、
給排水管4E2が設置されていて、貯湯槽2の水が3次
発熱室4E内部に出入りが自由にできる構造になってい
るから、放熱管16を介して熱交換が速やかに起こると
共に、貯湯槽2の水の間にも対流による熱交換が容易に
発生する。前各項で記述の莫大な発生熱量は、油圧ポン
プ3の単位吐出流量に対して、装置本体4の容積が極端
に大であるため、従ってオイルの貯留量も大容量とな
る。従来の熱交換機は閉鎖系の缶体容量が小であるた
め、2重管方式によって外側の室にオイルを蓄えて熱交
換効率を高めていたのである。
On the upper, lower, left and right sides of the can body 4 of the third heating chamber 4E,
Since the water supply / drainage pipe 4E2 is installed and the water in the hot water storage tank 2 can freely move in and out of the tertiary heat generating chamber 4E, heat exchange occurs promptly via the heat dissipation pipe 16 and the hot water storage tank Heat exchange by convection easily occurs between the two waters. The enormous amount of generated heat described in each of the preceding sections is extremely large in volume of the device body 4 with respect to the unit discharge flow rate of the hydraulic pump 3, so that the amount of oil stored is also large. Since the conventional heat exchanger has a small capacity of the closed can body, oil is stored in the outer chamber by the double pipe system to enhance the heat exchange efficiency.

【0037】これに対して、本装置は内蔵するオイル量
が多量のため、従来方式の様な2重管構造による経費を
省くことができると共に、装置本体4の容量が大である
ことは、即放熱面積が大であって、更に装置本体4には
放熱版4A3が付帯しているから、熱交換効率が従来の
装置よりも遥かに高いことが立証される。この場合、回
転開閉弁15Dの作用で2次チョーク管15Jは、上下
・左右2本を1対で射出噴流が時間差を持って衝突する
から、先行の楔状に穿たれ油層分離を起こしたホールが
瞬間的に閉鎖されて復帰した所に、噴流が脈動を伴って
衝突して、常に初期の衝突と摩擦両エネルギーが発生す
るから、発熱量が大になる。
On the other hand, since the present apparatus has a large amount of built-in oil, it is possible to save the cost due to the double pipe structure as in the conventional system, and the apparatus 4 has a large capacity. Since the heat dissipation area is immediately large and the heat dissipation plate 4A3 is attached to the apparatus body 4, it is proved that the heat exchange efficiency is much higher than that of the conventional apparatus. In this case, due to the action of the rotary on-off valve 15D, the secondary choke pipe 15J is a pair of upper, lower, left and right jet jets that collide with a time lag, and therefore the preceding hole that was punched in a wedge shape and caused the oil layer separation occurs. The jet collides with pulsation at the place where it is momentarily closed and returned, and both initial collision and frictional energy are always generated, so the amount of heat generation becomes large.

【0038】時間差運動は主動羽根車15Eの回転力
が、回転速度調整ギヤー装置15Hを介して回転開閉弁
15Dに与えた回転力によって発生するのである。ま
た、2次発熱室4Dの滞留オイルの衝突面が4か所に分
散するから発熱作用が広範囲に渡り伝達され、更に2次
チョーク管15Jの吐出口に対面して設置されている噴
流反転バケット17によって、反転逆流して跳躍・撹拌
・2次衝突及び摩擦の各運動エネルギーが増大する。2
次チョーク管15Jの噴射口と噴流反転バケット17を
直線状に噴流が走るように2次チョーク管15Jの噴射
口に噴流方向制御板18が付帯している。また一方、主
動羽根車15Eによって、2次発熱室4D内のオイルが
大きく撹拌されるから、滞留オイルの乱流状態が高まっ
て、熱変換効率が益々助長される。2次発熱室4Dに付
帯する圧力調整弁3Bは2次発熱室4D室内の圧力を3
Kg/cm2 に保つ働きの他に、上記の運動エネルギー
で高熱化したオイル粒子の気化現象で発生した高圧力
を、圧抜パイプ3Dから放出して装置の安全を保つ働き
をする。
The time difference motion is generated by the rotational force of the driving impeller 15E given to the rotary on-off valve 15D via the rotational speed adjusting gear device 15H. Further, since the collision surfaces of the accumulated oil in the secondary heat generating chamber 4D are dispersed at four places, the heat generating effect is transmitted over a wide range, and further, the jet reversing bucket installed facing the discharge port of the secondary choke pipe 15J. By 17, reverse kinetic flow occurs, and kinetic energy of jumping, stirring, secondary collision, and friction increases. Two
A jet flow direction control plate 18 is attached to the jet port of the secondary choke pipe 15J so that the jet flows linearly through the jet port of the next choke pipe 15J and the jet reversal bucket 17. On the other hand, since the oil in the secondary heat generating chamber 4D is largely stirred by the driving impeller 15E, the turbulent flow state of the retained oil is increased and the heat conversion efficiency is further promoted. The pressure adjusting valve 3B attached to the secondary heat generating chamber 4D controls the pressure inside the secondary heat generating chamber 4D to 3
In addition to the function of maintaining Kg / cm 2 , the high pressure generated by the vaporization phenomenon of the oil particles highly heated by the above kinetic energy is discharged from the depressurizing pipe 3D to maintain the safety of the device.

【0039】このほか下記のように作用する。 1.同じ運動エネルギーで、2次チョーク管15J4本
から交互に油類が2次発熱室4Dに射出されて、この噴
流が2次発熱室4Dに滞留する油類と衝突して、運動エ
ネルギーによる熱を発生する。発生した熱量は1次発熱
室4B、チョーク室および歯車室4C、2次発熱室4D
に付帯する放熱版4A3から貯湯槽2の水に熱交換及び
蓄熱できる。 2.回転開閉弁15Dの回転速度が早すぎると、2次チ
ョーク管15Jから油類に射出噴流が連続して、2次発
熱室4Dの滞留油槽に衝突し突き破り、さらに押し分け
る作用が働くため、所謂油層の分離によって衝突点が後
退し、油類に与える衝撃力が低下すると同時に運動エネ
ルギーも低下する。よって、2次チョーク管15Jの射
出噴流で主動羽根車15Eを回転させて、シャフト15
を介して回転速度調整ギヤー装置15Hで回転を低速に
落とすと、回転開閉弁15Dに付帯する長楕円形の回転
オイル流入口15D1の2対と、2次チョーク管15J
の4本のうち2対の入口が会合する時間差が生じて、油
類の流入が交互に作動する。また、2次チョーク管15
Jの先端から噴射する油類が、2次発熱室4Dに滞留す
る油類と時間差をもって衝突するが、時間差に応じて油
層の分離が回復し、衝突点が2次チョーク管15Jの射
出口側に引き戻されて衝撃力が強化し、油類の流れに脈
動が生じて熱発生効果を高めることができる。
In addition to this, it operates as follows. 1. With the same kinetic energy, oils are alternately ejected from the four secondary choke tubes 15J into the secondary heat generating chamber 4D, and this jet collides with the oils retained in the secondary heat generating chamber 4D to generate heat due to kinetic energy. appear. The amount of heat generated is the primary heating chamber 4B, the choke chamber and the gear chamber 4C, the secondary heating chamber 4D.
Heat can be exchanged and stored in the water in the hot water storage tank 2 from the heat radiation plate 4A3 incidental to the. 2. If the rotation speed of the rotary on-off valve 15D is too high, the injection jet flow from the secondary choke pipe 15J to the oil continues to collide with the accumulated oil tank of the secondary heat generating chamber 4D, break through, and push apart. The separation of the oil layer causes the collision point to recede, the impact force exerted on the oils is reduced, and at the same time the kinetic energy is reduced. Therefore, the driving impeller 15E is rotated by the injection jet of the secondary choke pipe 15J, and the shaft 15
When the rotation speed is reduced to a low speed by the rotation speed adjusting gear device 15H through the, two pairs of the elliptical rotary oil inlets 15D1 attached to the rotary on-off valve 15D and the secondary choke pipe 15J.
There is a time difference between two pairs of inlets out of the four, and the inflow of oils operates alternately. In addition, the secondary choke tube 15
The oil injected from the tip of J collides with the oil staying in the secondary heat generating chamber 4D with a time lag, but the separation of the oil layer is restored according to the time lag, and the collision point is the injection port side of the secondary choke pipe 15J. And the impact force is strengthened, and pulsation occurs in the flow of oils to enhance the heat generation effect.

【0040】3.2次チョーク管15Jの射出噴流の衝
突箇所は2次発熱室4Dの円筒型の上下及び左右の4点
で、1点集中噴射よりも衝突面積が拡大される。したが
って、時間差による衝撃力の強化と発熱面積の拡大によ
る発熱量の累積および放熱面積の拡大によって熱交換機
能を高めることができる。 4.2次チョーク管15Jの射出噴流を、噴流反転バケ
ット17に衝突させて反転逆流を起し、後続の射出噴流
と衝突すれば、油類分子の衝撃による運動エネルギーが
2次発熱室4Dの内部全体に間断なく発生できる。 5.発熱体の油類を油圧ポンプ3を駆動してオイル吐出
管3Pに圧入すると、1次ノズル14Aから射出する噴
流で、補助羽根車15Cが回転し、回転開閉弁15Dに
初期の回転力を与える。この回転力を継続するため回転
開閉弁15Dに弾み車錘(バランスウエイト)15D2
を付帯させ慣性運動を持続させることができる。
3. The collision points of the injection jet of the secondary choke pipe 15J are four points above and below and to the left and right of the cylindrical shape of the secondary heat generating chamber 4D, and the collision area is enlarged as compared with the one-point concentrated injection. Therefore, the heat exchange function can be enhanced by strengthening the impact force due to the time difference, accumulating the heat generation amount by expanding the heat generation area, and expanding the heat radiation area. 4. When the jet jet of the secondary choke pipe 15J collides with the jet reversal bucket 17 to generate a reverse jet flow and collides with the subsequent jet jet, the kinetic energy due to the impact of oil molecules causes the secondary heat generation chamber 4D to lose its kinetic energy. It can occur throughout the interior without interruption. 5. When the oil of the heating element is driven into the oil discharge pipe 3P by driving the hydraulic pump 3, the auxiliary impeller 15C is rotated by the jet flow ejected from the primary nozzle 14A, and an initial rotational force is applied to the rotary on-off valve 15D. . In order to continue this rotational force, a bouncing wheel weight (balance weight) 15D2 is applied to the rotary on-off valve 15D.
It is possible to maintain the inertial movement by attaching the.

【0041】6.補助羽根車15Cは起動時に効果的働
きをするが、1次発熱室4Bに所定の油圧力が加わる
と、油類の圧力が増加し摩擦力も高くなって、1次ノズ
ル14Aの噴射流の長さが圧迫され、補助羽根車15C
まで流勢が届かなくなって回転力が低下する。この状態
が続くと回転開閉弁15Dの作動能力が減退するから次
の力で回転力を回復する必要がある。失われた回転力を
回復し継続するために、2次チョーク管15Jの強力な
射出噴流を動力に、主動羽根車15Eを高速回転させ
て、さらにこの力を回転速度調整ギヤー装置15Hに伝
動させたから、回転開閉弁15Dの回転駆動力を継続さ
せると共に、2次チョーク管15Jから射出される噴流
に、脈動状の運動力を与えて、回転力と熱発生作用を同
時に確保できる。
6. The auxiliary impeller 15C works effectively at the time of startup, but when a predetermined oil pressure is applied to the primary heat generating chamber 4B, the pressure of oils increases and the frictional force also increases, and the length of the jet flow of the primary nozzle 14A increases. Is pressed, auxiliary impeller 15C
The flow force does not reach and the torque decreases. If this state continues, the operating capacity of the rotary on-off valve 15D decreases, so it is necessary to recover the rotary force with the next force. In order to recover and continue the lost rotational force, the powerful impeller jet of the secondary choke tube 15J is used as a power source to rotate the driving impeller 15E at high speed, and further transmit this force to the rotational speed adjusting gear device 15H. Therefore, the rotational driving force of the rotary on-off valve 15D can be continued, and a pulsating kinetic force can be applied to the jet stream ejected from the secondary choke pipe 15J to simultaneously secure the rotational force and the heat generation action.

【0042】なお図中、1は水車及び風車接続軸、1A
は変速ギヤー装置、5Aは耐油性可撓パイプ、5A1は
振止金具、7Aは制流弁、14Bは振止金具、19は背
面圧抜孔、20は締付ボルト、21は締付ボルト調整
孔、22は回転自在固定板をそれぞれ示す。
In the figure, 1 is a water turbine and wind turbine connecting shaft, 1A
Is a speed change gear device, 5A is an oil resistant flexible pipe, 5A1 is an anti-vibration fitting, 7A is a flow restricting valve, 14B is an anti-vibration fitting, 19 is a back pressure release hole, 20 is a tightening bolt, 21 is a tightening bolt adjusting hole. Reference numerals 22 denote rotatable fixed plates, respectively.

【0043】[0043]

【発明の効果】本発明は、上述の通り構成されているの
で次に記載する効果を奏する。 1.ノズル以降の下流側パイプの口径が拡大されると滞
留油量が増加して、ノズルからの噴射力1回分で滞留油
に与える熱量が拡大前と同じでも温度上昇率は油量の増
量分に応じて低下する。これを防止するためには、油の
下流に流下する速度を低下させて、油の蓄熱時間を長期
化し、また一方チョークを複数として、油面の衝突面積
を拡大すると共に、チョークが複数となることは単一よ
りも放熱面積が拡大されて、熱交換が高められるなどの
相乗効果で対応できる。 2.閉鎖系管路自体の断面積を拡大する事で、伝熱蓄積
作用を単純化させると共に、チョーク管などの放熱面積
の増加で油量の増量による時間的な遅滞が短縮がなされ
て、従来以上の熱量を単純な構造で確保できる訳であ
る。
Since the present invention is configured as described above, it has the following effects. 1. When the diameter of the downstream pipe after the nozzle is enlarged, the amount of accumulated oil increases, and even if the amount of heat given to the accumulated oil by one injection force from the nozzle is the same as before expansion, the temperature rise rate is equivalent to the increase in oil amount. Will be reduced accordingly. In order to prevent this, the speed at which oil flows down is reduced to lengthen the heat storage time of oil, and on the other hand, there are multiple chokes and the collision area of the oil surface is expanded, and there are multiple chokes. This can be dealt with by a synergistic effect such that the heat dissipation area is expanded and the heat exchange is enhanced compared to the case of a single unit. 2. By enlarging the cross-sectional area of the closed system pipeline itself, the heat transfer accumulation effect is simplified, and the increase in the heat dissipation area of the choke pipe etc. shortens the time delay due to the increase in the amount of oil. The heat quantity can be secured with a simple structure.

【0044】3.発熱体全体に放熱版および放熱管を付
帯させたので、熱交換効率を高めることができる。熱発
生部分の作用が3回繰り返される構造のため熱発生効率
が高く、また、ノズルから射出される噴流形態に脈動と
反転逆流を取入れたことで、さらに、発熱量が大きくな
った。 4.我が国の中山村地域は、過疎が進みその上老齢化の
ため、1次産業の後継者が定着せず、経済は衰退の一途
であって、取り分け積雪寒冷地域は産業の活動が半年
で、残り半年は出稼ぎ収入を得て生計をようやく保って
いる状態であったが、本発明の熱発生兼熱交換装置を使
用することで、農家等の1次産業は温室栽培等を取り入
れて、通年営農が可能な専業農家となって、過疎地域の
人口の定着と、疲弊した経済の活性化に役立つ事が期待
できる。
3. Since the heat radiating plate and the heat radiating tube are attached to the entire heating element, the heat exchange efficiency can be improved. Due to the structure in which the action of the heat generating portion is repeated three times, the heat generating efficiency is high, and by incorporating pulsation and reverse flow in the jet form ejected from the nozzle, the calorific value is further increased. 4. In Japan's Zhongshan village area, due to depopulation and aging, the successor of the primary industry has not settled down, and the economy is declining. For half a year, I was able to earn migrant income and keep my livelihood at last, but by using the heat generating and heat exchanging device of the present invention, primary industries such as farmhouses adopt greenhouse cultivation etc. As a full-time farmer who can grow, it can be expected to contribute to the consolidation of the population in depopulated areas and the vitalization of the exhausted economy.

【0045】5.本発明は大型の熱発生兼熱交換装置と
して開発も可能であるが、主眼とする小規模な熱量の供
給に最適であって、しかも電気事業法等に抵触するもの
でなく、構造が簡単であるから専門技術者等の管理者が
不要で、人件費の節減が可能であり零細な農業者でも十
分運転管理ができる。
5. The present invention can be developed as a large-scale heat generating and heat exchanging device, but it is optimal for supplying a small amount of heat, which is the main object, and is not in conflict with the Electricity Business Act, etc., and has a simple structure. Therefore, there is no need for managers such as specialists, labor costs can be reduced, and even small farmers can perform sufficient operation management.

【図面の簡単な説明】[Brief description of drawings]

【図1】1部を切り欠いた全体の斜視図である。FIG. 1 is an overall perspective view with a part cut away.

【図2】全体の縦断面図である。FIG. 2 is an overall vertical sectional view.

【図3】1次発熱室部分の1部を切り欠いた要部拡大斜
視図である。
FIG. 3 is an enlarged perspective view of an essential part with a part of the primary heat generating chamber cut away.

【図4】チョーク室及び歯車室と2次発熱室部分の1部
を切り欠いた要部拡大斜視図である。
FIG. 4 is an enlarged perspective view of a main part of the choke chamber, the gear chamber, and a part of the secondary heat generating chamber, which are cut away.

【図5】3次発熱室とオイル滞留室部分の1部を切り欠
いた要部拡大斜視図である。
FIG. 5 is an enlarged perspective view of an essential part in which a part of a third heating chamber and an oil retaining chamber is cut away.

【図6】1次発熱室部分のの拡大縦断面図である。FIG. 6 is an enlarged vertical sectional view of a primary heating chamber portion.

【図7】チョーク室及び歯車室と2次発熱室部分の拡大
縦断面図である。
FIG. 7 is an enlarged vertical sectional view of a choke chamber, a gear chamber, and a secondary heat generating chamber portion.

【図8】3次発熱室とオイル滞留室部分の拡大縦断面図
である。
FIG. 8 is an enlarged vertical cross-sectional view of a third heating chamber and an oil retaining chamber.

【図9】A−A線拡大断面図である。FIG. 9 is an enlarged sectional view taken along line AA.

【図10】B−B線拡大断面図である。FIG. 10 is an enlarged sectional view taken along line BB.

【図11】C−C線拡大断面図である。FIG. 11 is an enlarged sectional view taken along line CC.

【図12】D−D線拡大断面図である。FIG. 12 is an enlarged sectional view taken along line DD.

【図13】E−E線拡大断面図である。FIG. 13 is an enlarged sectional view taken along line EE.

【図14】F−F線拡大断面図である。FIG. 14 is an enlarged sectional view taken along line FF.

【図15】G−G線拡大断面図である。FIG. 15 is an enlarged sectional view taken along line GG.

【図16】H−H線拡大断面図である。FIG. 16 is an enlarged sectional view taken along line HH.

【図17】I−I線拡大断面図である。FIG. 17 is an enlarged sectional view taken along line I-I.

【図18】J−J線拡大断面図である。FIG. 18 is an enlarged sectional view taken along line JJ.

【図19】K−K線拡大断面図である。FIG. 19 is an enlarged sectional view taken along line KK.

【図20】L−L線拡大断面図である。FIG. 20 is an enlarged sectional view taken along line LL.

【符号の説明】[Explanation of symbols]

A 熱発生兼熱交換装置 1 水車及び風車接続軸 1A 変速ギヤー装置 2 貯湯槽 3 油圧ポンプ 3A,3B 圧力調整弁 3C,3D 圧抜パイプ 3E 圧力計 3P オイル吐出管 4 熱発生兼熱交換装置本体 4A 缶体 4A1 円筒状側壁部 4A2 左右端側面部 4A3 放熱版 4B 1次発熱室 4B1 第1隔壁 4C チョーク室及び歯車室 4C1 第2隔壁 4C2 チョーク室 4C3 歯車室 4C4 歯車室冷却油管 4C5 油対流口 4D 2次発熱室 4D1 第3隔壁 4E 3次発熱室 4E1 第4隔壁 4E2 給排水管 4F オイル滞留室 4G フランジ 5 オイル還元パイプ 5A 耐油性可撓パイプ 5A1 振止金具 6 オイル濾過装置 6A 濾過器 6A1 空気弁 7 放流パイプ 7A 制流弁 8 給油パイプ 9 冷却タンク 9A オイル冷却タンク 10 給油パイプ 10A 制油弁 11,12 給水パイプ 12A 制水弁 13 据付共通ベット 13A 伸縮可動端 13B 鋼板固定脚 14 軸受 14A 1次ノズル 14B 振止金具 15 シャフト 15A シャフト1次部 15B シャフト2次部 15A1 シャフト1次後部端 15B1 シャフト2次前部端 15C 補助羽根車 15D 回転開閉弁 15D1 回転オイル流入口 15D2 弾み車錘 15E 主動羽根車 15F 主動歯車 15G 遊星歯車 15G1 遊星歯車軸受振止金具 15H 回転速度調整ギヤー装置 15I 回転開閉弁歯車 15J 2次チョーク管 16 放熱管 16A 3次ノズル 17 噴流反転バケット 17A 反転バケット固定環 17B 反転バケット固定脚 18 噴流方向制御板 19 背面圧抜孔 20 締付ボルト 21 締付ボルト調整孔 22 回転自在固定板 25 排油パイプ 25A 排油閉鎖弁 A Heat generating and heat exchanging device 1 Water turbine and wind turbine connecting shaft 1A Speed change gear device 2 Hot water storage tank 3 Hydraulic pumps 3A, 3B Pressure adjusting valve 3C, 3D Depressurizing pipe 3E Pressure gauge 3P Oil discharge pipe 4 Heat generating and heat exchanging device body 4A Can body 4A1 Cylindrical side wall part 4A2 Left and right side surface parts 4A3 Heat dissipation plate 4B Primary heat generating chamber 4B1 First partition wall 4C Choke chamber and gear chamber 4C1 Second partition wall 4C2 Choke chamber 4C3 Gear chamber 4C4 Gear chamber Cooling oil pipe 4C5 Oil convection port 4D Secondary heating chamber 4D1 Third partition wall 4E Third heating chamber 4E1 Fourth partition wall 4E2 Water supply / drainage pipe 4F Oil retention chamber 4G Flange 5 Oil reduction pipe 5A Oil resistant flexible pipe 5A1 Shake fitting 6 Oil filtration device 6A Filter 6A1 Air Valve 7 Discharge pipe 7A Flow control valve 8 Oil supply pipe 9 Cooling tank 9A Oil cooling tank 10 Supply Pipe 10A Oil control valve 11,12 Water supply pipe 12A Water control valve 13 Installation common bed 13A Telescopic movable end 13B Steel plate fixed leg 14 Bearing 14A Primary nozzle 14B Antivibration metal fitting 15 Shaft 15A Shaft primary part 15B Shaft secondary part 15A1 shaft Primary rear end 15B1 Shaft Secondary front end 15C Auxiliary impeller 15D Rotary on-off valve 15D1 Rotating oil inlet 15D2 Flywheel weight 15E Main impeller 15F Main driving gear 15G Planetary gear 15G1 Planetary gear bearing antivibration fitting 15H Rotation speed adjusting gear device 15I rotary on-off valve gear 15J secondary choke pipe 16 heat radiation pipe 16A tertiary nozzle 17 jet reversing bucket 17A reversing bucket fixed ring 17B reversing bucket fixing leg 18 jet direction control plate 19 back pressure release hole 20 tightening bolt 21 tightening bolt adjusting hole 22 Rolling freely fixing plate 25 drain oil pipe 25A oil discharge shut-off valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 所定容量に構成された左右に横長の貯湯
槽(2)と、この貯湯槽外に配設されたピストン型など
の油圧ポンプ(3)と、この油圧ポンプ(3)と連結さ
れ、かつ、貯湯槽内に配設された熱発生兼熱交換装置本
体(4)からなるものにおいて、油圧ポンプ(3)を駆
動して熱発生兼熱交換装置本体に活動力を与え油類の運
動エネルギーから熱を発生させて、さらに水または油類
に熱交換するよう構成したことを特徴とする熱発生兼熱
交換装置。
1. A horizontally long hot water storage tank (2) having a predetermined capacity, a piston type hydraulic pump (3) arranged outside the hot water storage tank, and a connection with the hydraulic pump (3). A heat generating and heat exchanging device main body (4) arranged in the hot water storage tank, the hydraulic pump (3) is driven to give an active force to the heat generating and heat exchanging device main body, and oils A heat generating and heat exchanging device, which is configured to generate heat from the kinetic energy of and to further exchange heat with water or oils.
JP5315866A 1993-11-22 1993-11-22 Heat generation and heat exchange device Expired - Lifetime JP2528785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315866A JP2528785B2 (en) 1993-11-22 1993-11-22 Heat generation and heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315866A JP2528785B2 (en) 1993-11-22 1993-11-22 Heat generation and heat exchange device

Publications (2)

Publication Number Publication Date
JPH07146012A true JPH07146012A (en) 1995-06-06
JP2528785B2 JP2528785B2 (en) 1996-08-28

Family

ID=18070542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315866A Expired - Lifetime JP2528785B2 (en) 1993-11-22 1993-11-22 Heat generation and heat exchange device

Country Status (1)

Country Link
JP (1) JP2528785B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974375A (en) * 1982-10-21 1984-04-26 Agency Of Ind Science & Technol Auxiliary heat source for heat storage and cold storage water tank utilizing wind force energy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974375A (en) * 1982-10-21 1984-04-26 Agency Of Ind Science & Technol Auxiliary heat source for heat storage and cold storage water tank utilizing wind force energy

Also Published As

Publication number Publication date
JP2528785B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
EP2071182B1 (en) A multiple energy inputs hydropower system
US5780935A (en) Hydropowered turbine system
CA2956206A1 (en) An apparatus, system and method for utilizing thermal energy
JP2014522460A (en) System and method for efficient two-phase heat transfer in a compressed air energy storage system
JP2006524774A (en) production equipment
KR20200058423A (en) Air powered generator
WO2015078829A1 (en) Thermal power plant
US20160053469A1 (en) Apparatus, system and method for utilizing thermal energy
EP1869316A1 (en) Re-circulating water in close-looped hydropower system
CN108007247B (en) External heating type molten salt heat storage system
JP6049749B2 (en) Turbine equipment
JP2528785B2 (en) Heat generation and heat exchange device
JP5238057B2 (en) Heat medium temperature fluctuation suppression device, heat medium supply facility and solar power generation facility
CN110030137A (en) A kind of novel power generation apparatus by rainwater
CN210873866U (en) Fire water system combined with generator set cooling tower
JP2001172948A (en) Pumped storage power plant
TW201211384A (en) Fluid pipeline structure with multiple power generation functions
CN106801904B (en) Heating network bifurcated passage ultromotivity assignment of traffic regulating device and its adjusting method
CN205689348U (en) Damping type power station waste heat recovery unit
RU197758U1 (en) Coolant overpressure recovery device
JPS6032798B2 (en) Heat exchange equipment using direct contact between gas and liquid or liquid and liquid
JP3023328B2 (en) Gravity power generator
RU2532823C2 (en) Hydro-electric power-plant
CN113175833B (en) Double-vibration heat pipe heat exchanger combination and ground source heat pump system thereof
EA008132B1 (en) Method for producing heat for heating buildings and constructions and a continuous cavitation heat generator