JPH0714544B2 - High hardness material joining type tool - Google Patents

High hardness material joining type tool

Info

Publication number
JPH0714544B2
JPH0714544B2 JP26898485A JP26898485A JPH0714544B2 JP H0714544 B2 JPH0714544 B2 JP H0714544B2 JP 26898485 A JP26898485 A JP 26898485A JP 26898485 A JP26898485 A JP 26898485A JP H0714544 B2 JPH0714544 B2 JP H0714544B2
Authority
JP
Japan
Prior art keywords
cemented carbide
hardness material
joined
joining
type tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26898485A
Other languages
Japanese (ja)
Other versions
JPS62127139A (en
Inventor
政昭 池辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANALLOY INDUSTRY CO., LTD.
Original Assignee
SANALLOY INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANALLOY INDUSTRY CO., LTD. filed Critical SANALLOY INDUSTRY CO., LTD.
Priority to JP26898485A priority Critical patent/JPH0714544B2/en
Publication of JPS62127139A publication Critical patent/JPS62127139A/en
Publication of JPH0714544B2 publication Critical patent/JPH0714544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Punching Or Piercing (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Forging (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種の圧造、鍛造、引き抜き等のプレス工
具、および、その他の耐摩耗工具に関する。
TECHNICAL FIELD The present invention relates to various press tools such as forging, forging, and drawing, and other wear-resistant tools.

(従来の技術) 異種金属を接合した接合型工具は、それぞれの金属の特
徴を利用して単一の金属では得られない特性を実現する
ものである。
(Prior Art) A joining-type tool in which dissimilar metals are joined realizes characteristics that cannot be obtained by a single metal by utilizing the characteristics of each metal.

ところで、靱性にすぐれた鉄鋼材料を用いた支持部と高
硬度を有する加工部とからなる接合型工具を製造するた
め、固相拡散整合法で鉄鋼材料と超硬合金を直接接合す
る場合、接合界面に金属間化合物を生じ易く、それを抑
制するために、鉄鋼材料と超硬合金との間に介在させる
インサートメタルとしてFe-Ni系合金,Fe-Cr-W系合金等
が用いられたきた。
By the way, in order to manufacture a joining type tool consisting of a support part using a steel material excellent in toughness and a working part having high hardness, when joining the steel material and the cemented carbide directly by the solid phase diffusion matching method, Fe-Ni-based alloys, Fe-Cr-W-based alloys, etc. have been used as insert metals to intervene between steel materials and cemented carbides in order to suppress the formation of intermetallic compounds at the interface. .

また、接合後、支持部(鉄鋼材料)に所要の強度をもた
せるために熱処理(焼入,焼戻し等)が施される。
In addition, after joining, heat treatment (quenching, tempering, etc.) is performed in order to give the supporting portion (steel material) a required strength.

(発明の解決すべき問題点) しかしながら、鉄鋼材料は熱処理により必要な強度が得
られるが、インサートメタルは所要強度が得にくい。そ
のため、高い繰返し圧縮強度が要求される用途には、工
具寿命が短い場合が多かった。
(Problems to be Solved by the Invention) However, although a steel material can obtain necessary strength by heat treatment, it is difficult to obtain required strength with insert metal. Therefore, the tool life is often short in applications where high cyclic compressive strength is required.

したがって、鉄鋼材料と超硬合金とからなる接合型工具
の固相拡散接合による製造においては、次の諸条件を満
たすことが望ましい。
Therefore, it is desirable that the following conditions be satisfied in the production of a joining type tool made of a steel material and a cemented carbide by solid phase diffusion joining.

a.インサートメタルの強度 インサートメタルは、接合すべき両金属と同等以上の強
度を有すること。
a. Strength of insert metal The insert metal must have strength equal to or higher than the two metals to be joined.

b.金属間化合物の抑制 インサートメタルと接合すべき両金属との接合界面に脆
い金属間化合物を生成しないこと。
b. Suppression of intermetallic compounds Do not generate brittle intermetallic compounds at the joint interface between the insert metal and both metals to be joined.

c.熱処理条件 鉄鋼材料に最適な熱処理が可能であること。c. Heat treatment conditions Optimal heat treatment for steel materials is possible.

本発明の目的は、より安価した接合を有する鉄鋼材料と
超硬合金とからなる接合型工具を提供することである。
An object of the present invention is to provide a joining type tool made of a steel material and a cemented carbide having a cheaper joining.

(問題点を解決するための手段) 本発明では、鉄鋼材料と超硬合金との固相拡散接合にお
いて、より安定した接合諸条件を開発した。
(Means for Solving Problems) In the present invention, more stable joining conditions have been developed in solid phase diffusion joining of a steel material and a cemented carbide.

1) インサートメタルとして超硬合金を採用した。1) Cemented carbide is used as the insert metal.

2) 金属間化合物抑制のため、インサートメタルとし
ての超硬合金は組成(含有炭素量等)を調整した。
2) In order to suppress intermetallic compounds, the composition (carbon content, etc.) of the cemented carbide as the insert metal was adjusted.

(作用) Cr、W、Mo等の添加元素を有する合金鋼と、通常の超硬
合金との直接接合においては、接合界面に金属間化合物
(Fe3W3Cと考えられる)が形成され易い。
(Function) In the direct joining of alloy steels having additional elements such as Cr, W and Mo and ordinary cemented carbide, an intermetallic compound (presumably Fe 3 W 3 C) is easily formed at the joining interface. .

この金属間化合物の生成メカニズムには、炭素量依存性
があり、適正炭素量に調整した超硬合金をインサートメ
タルとして用いれば、鉄鋼材料と超硬合金との直接接合
が可能であり、十分な接合強度が得られる。また、温度
とも強い相関が認められる。第1表に、各種合金工具
鋼、高速度鋼と超硬合金中の含有炭素量との組合せにお
いて、1100℃と1150℃の温度条件での金属間化合物の生
成の有無を示す。この1100℃と1150℃は、接合時の温度
を示す。(なお、ここでは接合処理以外の熱処理は行っ
ていない。)いずれの場合も、金属間化合物は1100℃で
は生成しないが、さらに50℃上昇すると生成する。した
がって、インサートメタルとして用いる超硬合金の組成
は、熱処理温度に対応して選定しなければならない。な
お、第1表における全炭素量は、超硬合金中のすべての
炭素量をさす。また、1000℃、1150℃での保持時間は60
分である。
The mechanism of formation of this intermetallic compound has carbon content dependency, and if cemented carbide adjusted to an appropriate carbon content is used as an insert metal, direct joining of steel materials and cemented carbide is possible, and sufficient Bonding strength can be obtained. Also, a strong correlation with the temperature is recognized. Table 1 shows the presence or absence of the formation of intermetallic compounds under the temperature conditions of 1100 ° C. and 1150 ° C. in the combination of various alloy tool steels, high speed steels and the carbon content in cemented carbide. These 1100 ° C. and 1150 ° C. indicate the temperatures at the time of joining. (Note that heat treatment other than the joining treatment is not performed here.) In any case, the intermetallic compound is not formed at 1100 ° C, but is formed when the temperature further rises by 50 ° C. Therefore, the composition of the cemented carbide used as the insert metal must be selected according to the heat treatment temperature. The total amount of carbon in Table 1 indicates the total amount of carbon in the cemented carbide. Also, the holding time at 1000 ℃ and 1150 ℃ is 60
Minutes.

接合面での金属間化合物生成の有無は、接合面に垂直な
方向に工具を切断し、その切断面を鏡面に研磨して村上
氏試薬により食刻し、光学顕微鏡で組成を観察すること
により容易に確認できる。接合面に金属間化合物が生成
していれば、金属間化合物は深く食刻されている。
The presence or absence of the formation of intermetallic compounds on the joint surface is determined by cutting the tool in the direction perpendicular to the joint surface, polishing the cut surface to a mirror surface, etching with Murakami's reagent, and observing the composition with an optical microscope. Easy to check. If the intermetallic compound is formed on the joint surface, the intermetallic compound is deeply etched.

ところで、合金鋼と超硬合金の直接接合における金属間
化合物生成のメカニズムは、次のように考えられる。一
般に合金鋼は、Fe、C以外にCr、Mo、W、Co等の各種添
加元素を含んでいて、これらの添加元素は、MxCy型とし
て炭化物を形成するか、しかも、Fe基地中に固溶した状
態となっている。各種添加元素の中で、Cr、Mo等は、炭
素との化学的結合力が強いが、他方、Wは比較的弱い結
合力をもつ。このため、合金鋼と超硬合金の接合界面で
は、超硬合金成分であるWCの炭素が合金鋼中の固溶Cr、
Mo等により吸収されるため、不安定なWが生成されると
考えられる。そして、このWが、より安定な相状態とし
てFeおよびCと反応して、金属間化合物Fe3W3Cを形成す
るものと考えられる。
By the way, the mechanism of intermetallic compound formation in direct joining of alloy steel and cemented carbide is considered as follows. In general, alloy steel contains various additive elements such as Cr, Mo, W, and Co in addition to Fe and C, and these additive elements form carbides as M x C y type, and moreover, in the Fe base. It is in a solid solution state. Among various additive elements, Cr, Mo and the like have strong chemical bonding with carbon, while W has relatively weak bonding. Therefore, at the joining interface between the alloy steel and the cemented carbide, the carbon of WC, which is the cemented carbide component, is the solid solution Cr in the alloy steel
It is considered that unstable W is generated because it is absorbed by Mo or the like. It is considered that this W reacts with Fe and C in a more stable phase state to form an intermetallic compound Fe 3 W 3 C.

金属間化合物を抑制するため、接合界面にて不足する炭
素を補う方法として、超硬合金を高炭素量に調整して、
インサートメタルとして用いればよい。高炭素組成では
超硬合金中に遊離炭素が生成されるが、拡散接合過程に
て接合界面近傍の遊離炭素は拡散して消滅する。さら
に、インサートメタル(含有炭素量調整超硬合金)は、
必要最小限度の厚さがあればよい。例えば、合金工具
鋼、高速度鋼との接合では、0.1〜0.5mm相当で十分であ
り、これ以上の厚さであると、超硬合金中に未拡散の遊
離炭素が残留する。残留した遊離炭素の存在は、超硬合
金中に未拡散の遊離炭素が存在することを意味し、母材
の強度を著しく低下させるため、好ましくない。また、
これ以下であると、炭素を十分補えない。このように、
含有炭素量を調整したインサートメタルとしての超硬合
金を使用することで、鉄鋼材料との接合組合せも容易に
なり、かつ、接合部強度も向上し、鉄鋼材料に適した熱
処理が可能になる。
In order to suppress intermetallic compounds, as a method of compensating for the carbon shortage at the bonding interface, the cemented carbide is adjusted to a high carbon content,
It may be used as an insert metal. Although free carbon is generated in the cemented carbide with a high carbon composition, the free carbon near the bonding interface diffuses and disappears in the diffusion bonding process. In addition, insert metal (carbon content adjustment cemented carbide),
It is only necessary to have the minimum necessary thickness. For example, in the case of joining with alloy tool steel and high speed steel, 0.1 to 0.5 mm is sufficient, and if the thickness is more than this, non-diffused free carbon remains in the cemented carbide. The presence of residual free carbon means that there is non-diffused free carbon in the cemented carbide, which significantly reduces the strength of the base metal and is not preferable. Also,
If it is less than this, carbon cannot be sufficiently supplemented. in this way,
By using a cemented carbide as an insert metal with an adjusted carbon content, it becomes easy to join and combine with a steel material, the joint strength is improved, and heat treatment suitable for the steel material becomes possible.

(実施例) 図面に示す冷間鍛造用ポンチを作製し、工具寿命を調べ
た。ポンチは、工具鋼SKD11からなる支持部1と超硬合
金からなる加工部3とを、高炭素含有量のインサートメ
タルとしての超硬合金2を介在させて接合してなる。超
硬合金2の厚みは0.1mmである。加工部3の超硬合金
は、支持部1の鉄鋼材料との接合の容易な、熱膨張係数
の大きい超硬合金(WC75%,Co25%)3bと硬度の大きい
熱膨張係数の小さい超硬合金(WC82%,Co18%)3aとを
順次接合してなる。一方、インサートメタルとしての超
硬合金2の組成(WC75%,Co25%,全炭素量5.2%)は、
固相拡散接合時及び接合後の熱処理履歴(接合処理、鉄
鋼材料の焼き入れ、焼き戻し処理、硬化層被覆処理およ
び工具使用時を含む)に対して、上記の超硬合金3bおよ
び鉄鋼材料1との両接合面に金属間化合物を生成しない
ように選ぶ。固溶拡散接合は、カプセル方式HIP拡散接
合(温度1100℃、圧力1000kgf/cm2、時間0.5時間)を施
す。接合しポンチに、さらに、TiCとTiNとからなる硬化
層(図示しない)をCVD法により表面に析出被覆する。
次に、焼入れ(1050℃×40分)を行ない、200℃で3時
間焼戻す。
(Example) A punch for cold forging shown in the drawing was produced and the tool life was examined. The punch is formed by joining a support portion 1 made of tool steel SKD11 and a processed portion 3 made of cemented carbide with a cemented carbide 2 as an insert metal having a high carbon content interposed therebetween. The cemented carbide 2 has a thickness of 0.1 mm. The cemented carbide of the working portion 3 is a cemented carbide having a large thermal expansion coefficient (WC75%, Co25%) 3b with a large thermal expansion coefficient and a cemented carbide having a large hardness and a small thermal expansion coefficient, which can be easily joined to the steel material of the supporting portion 1. (WC82%, Co18%) 3a are sequentially joined. On the other hand, the composition of cemented carbide 2 as insert metal (WC75%, Co25%, total carbon content 5.2%) is
For the heat treatment history during and after solid phase diffusion bonding (including bonding treatment, quenching of steel material, tempering treatment, hardened layer coating treatment and tool use), the above cemented carbide 3b and steel material 1 Select so that no intermetallic compound is formed on both joint surfaces of and. For solid solution diffusion bonding, capsule-type HIP diffusion bonding (temperature 1100 ° C, pressure 1000 kgf / cm 2 , time 0.5 hour) is applied. The bonded punch is further coated with a hardened layer (not shown) made of TiC and TiN on the surface by CVD.
Next, quenching (1050 ° C x 40 minutes) is performed and tempering is performed at 200 ° C for 3 hours.

こうして作製した冷間鍛造用ポンチを用いて、機械構造
用炭素鋼S25CのA材を加工した。第2表にその結果を示
す。
The cold forging punch thus produced was used to process the A material of the carbon steel S25C for machine structure. The results are shown in Table 2.

比較のために、高速度鋼SKH9を用いた冷間鍛造用ポンチ
による結果も併わせて示す。第2表より明らかなよう
に、本実施例のポンチ工具寿命は、比較例に較べて数十
個に増加した。
For comparison, the results obtained by punching for cold forging using high speed steel SKH9 are also shown. As is clear from Table 2, the punch tool life of this example was increased to several tens as compared with the comparative example.

加工部3には、支持部1の鉄鋼材料との接合の容易な、
熱膨張係数の大きい超硬合金3bのみを用いてもよいこと
はいうまでもない。
In the processing part 3, it is easy to join the steel material of the support part 1,
It goes without saying that only the cemented carbide 3b having a large coefficient of thermal expansion may be used.

上記の加工部3において、上記のインサートメタルとし
ての超硬合金2と接しない側に、2個以上の超硬合金を
熱膨張係数の大きさの順に順次固相拡散接合することも
できる。これにより、硬度の大きい熱膨張係数の小さい
超硬合金を加工部3の先端に用い、接合面側には、より
接合に適した超硬合金を選び、特性のすぐれた接合型工
具を製造できる。
It is also possible to sequentially perform solid-phase diffusion bonding of two or more cemented carbides on the side not contacting the cemented carbide 2 as the insert metal in the processed portion 3 in the order of the coefficient of thermal expansion. As a result, a cemented carbide having a high hardness and a small thermal expansion coefficient is used at the tip of the machined portion 3, and a cemented carbide more suitable for joining is selected on the joining surface side to manufacture a joining type tool having excellent characteristics. .

また、接合型工具の表面硬化層としては、一般に、遷移
金属の各種炭化物、窒化物、炭窒化物、硼化物もしくは
珪化物および/またはAl、Y,Zr等の酸化物の単層、複層
または複々層を用いることができる。
Further, as the surface hardened layer of the bonded tool, generally, a single layer or multiple layers of various carbides, nitrides, carbonitrides, borides or silicides of transition metals and / or oxides of Al, Y, Zr, etc. Alternatively, multiple layers can be used.

(発明の効果) 本発明に係る高硬度材料接合型工具は、インサートメタ
ルに超硬合金を使用することで、接合部圧縮強度が飛躍
的に向上、安定化し、工具寿命が延びる。
(Effect of the invention) In the high hardness material joining type tool according to the present invention, by using cemented carbide for the insert metal, the joint compressive strength is dramatically improved and stabilized, and the tool life is extended.

また、接合すべき鉄鋼材料に適したインサートメタルと
しての超硬合金が選択できることにより、鉄鋼材料に最
適の熱処理を作用することが可能になる。
Further, since the cemented carbide as the insert metal suitable for the steel material to be joined can be selected, it becomes possible to apply the optimum heat treatment to the steel material.

本発明に係る固相拡散接合は、各種圧造、鍛造、引抜
き、絞り加工、打抜き、曲げ加工、切削加工等の各種塑
性加工工具、切削加工工具全般に適用される。また、用
途に応じた機械部品としても多方面に適用できる。
The solid phase diffusion bonding according to the present invention is applied to various plastic working tools such as various forging, forging, drawing, drawing, punching, bending and cutting, and cutting tools in general. Further, it can be applied to various fields as a machine part according to the application.

【図面の簡単な説明】[Brief description of drawings]

図面は、冷間鍛造用ポンチの平面図である。 1……支持部(鉄鋼材料)、2……インサートメタルと
しての超硬合金、3,3a,3b……加工部(超硬合金)。
The drawing is a plan view of a punch for cold forging. 1 ... Supporting part (steel material), 2 ... Cemented carbide as insert metal, 3,3a, 3b ... Machining part (cemented carbide).

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】第1の超硬合金からなる加工部と、上記の
第1の超硬合金と異なる第2の超硬合金からなるインサ
ートメタルからなる中間部と、鉄鋼材料からなる支持部
とが順次接合され、上記の中間部と上記の加工部及び支
持部との両界面は固相拡散による接合面であり、両接合
面は金属間化合物を含まない組成を有する高硬度材料接
合型工具。
1. A machined portion made of a first cemented carbide, an intermediate portion made of an insert metal made of a second cemented carbide different from the first cemented carbide, and a supporting portion made of a steel material. Are sequentially joined, and both interfaces between the intermediate portion and the processed portion and the support portion are joined surfaces by solid-phase diffusion, and both joined surfaces have a high hardness material joining type tool having a composition containing no intermetallic compound. .
【請求項2】特許請求の範囲第1項に記載された高硬度
材料接合型工具において、 上記の加工部は、互いに異なった超硬合金からなる複数
の加工部部分からなり、これらの加工部部分は、上記の
中間部と接する側から熱膨張係数が順次小さくなってい
くように接合されていることを特徴とする高硬度材料接
合型工具。
2. The high-hardness material-bonding tool according to claim 1, wherein the processed portion is composed of a plurality of processed portion portions made of different cemented carbides. The high hardness material joining type tool, wherein the parts are joined so that the coefficient of thermal expansion gradually decreases from the side in contact with the intermediate part.
【請求項3】特許請求の範囲第1項に記載された高硬度
材料接合型工具において、 遷移金属の各種炭化物、窒化物、炭窒化物、硼化物もし
くは硅化物および/あるいはAl、Y、Zr等の酸化物の単
層、複層または複々層からなる硬化層が表面に被覆され
ていることを特徴とする高硬度材料接合型工具。
3. A high-hardness material-bonded tool according to claim 1, wherein various transition metal carbides, nitrides, carbonitrides, borides or suicides and / or Al, Y, Zr are used. A high-hardness material-bonding tool characterized in that the surface is coated with a hardened layer composed of a single layer, multiple layers or multiple layers of oxides such as.
JP26898485A 1985-11-28 1985-11-28 High hardness material joining type tool Expired - Fee Related JPH0714544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26898485A JPH0714544B2 (en) 1985-11-28 1985-11-28 High hardness material joining type tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26898485A JPH0714544B2 (en) 1985-11-28 1985-11-28 High hardness material joining type tool

Publications (2)

Publication Number Publication Date
JPS62127139A JPS62127139A (en) 1987-06-09
JPH0714544B2 true JPH0714544B2 (en) 1995-02-22

Family

ID=17466037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26898485A Expired - Fee Related JPH0714544B2 (en) 1985-11-28 1985-11-28 High hardness material joining type tool

Country Status (1)

Country Link
JP (1) JPH0714544B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036262A (en) * 2008-07-31 2010-02-18 Nippon Tungsten Co Ltd Thin plate punching die
KR101631244B1 (en) * 2014-06-25 2016-06-17 조선대학교 산학협력단 Tool and manufacturing method of the same
CN111644512B (en) * 2020-06-08 2022-05-17 江苏博联硕焊接技术有限公司 Composite punch and preparation method thereof
CN116713419A (en) * 2023-06-26 2023-09-08 重庆新承航锐科技股份有限公司 Thermal processing method and system for improving mechanical properties of 13Cr10Mo1W1VNbN gas turbine wheel disc forging

Also Published As

Publication number Publication date
JPS62127139A (en) 1987-06-09

Similar Documents

Publication Publication Date Title
EP0075316B1 (en) Coating composition and method
EP0223585B1 (en) A hard sintered compact for a tool
JP4593852B2 (en) Coated hard alloy
EP0541071A1 (en) Polycrystalline diamond cutting tool and method of manufacturing the same
JPS61167548A (en) Multilayer film
JP3637883B2 (en) Surface coated boron nitride sintered body tool
US6194088B1 (en) Stainless steel coated with intermetallic compound and process for producing the same
JPH10330914A (en) Laminated coating member containing crystal orientated hard coating
JP2002307129A (en) Coating tool for warm and hot working having excellent lubricant adhesion and wear resistance
US20050129565A1 (en) Tungsten alloy high temperature tool materials
JPH06173009A (en) Coated cemented carbide excellent in wear resistance and its production
WO1991005075A1 (en) Surface-coated hard member for cutting and abrasion-resistant tools
JPH0714544B2 (en) High hardness material joining type tool
JPH0730363B2 (en) Hard sintered body cutting tool
JP2519578B2 (en) Method of joining metal member and ceramics or cermet member
KR880001381B1 (en) Surface coated high speed steel member
EP0228166B1 (en) Method of making graphite forming dies
JP3424263B2 (en) Coated hard alloy members
JP3260986B2 (en) Member with diamond composite film
KR102532558B1 (en) Coating method of solid diamond material
EP0706850B1 (en) Brazable cobalt-containing CBN compacts
JP3358696B2 (en) High strength coating
JP3130734B2 (en) Heat resistant coating
JPH0335041B2 (en)
JP3333080B2 (en) High-strength coated members with consistent interfaces

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees