JPH07145256A - Transparent metallized film - Google Patents

Transparent metallized film

Info

Publication number
JPH07145256A
JPH07145256A JP29304393A JP29304393A JPH07145256A JP H07145256 A JPH07145256 A JP H07145256A JP 29304393 A JP29304393 A JP 29304393A JP 29304393 A JP29304393 A JP 29304393A JP H07145256 A JPH07145256 A JP H07145256A
Authority
JP
Japan
Prior art keywords
film
sio
layer
vapor deposition
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29304393A
Other languages
Japanese (ja)
Inventor
Mamoru Sekiguchi
守 関口
Nobuhiko Imai
伸彦 今井
Toshiya Ishii
敏也 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP29304393A priority Critical patent/JPH07145256A/en
Publication of JPH07145256A publication Critical patent/JPH07145256A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a transparent metallized film having colorless transparency, excellent water vapor barrier properties.waterproofness, fragrance retention, oxidation prevention, heat resistance, strength and flexibility. CONSTITUTION:A mixing layer 3 consisting of SiC and SiOY (Y<=2) and an SiOx film composed of an SiO2 layer 4 (1.7<Z<=2) is formed from interface of a substrate film 2 on the substrate film. Since the mixing layer 3 forms a dense and uniform thin film on the substrate interface, the mixing film shows improved adhesiveness and excellent flexibility and exhibits function as a barrier layer to a lower molecule such as oxygen or steam diffused and permeated from the inside and the outside of the substrate film 2. Further the SiO2 layer 4 is laminated to the outer layer of the mixing film, the resultant film has no light absorption in a visible light region, or less light absorption and the color of the film become colorless and transparent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品、医薬品、精密電
子製品等の包装分野に用いられる包装用フィルム積層体
に係り、とくに透明性、防湿、保香、酸化防止等のガス
バリア性、耐熱性、強度、可燒性を有する透明蒸着フィ
ルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film laminate for packaging used in the field of packaging foods, pharmaceuticals, precision electronic products, etc., and particularly has gas barrier properties such as transparency, moisture resistance, aroma retention, and oxidation resistance, and heat resistance. The present invention relates to a transparent vapor deposition film having properties, strength, and flexibility.

【0002】[0002]

【従来の技術】近年、食品、医薬品、精密電子部品等の
包装に用いられる包装材料は、内容物の変質、とくに食
品においては蛋白質や油脂等の酸化、変質を抑制し、さ
らに味、鮮度を保持するために、また無菌状態での取扱
いが必要とされる医薬品においては有効成分の変質を抑
制し、効能を維持するために、さらに精密電子部品にお
いては金属部分の腐食、絶縁不良等の発生を防止するた
めに、包装材料を透過する酸素、水蒸気、その他内容物
を変質させる気体による影響を防止する必要があり、こ
れら気体(ガス)を遮断するガスバリア性を備えること
が求められている。
2. Description of the Related Art In recent years, packaging materials used for packaging foods, pharmaceuticals, precision electronic parts, etc. suppress deterioration of contents, particularly oxidation and deterioration of proteins and fats and oils in foods, and further improve taste and freshness. In order to maintain the product, to suppress the deterioration of the active ingredient in pharmaceutical products that require aseptic handling, and to maintain its efficacy, in precision electronic parts, corrosion of metal parts, poor insulation, etc. may occur. In order to prevent the above, it is necessary to prevent the influence of oxygen, water vapor, and other gases that change the contents passing through the packaging material, and it is required to have a gas barrier property of blocking these gases.

【0003】そのため、従来から塩化ビニリデン樹脂を
コートしたポリプロピレン(KOP)やポリエチレンテ
レフタレート(KPET)或いはエチレンビニルアルコ
ール共重合体(EVOH)など一般にガスバリア性が比
較的高いと言われる高分子樹脂組成物をガスバリア材と
して包装材料に用いた包装フィルムやAlなどの金属か
らなる金属箔、適当な高分子樹脂組成物(単独では、高
いガスバリア性を有していない樹脂であっても)にAl
などの金属又は金属化合物を蒸着した金属蒸着フィルム
を包装材料に用いた包装フィルムが一般的に使用されて
きた。
Therefore, a polymer resin composition which is conventionally said to have a relatively high gas barrier property, such as polypropylene (KOP) coated with vinylidene chloride resin, polyethylene terephthalate (KPET) or ethylene vinyl alcohol copolymer (EVOH), has been conventionally used. The packaging film used as a gas barrier material, a metal foil made of a metal such as Al, a suitable polymer resin composition (alone, even a resin that does not have a high gas barrier property)
A packaging film using a metal deposition film obtained by depositing a metal or a metal compound as a packaging material has been generally used.

【0004】ところが、上述の高分子樹脂組成物のみを
用いてなる包装フィルムは、Alなどの金属又は金属化
合物を用いた箔や蒸着膜を形成した金属蒸着フィルムに
比べるとガスバリア性に劣るだけでなく、温度・湿度の
影響を受けやすく、その変化によってはさらにガスバリ
ア性が劣化することがある。さらに塩素を多量に含む高
分子樹脂組成物は焼却時に毒性のガスの発生と、焼却時
の高い発熱量による焼却炉の劣化を早めるなどの問題が
ある。
However, the packaging film using only the above-mentioned polymer resin composition is inferior in gas barrier property as compared with a foil using a metal or a metal compound such as Al or a metal vapor deposition film formed with a vapor deposition film. However, it is susceptible to temperature and humidity, and the gas barrier property may be further deteriorated depending on the change. Further, a polymer resin composition containing a large amount of chlorine has problems such as generation of toxic gas during incineration and accelerated deterioration of an incinerator due to high calorific value during incineration.

【0005】一方、Alなどの金属又は金属化合物を用
いた箔や蒸着膜を形成した金属蒸着フィルムは、温度・
湿度などの影響を受けることは少なく、ガスバリア性に
優れるが、包装体の内容物を透視して確認することがで
きない、使用後の廃棄の際はアルミニウム箔やアルミニ
ウム蒸着フィルムがラミネートされた積層材からなる包
装材料は、分別回収して再利用することは困難であり、
不燃物として処理しなければならないとする欠点を有し
ていた。
On the other hand, a metal vapor-deposited film on which a foil or vapor-deposited film using a metal such as Al or a metal compound is formed is
It is not affected by humidity, etc., and has excellent gas barrier properties, but it is not possible to see through the contents of the package, and when disposing after use, a laminated material laminated with aluminum foil or aluminum vapor deposition film. It is difficult to separate and collect the packaging material consisting of
It had the drawback of having to be treated as an incombustible.

【0006】そこで、これらの欠点を克服した包装用材
料として、例えば米国特許第3442686、特公昭6
3−28017号公報等に記載されているような酸化マ
グネシウム、酸化珪素、酸化アルミニウム、酸化スズ等
の金属酸化物を高分子フィルム上に、真空蒸着法やスパ
ッタリング法等の形成手段により蒸着膜を形成したフィ
ルムが開発されている。このフィルムは透明性及び酸
素、水蒸気等のガス遮断性を有していることが知られ、
金属蒸着フィルムでは得ることのできない透明性、ガス
バリア性の両者を有する包装用材料として好適とされて
いる。とくに酸化珪素を真空蒸着したものは、実用化さ
れている。
Therefore, as a packaging material that overcomes these drawbacks, for example, US Pat.
A metal oxide such as magnesium oxide, silicon oxide, aluminum oxide or tin oxide as described in JP-A-3-28017 is formed on a polymer film by a vapor deposition method or a sputtering method to form a vapor deposition film. Formed films are being developed. This film is known to have transparency and gas barrier properties such as oxygen and water vapor,
It is suitable as a packaging material having both transparency and gas barrier properties that cannot be obtained by a metal vapor deposition film. In particular, those obtained by vacuum deposition of silicon oxide have been put to practical use.

【0007】[0007]

【発明が解決しようとする課題】ところが、図2に示す
酸化度Xに対するSiOX 系蒸着フィルム(0<X≦
2)の酸素透過度(cc/m2 /day)と光線透過率
%(λ=350nm)を表すグラフから、酸化度が低く
なると酸素透過度は低下しガスバリア性は向上するが、
光線透過率は低下し透明性は悪くなる。すなわち酸素透
過度及び透明性は酸化度Xに依存しており、上述の一酸
化珪素(SiO)などの酸化度の低い珪素酸化物薄膜
は、その薄膜自体に可視波長領域に吸収があるため、薄
黄色を呈し、これを蒸着した蒸着フィルムを包装材とし
て用いる場合に見栄えが悪くなり、また包装材として印
刷加工時の印刷の色再現性が悪いなど問題を生じてい
る。また、この蒸着フィルムは、珪素酸化物薄膜が可撓
性に欠けており、揉みや折り曲げ等物理的な衝撃に弱
く、また基材との密着性が悪いため、取り扱いに注意を
要し、とくに印刷、ラミネート、スリッター、製袋など
包装材料の後加工の際に、クラックを発生しガスバリア
性が著しく低下する問題があり、フィルムの取扱いに注
意を要し、汎用性を低下させる問題を有している。薄膜
材料自体も高価であり、ガスバリア性の低下を抑えるた
めに蒸着薄膜層を厚くするとコストが上昇するなどコス
トパフォーマンスが少ないという問題を有していた。
However, as shown in FIG. 2, a SiO x vapor deposition film (0 <X ≦
From the graph showing the oxygen permeability (cc / m 2 / day) and the light transmittance% (λ = 350 nm) of 2), the oxygen permeability decreases and the gas barrier property improves when the oxidation degree decreases.
The light transmittance decreases and the transparency deteriorates. That is, the oxygen permeability and the transparency depend on the degree of oxidation X, and the silicon oxide thin film having a low degree of oxidation such as silicon monoxide (SiO) has absorption in the visible wavelength region because the thin film itself has absorption. When the vapor-deposited film, which has a light yellow color and is vapor-deposited, is used as a packaging material, it has a bad appearance, and the color reproducibility of printing during printing as the packaging material is poor. In addition, since this vapor-deposited film lacks flexibility in the silicon oxide thin film, is vulnerable to physical impact such as rubbing and bending, and has poor adhesion with the substrate, it requires careful handling. When post-processing packaging materials such as printing, laminating, slitting, and bag making, there is a problem that cracks occur and the gas barrier properties are significantly reduced, caution is required when handling the film, and there is a problem that the versatility is reduced. ing. The thin film material itself is also expensive, and there is a problem in that cost performance is low, such as an increase in cost if the vapor-deposited thin film layer is thickened in order to suppress deterioration of gas barrier properties.

【0008】そこで、本発明は、無色透明性を有すると
とに防湿・防水、保香、酸化防止等のガスバリア性に優
れ、耐熱性、強度、可燒性を有し、かつ製造、取扱いが
容易な透明蒸着フィルムを提供することを目的とする。
Therefore, the present invention is colorless and transparent, and has excellent gas barrier properties such as moisture proof / water proof, aroma retention, and antioxidant, and has heat resistance, strength, and flexibility, and is easy to manufacture and handle. It is intended to provide an easy transparent vapor deposition film.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
基材フィルム上に、SiOX 膜(0<X≦2)が形成さ
れてなる透明蒸着フィルムにおいて、SiOX 膜が基材
フィルム界面からSiCとSiOY (Y≦2)から構成
されるミキシング層と、SiOZ 層(1.7<Z≦2)
とが順次積層されてなることを特徴とする透明蒸着フィ
ルムである。
The invention according to claim 1 is
In a transparent vapor deposition film in which a SiO x film (0 <X ≦ 2) is formed on a base film, the SiO x film is a mixing layer composed of SiC and SiO y (Y ≦ 2) from the base film interface. And SiO Z layer (1.7 <Z ≦ 2)
The transparent vapor deposition film is characterized in that and are sequentially laminated.

【0010】請求項2に記載の発明は、請求項1記載の
発明に基づき、ミキシング層の層厚が2〜20nmであ
ることを特徴とする透明蒸着フィルムである。
According to a second aspect of the invention, there is provided a transparent vapor deposition film according to the first aspect of the invention, wherein the mixing layer has a layer thickness of 2 to 20 nm.

【0011】請求項3に記載の発明は、請求項1記載の
発明に基づき、ミキシング層は、SiOY (Y≦2)の
少なくとも一部がSi−C結合を有することを特徴とす
る透明蒸着フィルムである。
A third aspect of the present invention is based on the first aspect of the invention, wherein the mixing layer has a transparent vapor deposition characterized in that at least a part of SiO Y (Y ≦ 2) has a Si—C bond. It is a film.

【0012】請求項4に記載の発明は、請求項1記載の
発明に基づき、ミキシング層を構成するSiCの含有率
が基材フィルム界面から連続的に変化してなることを特
徴とする透明蒸着フィルムである。
According to a fourth aspect of the present invention, based on the first aspect of the invention, the transparent vapor deposition is characterized in that the content of SiC constituting the mixing layer is continuously changed from the base film interface. It is a film.

【0013】[0013]

【作用】本発明によれば、基材フィルム上に、SiOX
膜(0<X≦2)が形成されてなる透明蒸着フィルム
を、SiOX 膜が基材フィルム界面からSiCとSiO
Y(Y≦2)から構成されるミキシング層と、SiOZ
層(1.7<Z≦2)から構成することにより、基材界
面にSiCとYの値が2以下のSiOY とからなるミキ
シング層は界面で緻密でかつ均一な薄膜を形成するた
め、密着性の向上と可燒性を示し、かつ基材フィルム内
部及び外側から拡散浸透してくる酸素、水蒸気等の低分
子に対してバリアー層としての機能を示す。さらにその
外層にZの値が1.7〜2のSiOZ 層を積層するた
め、可視波長域での光吸収が無く、或いは少なくなり、
フィルムの色が無色透明となる。
According to the present invention, SiO x is formed on the base film.
A transparent vapor-deposited film formed by forming a film (0 <X ≦ 2) is formed by using a SiO x film from the base film interface to SiC and SiO.
A mixing layer composed of Y (Y ≦ 2) and SiO Z
Since it is composed of layers (1.7 <Z ≦ 2), the mixing layer composed of SiC and SiO Y having a Y value of 2 or less forms a dense and uniform thin film at the interface. It exhibits improved adhesion and flexibility, and also functions as a barrier layer against low molecules such as oxygen and water vapor that diffuse and permeate from inside and outside the base film. Furthermore since the outer layer thereof the value of Z is laminated SiO Z layer of 1.7 to 2, no light absorption in the visible wavelength range, or less,
The color of the film becomes colorless and transparent.

【0014】[0014]

【実施例】本発明の一実施例を詳細に説明する。図1は
本発明の透明蒸着フィルムの構成を説明する概略図であ
る。
EXAMPLE An example of the present invention will be described in detail. FIG. 1 is a schematic diagram illustrating the structure of the transparent vapor deposition film of the present invention.

【0015】図1において、1は本発明の透明蒸着フィ
ルムであり、基材2、SiCとSiOY (Y≦2)から
構成されるミキシング層3、SiOZ 層(1.7<Z≦
2)4が順次積層されている。
In FIG. 1, reference numeral 1 is a transparent vapor deposition film of the present invention, which comprises a substrate 2, a mixing layer 3 composed of SiC and SiO Y (Y ≦ 2), and a SiO Z layer (1.7 <Z ≦).
2) 4 are sequentially stacked.

【0016】基材2は、シート状またはフィルム状のも
のであって、ポリオレフィン(ポリエチレン、ポリプロ
ピレン、ポリブテン等)、ポリエステル(ポリエチレン
テレフタレート、ポリブチレンテレフタレート、ポリエ
チレン−2,6−ナフタレート等)、ポリアミド(ネイ
ロン−6、ナイロン−66等)、ポリカーボネート、ポ
リ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、エチ
レン−ビニルアルコール共重合体など、或いはモノマー
の共重合体または異なるモノマーと組み合わせた共重合
体など通常包装材料として用いられるものが使用でき、
用途に応じて上記材料から適宜選択される。また、基材
2は強度、寸法安定性、耐熱性の点から縦横方向に延伸
したものが好ましい。さらに、基材2の厚さは用途に応
じて決定されるが、強度の点から3〜400μmの範囲
で、とくに6〜200μmのものが望ましい。
The substrate 2 is in the form of a sheet or a film, and is made of polyolefin (polyethylene, polypropylene, polybutene, etc.), polyester (polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, etc.), polyamide ( Nailon-6, nylon-66, etc.), polycarbonate, polyvinyl chloride, polyvinylidene chloride, polyimide, ethylene-vinyl alcohol copolymer, etc., or copolymers of monomers or copolymers in combination with different monomers. Can be used as
It is appropriately selected from the above materials according to the application. The base material 2 is preferably stretched in the longitudinal and transverse directions from the viewpoint of strength, dimensional stability and heat resistance. Further, the thickness of the base material 2 is determined depending on the application, but from the viewpoint of strength, the thickness is preferably in the range of 3 to 400 μm, particularly 6 to 200 μm.

【0017】この基材2に用いられる高分子樹脂材料
に、例えば帯電防止剤、紫外線吸収剤、可塑剤、滑剤、
着色剤など公知の添加剤、安定剤を加えることができ、
必要に応じて適宜添加される。
The polymer resin material used for the base material 2 includes, for example, an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant,
Known additives such as colorants and stabilizers can be added,
It is added as needed.

【0018】さらに基材2の表面を前処理としてコロナ
処理・プラズマ処理(=放電処理)、火炎処理、薬品処
理、アンカーコート処理等の表面改質を行い、被膜の密
着性を向上させることも可能である。
Further, the surface of the substrate 2 may be subjected to surface modification such as corona treatment / plasma treatment (= discharge treatment), flame treatment, chemical treatment, anchor coat treatment, etc. as a pretreatment to improve the adhesion of the coating film. It is possible.

【0019】次に基材2上にSiCとSiOY (Y≦
2)から構成されるミキシング層3を形成する方法は、
基材2の表面を予め少なくとも炭素及び酸素を含む放電
用ガスからなるプラズマ放電により処理を行ない、基材
2の表面にC−O基、C=O基などの官能基を導入した
後、この上にSi、SiO或いはSiOとSiO2 の混
合物からなる蒸着材料を真空蒸着法、各種イオンプレー
ティング法、スパッタリング法等の公知手法により成膜
する。このように表面にC−O基、C=O基などの官能
基を導入しSiOX 膜を成膜することで、活性の高いC
−O基、C=O基と、蒸着粒子であるSi、SiOとが
結合し、SiCとSiOY から構成されるミキシング層
3が形成される。
Next, SiC and SiO Y (Y ≦
The method for forming the mixing layer 3 composed of 2) is
The surface of the base material 2 is previously treated by plasma discharge consisting of a discharge gas containing at least carbon and oxygen to introduce functional groups such as C—O groups and C═O groups onto the surface of the base material 2. An evaporation material made of Si, SiO or a mixture of SiO and SiO 2 is formed on the upper surface by a known method such as a vacuum evaporation method, various ion plating methods and a sputtering method. Thus, by introducing a functional group such as a C—O group or a C═O group on the surface to form a SiO x film, a highly active C
The —O group and the C═O group are bonded to the vapor deposition particles Si and SiO to form the mixing layer 3 composed of SiC and SiO Y.

【0020】このミキシング層3の厚さは、2〜20n
mであり、好ましくは2〜12nmである。図3に示す
のミキシング層厚に対する酸素透過度(cc/m2 /d
ay)と光線透過率%(λ=350nm)を表すグラフ
から、一定の層厚を有するミキシング層により酸素透過
度が低く抑えられ、かつ高い光線透過率を有することが
言える。ところが、2nmより薄い場合は、酸素透過度
が増加しガスバリア性、密着性向上という機能性を発揮
することができず、20nmより厚い場合は光線透過率
が低下し蒸着膜に着色を生じる。このミキシング層3は
極めて薄い膜厚状に存在していればよく、基材2(例え
ば、ポリエチレンテレフタレートフィルム)の組織の表
面において、その一部にSi−C結合状態を示すこと
で、基材2とミキシング層3とが渾然一体となり、より
強い密着性を有するものである。
The thickness of the mixing layer 3 is 2 to 20n.
m, preferably 2 to 12 nm. Oxygen permeability (cc / m 2 / d) with respect to the mixing layer thickness shown in FIG.
From the graph showing ay) and light transmittance% (λ = 350 nm), it can be said that the oxygen permeability is suppressed low and the light transmittance is high by the mixing layer having a constant layer thickness. However, when the thickness is less than 2 nm, the oxygen permeability increases and the gas barrier property and the adhesiveness cannot be improved, and when the thickness is more than 20 nm, the light transmittance decreases and the deposited film is colored. It suffices that the mixing layer 3 be present in an extremely thin film thickness, and a part of the surface of the tissue of the base material 2 (for example, a polyethylene terephthalate film) shows a Si—C bond state, so that the base material 2 and the mixing layer 3 are naturally integrated, and have stronger adhesion.

【0021】ミキシング層3を構成するSiOY のYの
値は、蒸着膜をアルゴンイオンビームでエッチングし光
電子分光分析法により測定したときの平均O/Si比は
0<Y≦2の範囲にあり、とくに好ましくは1.7≦Y
≦2の範囲である。
The Y value of SiO Y constituting the mixing layer 3 is in the range of 0 <Y ≦ 2 when the vapor deposition film is etched by an argon ion beam and measured by photoelectron spectroscopy. , Particularly preferably 1.7 ≦ Y
The range is ≦ 2.

【0022】本発明でプラズマ処理に用いられる放電用
ガスは、少なくとも炭素及び酸素を有する化合物を含む
もので、例えば純酸素、二酸化炭素、一酸化炭素、窒
素、CmHn(m,n≦10)で代表される炭化水素、
モノシラン、ジシラン、メチルシラン、メチルジシラ
ン、ヘキサメチルジシロキサン等のアルキルシラン、ア
ルキルジシラン等を単独又は混合して用いることができ
る。さらにアルゴン、ヘリウム、キセノン、空気に不活
性ガスであるアルゴン、キセノンを5〜95体積%に混
合したものなどが利用できる。
The discharge gas used in the plasma treatment in the present invention contains a compound having at least carbon and oxygen, such as pure oxygen, carbon dioxide, carbon monoxide, nitrogen, CmHn (m, n ≦ 10). Representative hydrocarbons,
Alkylsilanes such as monosilane, disilane, methylsilane, methyldisilane and hexamethyldisiloxane, alkyldisilanes and the like can be used alone or in combination. Further, argon, helium, xenon, a mixture of argon and xenon, which are inert gases in air, in an amount of 5 to 95% by volume can be used.

【0023】またプラズマの発生方法は、上述の放電用
ガスを密閉系の容器に導入し、公知の内部電極型、外部
電極型、コイル型等の容量結合、誘導結合などの各種方
式により直流電力、交流電力、高周波(2450MH
z)、マイクロ波(13.56Hz)により電力を印加
しプラズマを発生させることができ、好ましくは放電安
定性、処理の効果から高周波放電である。
The plasma can be generated by introducing the above-mentioned discharge gas into a hermetically-sealed container and using various known methods such as capacitive coupling such as internal electrode type, external electrode type, coil type, inductive coupling, etc. , AC power, high frequency (2450MH
z), electric power can be applied by microwave (13.56 Hz) to generate plasma, and high frequency discharge is preferable from the viewpoint of discharge stability and treatment effect.

【0024】このプラズマは種類、発生条件により最適
条件は異なってくるが、例えば50〜1000Wの高周
波電力を1×10-4〜数Torrの圧力を有する密閉系
の容器に導入しプラズマ空間に基材の被蒸着面を0.0
1〜3秒程度曝すことで容易に処理することができる。
The optimum conditions of this plasma differ depending on the type and generation conditions, but for example, high frequency power of 50 to 1000 W is introduced into a closed system container having a pressure of 1 × 10 -4 to several Torr to create a plasma space. The deposition surface of the material is 0.0
It can be easily processed by exposing it for about 1 to 3 seconds.

【0025】以上のように基材2の表面処理した後、つ
いでSi、SiO或いはSiO、SiO2 の混合物を蒸
着材料としてSiO2 を成膜することで、SiCとSi
Y(Y≦2)からなる2〜20nmのミキシング層3
とSiOZ 層4(1.8≦Z≦2)を順次積層してなる
蒸着膜を得ることができる。
[0025] After the surface treatment of the substrate 2 as described above, followed by deposition Si, SiO or SiO, and SiO 2 mixture of SiO 2 as an evaporation material, SiC and Si
2 to 20 nm mixing layer 3 made of O Y (Y ≦ 2)
And a SiO Z layer 4 (1.8 ≦ Z ≦ 2) are sequentially laminated to obtain a vapor deposition film.

【0026】外層に位置するSiOZ 層4(1.7<Z
≦2)は、ガスバリア性に大きく寄与してはいないが、
ミキシング層を保護する目的で、層厚で1〜50nm程
度設けられる。この場合層厚が50nmより厚くなると
蒸着膜にクラックが発生しやすくなる。またZの値が
1.7より小さくなると、蒸着膜が低級酸化物になり酸
素欠損による光吸収が生じるため、蒸着膜が薄黄色に着
色するため好ましくない。ただし、SiOZ 層4(1.
7<Z≦2)においても、1.7に近い値の場合におい
ては、いくらか色を呈することもある。
The SiO Z layer 4 (1.7 <Z) located on the outer layer
≦ 2) does not significantly contribute to the gas barrier property,
In order to protect the mixing layer, the layer thickness is about 1 to 50 nm. In this case, if the layer thickness is more than 50 nm, cracks are likely to occur in the vapor deposition film. Further, when the value of Z is smaller than 1.7, the vapor-deposited film becomes a lower oxide and light absorption due to oxygen deficiency occurs, so that the vapor-deposited film is colored light yellow, which is not preferable. However, the SiO Z layer 4 (1.
Even for 7 <Z ≦ 2), when the value is close to 1.7, some color may be exhibited.

【0027】さらに本発明の透明蒸着フィルムは上記と
同様にプラズマCVD法によっても成膜することもで
き、同様の効果を示す。
Further, the transparent vapor-deposited film of the present invention can be formed by the plasma CVD method similarly to the above, and the same effect is exhibited.

【0028】本発明の透明蒸着フィルムを具体的な実施
例を挙げて説明する。
The transparent vapor deposition film of the present invention will be described with reference to specific examples.

【0029】〔実施例1〕厚さ12μmのポリエチレン
テレフタレートフィルム(以下、PETフィルムとす
る)を基材2とし、その表面に酸素分圧が3.7×10
-4Torr,400Wの高周波電力を供給して得た酸素
プラズマに3秒関曝して基材2表面をプラズマ処理し
た。さらにこのプラズマ処理後の基材2表面にSiOを
蒸着材料にSiOX 層を52nmとなるように成膜し
た。
Example 1 A polyethylene terephthalate film (hereinafter referred to as a PET film) having a thickness of 12 μm was used as a base material 2, and an oxygen partial pressure on the surface thereof was 3.7 × 10.
The surface of the substrate 2 was plasma-treated by exposing it to oxygen plasma obtained by supplying a high frequency power of -4 Torr and 400 W for 3 seconds. Further, on the surface of the base material 2 after this plasma treatment, a SiO x layer having a thickness of 52 nm was formed using SiO as a vapor deposition material.

【0030】得られた透明蒸着フィルムの蒸着膜を膜厚
方向の組成から光電子分光分析法により、Si-2p 、C
-1s 、O-1s を測定したところ、蒸着膜表面から46n
mまでの平均O/Si比が1.9であり、さらにアルゴ
ンイオンビームエッチングを行ない、基材2であるPE
Tフィルムの界面付近を分析したところ、SiCとSi
Y (Y≦2)により構成されるミキシング層が6nm
形成されていることが判明した。このミキシング層は、
SiOY (Y≦2)の少なくとも一部がSi−C結合を
有するものである。
The vapor-deposited film of the obtained transparent vapor-deposited film was analyzed from the composition in the film thickness direction by photoelectron spectroscopy to analyze Si-2p, C
-1s and O-1s were measured and found to be 46n from the surface of the deposited film.
PE as the base material 2 having an average O / Si ratio up to m of 1.9 and further subjected to argon ion beam etching.
Analysis of the vicinity of the T film interface revealed that SiC and Si
Mixing layer composed of O Y (Y ≦ 2) is 6 nm
It was found to have been formed. This mixing layer
At least a part of SiO Y (Y ≦ 2) has a Si—C bond.

【0031】この透明蒸着フィルムの酸素透過度の測定
を酸素透過度測定装置(モダンコントロール社製 Mo
conOxtran)を用いて27℃−75%RHの雰
囲気下で行ない、また透明蒸着フィルムの190〜80
0nmの波長領域における光線透過率についても測定
し、蒸着膜の着色度の指標として波長350nmの透過
率を用いて測定した。その結果及び評価を表1に示す。
The oxygen transmission rate of this transparent vapor-deposited film was measured by an oxygen transmission rate measuring device (Mo by Modern Control Co., Ltd.).
conOxtran) under an atmosphere of 27 ° C.-75% RH, and a transparent vapor deposition film of 190-80.
The light transmittance in the wavelength region of 0 nm was also measured, and the transmittance at a wavelength of 350 nm was used as an index of the coloring degree of the deposited film. The results and evaluation are shown in Table 1.

【0032】結果から明らかなようにこの蒸着フィルム
は酸素透過度が1.5cc/m/day/atmと非常
にガスバリア性が高く、かつ着色の無い透明性の高い無
色透明の蒸着フィルムである。
As is clear from the results, this vapor-deposited film is a colorless and transparent vapor-deposited film having an oxygen permeability of 1.5 cc / m / day / atm, a very high gas barrier property, and high transparency without coloring.

【0033】〔比較例1〕実施例1と同じ条件のPET
フィルムを基材として用いて、酸素プラズマ処理を行わ
ない以外は同様にSiOを蒸着材料として成膜し、同様
に測定を行った。その結果及び評価を表1に示す。実施
例1と同様にSiとOの比を分析したところ平均O/S
i比は1.7であり、PETフィルムの界面付近を分析
したところ、SiCとSiOY (Y≦2)により構成さ
れるミキシング層の存在は認められず、蒸着フィルムの
色は薄黄色に着色を有していた。
Comparative Example 1 PET under the same conditions as in Example 1
Using the film as a substrate, a film was similarly formed using SiO as a vapor deposition material except that the oxygen plasma treatment was not performed, and the same measurement was performed. The results and evaluation are shown in Table 1. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / S
The i ratio was 1.7, and when the vicinity of the interface of the PET film was analyzed, the presence of a mixing layer composed of SiC and SiO Y (Y ≦ 2) was not recognized, and the color of the vapor deposition film was colored light yellow. Had.

【0034】〔比較例2〕実施例1と同じ条件のPET
フィルムを基材として用いて、SiOの蒸着時に酸素ガ
スをチャンバー内に導入し、高周波電力を印加し酸素プ
ラズマを形成しながら成膜し、同様に測定を行った。そ
の結果及び評価を表1に示す。実施例1と同様にSiと
Oの比を分析したところ、外層から51nmまでの平均
O/Si比は1.9であり、PETフィルムの界面付近
を分析したところ、SiCとSiOY (Y≦2)により
構成されるミキシング層が0.9nmの厚さで形成され
ており、蒸着膜は無色透明であったが、酸素透過度は3
0.5cc/m/day/atmと大きな値を示した。
Comparative Example 2 PET under the same conditions as in Example 1
Using the film as a substrate, oxygen gas was introduced into the chamber at the time of vapor deposition of SiO, high frequency power was applied to form a film while forming oxygen plasma, and the same measurement was performed. The results and evaluation are shown in Table 1. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / Si ratio from the outer layer to 51 nm was 1.9. When the vicinity of the interface of the PET film was analyzed, SiC and SiO Y (Y ≦ The mixing layer composed of 2) was formed with a thickness of 0.9 nm, and the vapor deposition film was colorless and transparent, but had an oxygen permeability of 3
It showed a large value of 0.5 cc / m / day / atm.

【0035】〔比較例3〕実施例1と同じ条件のPET
フィルムを基材として用いて、酸素ガスを導入しながら
SiOの蒸着させる、いわゆる反応性蒸着法により、5
1nmの膜厚になるようにSiOX 膜を形成し、同様に
測定を行った。その結果及び評価を表1に示す。実施例
1と同様にSiとOの比を分析したところ平均O/Si
比は1.9であり、PETフィルムの界面付近を分析し
たところ、SiCとSiOY (Y≦2)により構成され
るミキシング層の存在は認められず、蒸着フィルムの色
は薄黄色に着色を有していた。
Comparative Example 3 PET under the same conditions as in Example 1
By using a film as a base material to deposit SiO while introducing oxygen gas, a so-called reactive vapor deposition method
A SiO x film was formed to have a film thickness of 1 nm, and the same measurement was performed. The results and evaluation are shown in Table 1. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / Si
The ratio was 1.9, and when the vicinity of the interface of the PET film was analyzed, the presence of a mixing layer composed of SiC and SiO Y (Y ≦ 2) was not recognized, and the color of the vapor-deposited film was light yellow. Had.

【0036】〔比較例4〕実施例1と同じ条件のPET
フィルムを基材として用いて、同様にミキシング層を形
成した後、SiとSiO2 の混合物を蒸着材料に用いて
成膜し、同様に測定を行った。その結果及び評価を表1
に示す。実施例1と同様にSiとOの比を分析したとこ
ろ、外層から45nmまでの平均O/Si比は1.7で
あり、PETフィルムの界面付近を分析したところ、S
iCとSiOY により構成されるミキシング層が6nm
の厚さで形成されていたが、蒸着膜は薄黄色を帯びてい
た。酸素透過度は1.6cc/m/day/atmとガ
スバリア性は大きいが、光線透過率は66%であった。
Comparative Example 4 PET under the same conditions as in Example 1
After using the film as a base material to similarly form a mixing layer, a mixture of Si and SiO 2 was used as a vapor deposition material to form a film, and the same measurement was performed. The results and evaluation are shown in Table 1.
Shown in. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / Si ratio from the outer layer to 45 nm was 1.7, and when the vicinity of the interface of the PET film was analyzed, S
Mixing layer composed of iC and SiO Y is 6 nm
However, the vapor-deposited film had a pale yellow color. The oxygen permeability was 1.6 cc / m / day / atm, which was large in gas barrier property, but the light transmittance was 66%.

【0037】〔実施例2〕プラズマ処理に用いられる放
電用ガスを二酸化炭素と酸素との50/50Vol%と
し、処理時間を1秒とした以外は実施例1と同様に蒸着
膜を形成し、同様に測定を行った。その結果及び評価を
表1に示す。実施例1と同様にSiとOの比を分析した
ところ、外層から51nmまでの平均O/Si比は1.
9であり、PETフィルムの界面付近を分析したとこ
ろ、SiCとSiOY により構成されるミキシング層が
2nmの厚さで形成されていたおり、蒸着膜は酸素透過
度が2.0cc/m/day/atmと非常にガスバリ
ア性が高く、かつ着色の無い透明性の高い無色透明の蒸
着フィルムである。
Example 2 A vapor deposition film was formed in the same manner as in Example 1 except that the discharge gas used in the plasma treatment was 50/50 Vol% of carbon dioxide and oxygen and the treatment time was 1 second. The same measurement was performed. The results and evaluation are shown in Table 1. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / Si ratio from the outer layer to 51 nm was 1.
No. 9, and the vicinity of the interface of the PET film was analyzed, and it was found that a mixing layer composed of SiC and SiO Y was formed with a thickness of 2 nm, and the vapor deposition film had an oxygen permeability of 2.0 cc / m / day. It is a colorless and transparent vapor-deposited film having a very high gas barrier property of / atm and high transparency without coloring.

【0038】〔実施例3〕実施例1のプラズマ処理に用
いられる放電用ガスをメタンと酸素との50/50Vo
l%とし、処理時間を0.01秒とし、ついで比較例2
と同様にSiOの蒸着時に酸素ガスをチャンバー内に導
入し、高周波電力を印加し酸素プラズマを形成しながら
成膜し、同様に測定を行った。その結果及び評価を表1
に示す。実施例1と同様にSiとOの比を分析したとこ
ろ、外層から32nmまでの平均O/Si比は1.9で
あり、PETフィルムの界面付近を分析したところ、S
iCとSiOY により構成されるミキシング層が20n
mの厚さで形成されていたが、蒸着膜は酸素透過度が
1.3cc/m/day/atmと非常にガスバリア性
が高く、かつ着色の無い透明性の高い無色透明の蒸着フ
ィルムである。
[Embodiment 3] The discharge gas used in the plasma treatment of Embodiment 1 is 50/50 Vo of methane and oxygen.
1%, the treatment time was 0.01 seconds, and then Comparative Example 2
Similarly to the above, oxygen gas was introduced into the chamber at the time of vapor deposition of SiO, high frequency power was applied to form a film while forming oxygen plasma, and the same measurement was performed. The results and evaluation are shown in Table 1.
Shown in. When the ratio of Si and O was analyzed in the same manner as in Example 1, the average O / Si ratio from the outer layer to 32 nm was 1.9, and when the vicinity of the interface of the PET film was analyzed, S
20n mixing layer composed of iC and SiO Y
Although it was formed with a thickness of m, the vapor-deposited film is a colorless and transparent vapor-deposited film having a very high gas barrier property with an oxygen permeability of 1.3 cc / m / day / atm and high transparency without coloring. .

【0039】[0039]

【表1】 [Table 1]

【0040】[0040]

【発明の効果】以上述べたように本発明の透明蒸着フィ
ルムは、基材フィルム上に、SiOX膜(0<X≦2)
が形成されてなる透明蒸着フィルムを、SiOX 膜が基
材フィルム界面からSiCとSiOY (Y≦2)から構
成されるミキシング層と、SiOZ 層(1.7<Z≦
2)から構成することにより、防湿、防香、酸化防止等
のガスバリア性に優れ、また耐熱性、強度、可燒性が高
く、さらに無色透明性を有するものである。すなわち従
来の薄黄色を示す酸化珪素系の蒸着フィルムに比べ、無
色透明性とガスバリア性の両方を実現することができ、
この無色透明性の実現により蒸着フィルムが薄黄色を示
さないので、多色印刷により表面装飾、印刷加工する際
の色再現性が高く、より美しい印刷を施すことが可能な
装飾性に優れた包装用フィルムとして用いることが可能
な透明蒸着フィルムを提供できる。
As described above, the transparent vapor deposition film of the present invention has a SiO x film (0 <X ≦ 2) on the base film.
The transparent vapor-deposited film in which the SiO 2 film is formed is formed by mixing the SiO X film from the base film interface with SiC and SiO Y (Y ≦ 2) and the SiO Z layer (1.7 <Z ≦
By being composed of 2), it is excellent in gas barrier properties such as moisture proof, fragrance proof, and anti-oxidant, has high heat resistance, strength, and flexibility and is colorless and transparent. That is, compared with the conventional vapor-deposited film of silicon oxide showing a light yellow color, it is possible to realize both colorless transparency and gas barrier property.
Due to the realization of this colorless transparency, the vapor-deposited film does not show a light yellow color, so the color reproducibility at the time of surface decoration and printing processing by multicolor printing is high, and packaging with excellent decoration that enables more beautiful printing. A vapor-deposited film that can be used as a film for use can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の透明蒸着フィルムの構成を説明する概
略図である。
FIG. 1 is a schematic diagram illustrating the configuration of a transparent vapor deposition film of the present invention.

【図2】酸化度Xに対するSiOX 系蒸着フィルム(0
<X≦2)の酸素透過度(cc/m2 /day)と光線
透過率%(λ=350nm)を表すグラフである。
FIG. 2 is a SiO x vapor deposition film (0
It is a graph showing oxygen transmittance (cc / m 2 / day) and light transmittance% (λ = 350 nm) of <X ≦ 2.

【図3】ミキシング層厚に対する酸素透過度(cc/m
2 /day)と光線透過率%(λ=350nm)を表す
グラフである。
FIG. 3 Oxygen permeability (cc / m) with respect to mixing layer thickness
2 is a graph showing 2 / day) and light transmittance% (λ = 350 nm).

【符号の説明】[Explanation of symbols]

1 透明蒸着フィルム 2 基材 3 ミキシング層 4 SiOZ 層(1.7<Z≦2)1 Transparent Vapor Deposition Film 2 Base Material 3 Mixing Layer 4 SiO Z Layer (1.7 <Z ≦ 2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基材フィルム上に、SiOX 膜(0<X≦
2)が形成されてなる透明蒸着フィルムにおいて、前記
SiOX 膜が基材フィルム界面からSiCとSiO
Y (Y≦2)により構成するミキシング層と、SiOZ
層(1.7<Z≦2)とが順次積層されてなることを特
徴とする透明蒸着フィルム。
1. A SiO x film (0 <X ≦ is formed on a base film.
In the transparent vapor-deposited film formed by 2), the SiO x film is formed from the interface of the base film with SiC and SiO.
A mixing layer composed of Y (Y ≦ 2) and SiO Z
A transparent vapor-deposited film, which is formed by sequentially laminating layers (1.7 <Z ≦ 2).
【請求項2】前記ミキシング層の層厚が2〜20nmで
あることを特徴とする請求項1記載の透明蒸着フィル
ム。
2. The transparent vapor deposition film according to claim 1, wherein the layer thickness of the mixing layer is 2 to 20 nm.
【請求項3】前記ミキシング層は、SiOY (Y≦2)
の少なくとも一部がSi−C結合を有することを特徴と
する請求項1記載の透明蒸着フィルム。
3. The mixing layer is SiO Y (Y ≦ 2)
At least one part of this has a Si-C bond, The transparent vapor deposition film of Claim 1 characterized by the above-mentioned.
【請求項4】前記ミキシング層を構成するSiCの含有
率が基材フィルム界面から連続的に変化してなることを
特徴とする請求項1記載の透明蒸着フィルム。
4. The transparent vapor deposition film according to claim 1, wherein the content of SiC constituting the mixing layer is continuously changed from the interface of the base film.
JP29304393A 1993-11-24 1993-11-24 Transparent metallized film Pending JPH07145256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29304393A JPH07145256A (en) 1993-11-24 1993-11-24 Transparent metallized film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29304393A JPH07145256A (en) 1993-11-24 1993-11-24 Transparent metallized film

Publications (1)

Publication Number Publication Date
JPH07145256A true JPH07145256A (en) 1995-06-06

Family

ID=17789750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29304393A Pending JPH07145256A (en) 1993-11-24 1993-11-24 Transparent metallized film

Country Status (1)

Country Link
JP (1) JPH07145256A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814114A1 (en) * 1996-06-18 1997-12-29 Becton, Dickinson and Company Barrier coating
JP2004325952A (en) * 2003-04-25 2004-11-18 Central Glass Co Ltd Translucent thin film and manufacturing method therefor
JP2007047252A (en) * 2005-08-08 2007-02-22 Seiko Epson Corp Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device
JP2008195992A (en) * 2007-02-09 2008-08-28 Dainippon Printing Co Ltd Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method, sheet with gas barrier property and its manufacturing method
CN102213778A (en) * 2011-05-27 2011-10-12 宁波永新光学股份有限公司 Method for forming high-hardness and low-friction optical thin film on surface of optical material
JP2014218090A (en) * 2014-08-27 2014-11-20 凸版印刷株式会社 Gas barrier laminate
JP2016087815A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Transparent gas-barrier film
CN114845861A (en) * 2019-12-18 2022-08-02 Agc株式会社 Transparent substrate with multilayer film

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0814114A1 (en) * 1996-06-18 1997-12-29 Becton, Dickinson and Company Barrier coating
JP2004325952A (en) * 2003-04-25 2004-11-18 Central Glass Co Ltd Translucent thin film and manufacturing method therefor
JP4520107B2 (en) * 2003-04-25 2010-08-04 セントラル硝子株式会社 Translucent thin film and method for producing the same
JP2007047252A (en) * 2005-08-08 2007-02-22 Seiko Epson Corp Liquid crystal device, manufacturing method for liquid crystal device, and projection type display device
JP2008195992A (en) * 2007-02-09 2008-08-28 Dainippon Printing Co Ltd Raw material powder of evaporation source material for ion plating, evaporation source material for ion plating and its manufacturing method, sheet with gas barrier property and its manufacturing method
CN102213778A (en) * 2011-05-27 2011-10-12 宁波永新光学股份有限公司 Method for forming high-hardness and low-friction optical thin film on surface of optical material
JP2014218090A (en) * 2014-08-27 2014-11-20 凸版印刷株式会社 Gas barrier laminate
JP2016087815A (en) * 2014-10-30 2016-05-23 凸版印刷株式会社 Transparent gas-barrier film
CN114845861A (en) * 2019-12-18 2022-08-02 Agc株式会社 Transparent substrate with multilayer film
CN114845861B (en) * 2019-12-18 2024-03-15 Agc株式会社 Transparent substrate with multilayer film

Similar Documents

Publication Publication Date Title
US5641559A (en) Gas-tight laminated plastic film containing polymer of organosilicic compound
JP3734724B2 (en) Gas barrier film
JP3678361B2 (en) Gas barrier film
US6045916A (en) Coating film and preparation method thereof
CN100595317C (en) Method for producing film, and, film
JP2002192646A (en) Gas-barrier film
EP0956194A1 (en) Enhanced barrier vacuum metallized films
JP3319164B2 (en) Transparent gas barrier material
JPH11348171A (en) Transparent barrier film and laminated body using same
JPH07145256A (en) Transparent metallized film
JP2005119155A (en) Gas barrier film and its manufacturing method
JP2006096046A (en) Gas barrier film
JP3070404B2 (en) Gas barrier laminate film having a transparent printed layer
JP4090551B2 (en) Transparent barrier film
JP2674827B2 (en) Method for producing transparent gas barrier film
JPH11240102A (en) Transparent barrier film
JP2006272589A (en) Gas-barrier film and its production method
JPH11268171A (en) Transparent barrier film, and laminated material and packaging container using the film
JP2008121122A (en) Transparent barrier film
JPH11322979A (en) Clear barrier film and its production
JPH11322981A (en) Transparent barrier film
JP3809655B2 (en) Gas barrier ceramic coated film and method for producing the same
JPH1170611A (en) Transparent gas barrier film
JP3890146B2 (en) Transparent barrier film, laminated material using the same, and packaging container
JP2001287752A (en) Bag