JPH07143887A - Acetyl coa carboxylase gene of plant - Google Patents

Acetyl coa carboxylase gene of plant

Info

Publication number
JPH07143887A
JPH07143887A JP6146827A JP14682794A JPH07143887A JP H07143887 A JPH07143887 A JP H07143887A JP 6146827 A JP6146827 A JP 6146827A JP 14682794 A JP14682794 A JP 14682794A JP H07143887 A JPH07143887 A JP H07143887A
Authority
JP
Japan
Prior art keywords
leu
ala
glu
val
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6146827A
Other languages
Japanese (ja)
Inventor
Yukihiro Yanai
幸弘 柳井
Hiroaki Shimada
浩章 島田
Norio Ichikawa
範夫 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MITSUI GYOSAI SHOKUBUTSU BIO K
MITSUI GYOSAI SHOKUBUTSU BIO KENKYUSHO KK
Original Assignee
MITSUI GYOSAI SHOKUBUTSU BIO K
MITSUI GYOSAI SHOKUBUTSU BIO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MITSUI GYOSAI SHOKUBUTSU BIO K, MITSUI GYOSAI SHOKUBUTSU BIO KENKYUSHO KK filed Critical MITSUI GYOSAI SHOKUBUTSU BIO K
Priority to JP6146827A priority Critical patent/JPH07143887A/en
Publication of JPH07143887A publication Critical patent/JPH07143887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a new gene fragment useful for the breeding of a desired plant from the viewpoint of the fat synthesis and the protein synthesis of the plant. CONSTITUTION:The gene fragment coding a part of acetyl CoA carboxylase is produced by the polymerase chain reaction using a genom DNA or cDNA of a plant as a template and using one kind of oligomers of formula I to formula IV and one kind of oligomers of formula VII to formula X as primers. Preferably, the genom DNA or cDNA of Arabidopsis thaliana is used as the template.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、植物のアセチルCoA
カルボキシラーゼ遺伝子に関し、詳しくは、植物の貯蔵
物質の生合成を制御している因子の一つであるアセチル
CoAカルボキシラーゼをコードするDNA断片に関す
る。
The present invention relates to plant acetyl-CoA.
More particularly, it relates to a DNA fragment encoding acetyl CoA carboxylase, which is one of the factors controlling the biosynthesis of plant storage substances.

【0002】[0002]

【従来の技術】アセチルCoAカルボキシラーゼ(以
下、「ACCase」という)は、脂肪合成の律速酵素
と考えられており、様々な生物において存在が確認され
ている。この酵素は、アセチルCoAのアセチル基にC
2 を結合させて、マロニルCoAを合成する反応を触
媒する。大腸菌では、ACCaseは、4種の独立した
ポリペプチドの集合体として構成され、ポリペプチドそ
れぞれが、ビオチンカルボキシラーゼ、ビオチンカルボ
キシルキャリアープロテイン、トランスカルボキシラー
ゼのいずれかの異なる活性を有している(S. J. Li &
J. E. Cronan Jr., J. Biol. Chem., 267, 16841-16847
(1992))。
2. Description of the Related Art Acetyl CoA carboxylase (hereinafter referred to as "ACCase") is considered to be a rate-limiting enzyme for fat synthesis, and its existence has been confirmed in various organisms. This enzyme has C at the acetyl group of acetyl CoA.
The O 2 by bonding, catalyzes the synthesis of malonyl CoA. In Escherichia coli, ACCase is constituted as an assembly of four independent polypeptides, and each polypeptide has a different activity of biotin carboxylase, biotin carboxyl carrier protein, or transcarboxylase (SJ Li &
JE Cronan Jr., J. Biol. Chem., 267, 16841-16847
(1992)).

【0003】一方、動物や酵母および植物のACCas
eでは、分子量22万〜24万の大きな1つのポリペプ
チドに、3つの活性ドメインが含まれていることが知ら
れている(コーン・スタンプ生化学,第5版,東京化学
同人(1988),M. A. Egli et al., Plant Physio
l., 101, 499ー506(1993))。
On the other hand, ACCas of animals, yeasts and plants
In e, it is known that one large polypeptide having a molecular weight of 220,000 to 240,000 contains three active domains (Corn Stamp Biochemistry, 5th Edition, Tokyo Kagaku Dojin (1988), MA Egli et al., Plant Physio
l., 101, 499-506 (1993)).

【0004】植物のACCaseは、分子量22万〜2
4万の大きな多機能性のポリペプチドの二量体であり、
色素体に存在するとされている。しかし、その特異な性
状のために、ACCaseの酵素蛋白質を精製し、構造
ならびに生化学的特性の分析を行なうことは、極めて困
難であった。これまでに、その酵素蛋白質の精製が報告
されたのは、アブラナ、ダイズおよびトウモロコシなど
の数例にすぎない(A.R. Slabas & A. Hellyer, Plant
Sci., 39, 177ー182(1985), D. J. Charles &J. H. Cher
ry, Phytochemistry, 25, 1067ー1071(1986), M. A. Egl
i et al., Plant Physiol., 101, 499-506(1993))。
The plant ACCase has a molecular weight of 220,000-2.
Is a dimer of 40,000 large multifunctional polypeptides,
It is said to be present in the plastid. However, it was extremely difficult to purify the enzyme protein of ACCase and analyze its structure and biochemical properties because of its unique properties. So far, the purification of the enzyme protein has been reported only in a few cases such as rape, soybean and corn (AR Slabas & A. Hellyer, Plant
Sci., 39, 177-182 (1985), DJ Charles & J. H. Cher
ry, Phytochemistry, 25, 1067-1071 (1986), MA Egl
i et al., Plant Physiol., 101, 499-506 (1993)).

【0005】従って、蛋白質情報に基づく植物のACC
aseの遺伝子に関する研究は余り進んでいない。最
近、ニンジンとダイズで、ACCase遺伝子の単離が
進められていることが報告された(B. J. Nikolau & E.
A. Wurtele, In USーJAPAN BINATIONAL SEMINAR-BIOCHE
MICAL AND MOLECULAR BIOLOGICAL ASPECTS OF MEMBRANE
AND STORAGE LIPIDS OF PLANTS (1992))。しかしなが
ら、その解析ならびに特徴付けがなされるには、未だ至
っていない。
Therefore, plant ACC based on protein information
Research on the gene for ase has not advanced much. Recently, it has been reported that the isolation of the ACCase gene is proceeding in carrot and soybean (BJ Nikolau & E.
A. Wurtele, In US ー JAPAN BINATIONAL SEMINAR-BIOCHE
MICAL AND MOLECULAR BIOLOGICAL ASPECTS OF MEMBRANE
AND STORAGE LIPIDS OF PLANTS (1992)). However, its analysis and characterization have not yet been made.

【0006】他方、動物や微生物では、ACCaseに
関する生化学的,遺伝学的研究が、比較的進展してい
る。それらの知見を基にした解析によって、ACCas
eをコードする全塩基配列が、「ラット」,「ニワト
リ」,「酵母」および「大腸菌」で明らかになっている
(F. Lopez-Casillas et al., Proc. Natl. Acad. Sci.
USA, 85, 5784-5788(1988), T. Takai et al, J. Bio
l. Chem., 263, 2651-2657(1988), W. Al-Feel et al.,
Proc. Natl. Acad. Sci. USA, 89, 4534-4538(1992),
H. Kondo et al., Proc. Natl. Acad. Sci. USA, 88, 9
730-9733(1991), S.J. Li & J. E. Cronan Jr., J. Bio
l. Chem., 267, 855-863(1992), S. Muramatsu & T. Mi
zuno, Nucleic Acids Res., 17, 3982(1989), S. J. Li
& J. E. Cronan Jr., J. Biol. Chem., 267, 16841-16
847(1992))。
On the other hand, in animals and microorganisms, biochemical and genetic studies on ACCase have been relatively advanced. By analysis based on these findings, ACCas
The entire nucleotide sequence encoding e has been revealed in "rat", "chicken", "yeast" and "Escherichia coli" (F. Lopez-Casillas et al., Proc. Natl. Acad. Sci.
USA, 85, 5784-5788 (1988), T. Takai et al, J. Bio
l. Chem., 263, 2651-2657 (1988), W. Al-Feel et al.,
Proc. Natl. Acad. Sci. USA, 89, 4534-4538 (1992),
H. Kondo et al., Proc. Natl. Acad. Sci. USA, 88, 9
730-9733 (1991), SJ Li & JE Cronan Jr., J. Bio
l. Chem., 267, 855-863 (1992), S. Muramatsu & T. Mi
zuno, Nucleic Acids Res., 17, 3982 (1989), SJ Li
& JE Cronan Jr., J. Biol. Chem., 267, 16841-16
847 (1992)).

【0007】[0007]

【発明が解決しようとする課題】アセチルCoAは脂肪
合成の出発点であり、ACCaseの触媒反応でマロニ
ルCoAに変換され、このマロニルCoAが基質となっ
て、脂肪酸合成酵素により脂肪酸が生合成される。更に
脂肪酸は、いくつかの酵素反応を経て、貯蔵脂肪である
トリアシルグリセロールの構成成分となる。
Acetyl-CoA is the starting point of fat synthesis, is converted into malonyl-CoA by the catalytic reaction of ACCase, and this malonyl-CoA serves as a substrate for fatty acid biosynthesis by fatty acid synthase. . Further, the fatty acid becomes a constituent of triacylglycerol, which is a storage fat, through some enzymatic reactions.

【0008】また、アセチルCoAは、オキサロ酢酸と
の縮合によって、クエン酸を生成する。このクエン酸
は、TCAサイクルと呼ばれる一連の酵素反応でオキサ
ロ酢酸にまで戻る。TCAサイクルに入った代謝物は、
最終的にはエネルギーとして消費されるか、アミノ酸合
成系へつながり、更には蛋白質となる。すなわち、アセ
チルCoAは、脂肪合成と蛋白質合成の分岐点に存在す
る。
[0008] Acetyl CoA also produces citric acid by condensation with oxaloacetic acid. This citric acid returns to oxaloacetate in a series of enzymatic reactions called the TCA cycle. The metabolites that entered the TCA cycle are
Eventually, it is consumed as energy or linked to the amino acid synthesis system, and further becomes a protein. That is, acetyl CoA exists at a branch point between fat synthesis and protein synthesis.

【0009】したがって、ACCaseの活性が相対的
に強い場合、クエン酸の生成量が相対的に低下し、蛋白
質合成が抑えられ、脂肪合成が促進されることが予測さ
れる。
Therefore, when the activity of ACCase is relatively strong, it is expected that the amount of citric acid produced will be relatively reduced, protein synthesis will be suppressed, and fat synthesis will be promoted.

【0010】種子に貯蔵される脂肪の含量と蛋白質の含
量が負の相関性を示すことは、ダイズで報告されている
(T.Sugimoto et al.,Agri.B
iol.Chem.53,885−887(198
9))。そこで、植物のACCase活性を人為的に操
作することによって、脂肪合成と蛋白質合成の比率(分
配の割合)を変えられるかに興味が持たれるところであ
る。
A negative correlation between the fat content stored in seeds and the protein content has been reported in soybean (T. Sugimoto et al., Agri. B).
iol. Chem. 53,885-887 (198
9)). Therefore, it is of interest to artificially manipulate the ACCase activity of plants to change the ratio of fat synthesis and protein synthesis (distribution ratio).

【0011】油料作物として利用されるアブラナ、ダイ
ズ、ゴマ、ワタ、トウモロコシ、ヒマワリ、ラッカセ
イ、ベニバナその他の植物では、その脂肪含量の増大
が、育種的に重要な課題である。また、ダイズの場合
は、逆にその蛋白質含量の増大も重要な育種課題であ
る。しかしながら、従来の育種法では、このような形質
の改良を行うのに長い年月と多大な労力を要する。そこ
で、遺伝子操作を用いた分子育種的手法による形質の改
良が待たれていた。
In the oilseed rape, soybean, sesame, cotton, corn, sunflower, peanut, safflower and other plants used as oil crops, the increase in the fat content is an important breeding issue. On the contrary, in the case of soybean, increasing the protein content is also an important breeding task. However, in the conventional breeding method, it takes a long time and much labor to improve such a trait. Therefore, improvement of traits by a molecular breeding method using genetic manipulation has been awaited.

【0012】食糧の増産は、世界的な急務であるが、耕
地面積の拡大は、自然破壊にもつながり、好ましくな
い。この様な条件下で、食糧の増産を図るには、植物に
おける特定の成分濃度を高める方法が考えられる。
[0012] Although increasing the production of food is an urgent global need, expanding the cultivated land area leads to destruction of nature and is not preferable. In order to increase the production of food under such conditions, a method of increasing the concentration of specific components in plants can be considered.

【0013】本発明は、かかる観点からなされたもので
あり、上記要望を遺伝子工学の手法を利用して解決しよ
うとするものである。特に、脂肪と蛋白質の増産を図る
観点から所望する植物を育種することを目的とし、脂肪
と蛋白質の合成に関わる遺伝子をクローニングすること
を課題とする。
The present invention has been made from this point of view, and it is an object of the present invention to solve the above-mentioned demand by utilizing a genetic engineering technique. In particular, an object is to cultivate a desired plant from the viewpoint of increasing the production of fat and protein, and it is an object to clone a gene involved in the synthesis of fat and protein.

【0014】[0014]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために鋭意研究を行った結果、光合成で作り
出される炭水化物が、貯蔵物質の蛋白質あるいは脂肪に
変換される際の分岐点に働く酵素であるACCaseの
遺伝子の単離を試み、シロイヌナズナ(アラビドプシス
サリアナ:Arabidopsis thaliana)からACCase
遺伝子を単離することに成功し、更に油料作物であるア
ブラナのACCase遺伝子のクローニングにも成功
し、本発明に至った。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have found that the carbohydrates produced by photosynthesis are branch points when they are converted into proteins or fats as storage substances. Of Arabidopsis thaliana from Arabidopsis thaliana was attempted to isolate the gene for ACCase
The inventors succeeded in isolating the gene, and also succeeded in cloning the ACCase gene of oilseed rape, which is an oil crop, resulting in the present invention.

【0015】すなわち本発明は、植物のゲノムDNAあ
るいはcDNAを鋳型とするポリメラーゼ連鎖反応で増
幅されるDNA断片において、前記ポリメラーゼ連鎖反
応に、配列表の配列番号1〜6に示すオリゴヌクレオチ
ドから選ばれる1種と、配列表の配列番号11〜14に
示すオリゴヌクレオチドから選ばれる1種とをプライマ
ーに用いることにより得られることを特徴とするアセチ
ルCoAカルボキシラーゼの一部をコードする遺伝子断
片、及びこの遺伝子断片をプローブに用いるハイブリダ
イゼーションにより植物遺伝子ライブラリーから選択さ
れるアセチルCoAカルボキシラーゼ全アミノ酸配列を
コードする遺伝子である。
That is, the present invention is a DNA fragment amplified by the polymerase chain reaction using plant genomic DNA or cDNA as a template, and is selected from the oligonucleotides shown in SEQ ID NOS: 1 to 6 in the polymerase chain reaction. A gene fragment encoding a part of acetyl-CoA carboxylase, which is obtained by using, as a primer, one kind and one kind selected from the oligonucleotides shown in SEQ ID NOS: 11 to 14 of the sequence listing, and this gene A gene encoding the entire amino acid sequence of acetyl-CoA carboxylase selected from a plant gene library by hybridization using the fragment as a probe.

【0016】また本発明は、配列表の配列番号22に示
すアミノ酸配列を有するアセチルCoAカルボキシラー
ゼをコードするDNA断片、及び配列表の配列番号21
において、ヌクレオチド番号408〜7169で表され
る配列を有するDNA断片を提供する。
The present invention also provides a DNA fragment encoding acetyl-CoA carboxylase having the amino acid sequence shown in SEQ ID NO: 22 of the sequence listing, and SEQ ID NO: 21 of the sequence listing.
In, a DNA fragment having a sequence represented by nucleotide numbers 408 to 7169 is provided.

【0017】さらに本発明は、前記遺伝子断片、遺伝子
またはDNA断片を導入することによってアセチルCo
Aカルボキシラーゼの発現量に変化がもたらされた形質
転換植物体を提供する。
Further, the present invention provides acetyl Co by introducing the gene fragment, the gene or the DNA fragment.
Provided is a transformed plant body in which the expression level of A carboxylase is changed.

【0018】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0019】<1>植物のACCaseの一部をコード
するDNA断片 ある特定のDNA配列を得る手段として、ポリメラーゼ
連鎖反応、いわゆるポリメラーゼチェインリアクション
(polymerase chain reaction)法が知られている。こ
の方法は、 二本鎖DNAの一本鎖DNAへの熱変性、 上記DNAの内部に存在する領域の両端の配列に相当
する2種類のオリゴヌクレオチドプライマーと、前記熱
変性DNAとのアニーリング、 前記オリゴヌクレオチドをプライマーとしたポリメラ
ーゼ反応、 からなる増幅サイクルを繰り返すことにより、上記領域
を指数関数的に増幅する方法である。
<1> DNA Fragment Encoding Part of Plant ACCase As a means for obtaining a specific DNA sequence, a polymerase chain reaction, a so-called polymerase chain reaction method is known. This method comprises heat denaturing double-stranded DNA into single-stranded DNA, annealing two kinds of oligonucleotide primers corresponding to sequences at both ends of the region existing inside the DNA, and the heat-denatured DNA, This is a method of exponentially amplifying the above region by repeating an amplification cycle consisting of a polymerase reaction using an oligonucleotide as a primer.

【0020】このように、ポリメラーゼ連鎖反応により
DNA配列を増幅させるには、少なくとも部分的に配列
を知る必要がある。ところで、植物のACCase遺伝
子の構造は、これまでに全く報告がないが、動物や微生
物のACCase遺伝子とある程度の類似性を示す部分
を内包すると推測された。そこで、既に報告のある「ラ
ット」,「ニワトリ」,「酵母」および「大腸菌」のそ
れぞれのACCase遺伝子がコードするアミノ酸配列
を比較したところ、これらの間で類似性の認められる領
域を見いだし、3カ所の領域を「α」、「β」および
「γ」と名付けた。これら4種類のACCase遺伝子
の各領域のDNA配列の比較を図1に示す。尚、アミノ
酸配列の先頭に付した数字は、それぞれの生物のACC
aseにおける開始メチオニンから数えたアミノ酸の番
号である。
Thus, in order to amplify a DNA sequence by the polymerase chain reaction, it is necessary to know the sequence at least partially. By the way, the structure of the plant ACCase gene has not been reported so far, but it was presumed that it contains a portion showing some similarity to the ACCase gene of animals and microorganisms. Therefore, when the amino acid sequences encoded by the ACCase genes of "rat", "chicken", "yeast" and "Escherichia coli", which have been already reported, were compared, a region in which similarity was recognized between them was found. The regions at these locations were designated as “α”, “β” and “γ”. A comparison of the DNA sequences of each region of these four types of ACCase genes is shown in FIG. The numbers at the beginning of the amino acid sequence are the ACC of each organism.
It is the number of the amino acid counted from the starting methionine in ase.

【0021】これらの各領域中の部分アミノ酸配列から
予想されるオリゴヌクレオチドを合成し、これをポリメ
ラーゼ連鎖反応のプライマーとして用い、ACCase
遺伝子を単離することを試みた。プライマーは、「α」
の領域から6種類(α1〜α6:各々順に配列番号1〜
6に配列を示す)、「β」の領域配列から4種類(β1
〜β4:配列番号7〜10)、「γ」の領域から4種類
(γ1〜γ4:配列番号11〜14)各々作製した。本
発明のACCaseを得るためには、プライマーは上記
のものに限定されず、ACCaseによく保存されてい
る領域、すなわち各種生物において類似性の高い領域に
相当する配列を有するオリゴヌクレオチドを用いること
ができる。
An oligonucleotide expected from the partial amino acid sequence in each of these regions was synthesized and used as a primer for polymerase chain reaction to obtain ACCase.
An attempt was made to isolate the gene. The primer is "α"
6 regions (α1 to α6: SEQ ID NO: 1 to
6 shows the sequence), and 4 types (β1 from the region sequence of “β”)
.About..beta.4: SEQ ID NOS: 7 to 10), and four types (.gamma.1 to .gamma.4: SEQ ID NOS: 11 to 14) were prepared from the ".gamma." Region. In order to obtain the ACCase of the present invention, the primer is not limited to the above, and it is preferable to use an oligonucleotide having a sequence corresponding to a region well conserved in ACCase, that is, a region having high similarity in various organisms. it can.

【0022】後記実施例に示すように、α3とγ4のプ
ライマーを組み合わせたポリメラーゼ連鎖反応により得
られたDNA断片の塩基配列を決定し、既知のACCa
se遺伝子との比較解析を行なうことによって、927
bpの増幅断片が、シロイヌナズナのACCase遺伝
子の一部であることを明らかにした。このDNA断片の
配列を、配列番号15に示す。
As shown in the Examples below, the nucleotide sequence of the DNA fragment obtained by the polymerase chain reaction in which the α3 and γ4 primers were combined was determined to determine the known ACCa.
By performing comparative analysis with the se gene, 927
It was revealed that the amplified fragment of bp is a part of the Arabidopsis ACCase gene. The sequence of this DNA fragment is shown in SEQ ID NO: 15.

【0023】<2>ACCase遺伝子 上記のようにして得られるDNA断片は、プライマーに
相当する領域間に限られるので、得られる断片はACC
aseの一部をコードするDNAである。したがって、
より長いDNA断片を得たい場合には、これをプローブ
とするハイブリダイゼーションを行うことにより、ゲノ
ムライブラリーあるいはcDNAライブラリーから得る
ことができる。また、ACCaseは分子量が大きいの
で、単一のクローンでACCase遺伝子全体をカバー
できない場合には、染色体歩行を繰り返すことにより、
酵素をコードする領域全体をカバーする複数のDNA断
片として得ることができる。
<2> ACCase gene Since the DNA fragment obtained as described above is limited to the region corresponding to the primer, the obtained fragment is ACC.
It is a DNA encoding a part of ase. Therefore,
When it is desired to obtain a longer DNA fragment, it can be obtained from a genomic library or a cDNA library by carrying out hybridization using this as a probe. Further, since ACCase has a large molecular weight, when a single clone cannot cover the entire ACCase gene, by repeating chromosomal walking,
It can be obtained as a plurality of DNA fragments that cover the entire region encoding the enzyme.

【0024】クローン化されたDNA断片の塩基配列の
決定は、Maxam-Gilbert法あるいは、ダイデオキシ法に
より行う。ダイデオキシ法による塩基配列の決定は、市
販されているキットを用いて行うことができ、配列決定
を自動的に行うオートシークエンサーを使用してもよ
い。
The nucleotide sequence of the cloned DNA fragment is determined by the Maxam-Gilbert method or the dideoxy method. The nucleotide sequence can be determined by the dideoxy method using a commercially available kit, and an autosequencer for automatically performing the sequence determination may be used.

【0025】後記実施例に示すように、シロイヌナズナ
のACCaseをカバーする3種のDNA断片が得られ
た。これらは各々ラムダファージベクターにクローン化
された後、プラスミドベクターに変換されており、各プ
ラスミドDNAを保持する大腸菌は、工業技術院生命工
学工業技術研究所に、FERM P−13792、FE
RM P−13793、FERM P−13794とし
て寄託されている。
As shown in Examples below, three types of DNA fragments covering the Arabidopsis ACCase were obtained. Each of these was cloned into a lambda phage vector and then converted into a plasmid vector. Escherichia coli harboring each plasmid DNA was transferred to FERM P-13792, FE at the Institute of Biotechnology, Institute of Industrial Science and Technology.
Deposited as RM P-13793 and FERM P-13794.

【0026】さらに、このようにして得られたシロイヌ
ナズナのACCase遺伝子の一部をコードするDNA
断片あるいはACCase遺伝子全体をプローブに用い
たハイブリダイゼーション等により、他の植物のDNA
ライブラリーを検索することによって、他の植物のAC
Caseをコードする塩基配列を含むcDNA断片もし
くはゲノムDNA断片を単離することが可能となる。他
の植物としては、油料作物であるアブラナ、ダイズ、ゴ
マ、ワタ、トウモロコシ、ヒマワリ、ラッカセイ、ベニ
バナ等が挙げられる。
Further, the thus obtained DNA encoding a part of the Arabidopsis ACCase gene.
DNA of other plants by hybridization using fragments or the whole ACCase gene as a probe
AC of other plants by searching the library
It becomes possible to isolate a cDNA fragment or a genomic DNA fragment containing a base sequence encoding Case. Examples of other plants include oil crops such as rape, soybean, sesame, cotton, corn, sunflower, peanut, and safflower.

【0027】後記実施例に示すように、シロイヌナズナ
のACCase遺伝子の一部をコードするDNA断片を
プローブとして、シロイヌナズナのACCase遺伝子
を含む3種のクローンを得た。さらに、その内の1つを
プローブとしてアブラナのACCase遺伝子を含むゲ
ノムクローンの単離に成功した。これらのクローンは、
ACCase酵素蛋白質をコードする配列と、この遺伝
子の植物細胞内での発現制御に関与するプロモーター配
列とを含んでいると予想された。
As shown in Examples below, three kinds of clones containing the Arabidopsis ACCase gene were obtained using a DNA fragment encoding a part of the Arabidopsis ACCase gene as a probe. Furthermore, we succeeded in isolating a genomic clone containing the rapeseed ACCase gene using one of them as a probe. These clones
It was expected to contain a sequence encoding an ACCase enzyme protein and a promoter sequence involved in the regulation of expression of this gene in plant cells.

【0028】<3>ACCaseをコードするcDNA
断片 ACCaseをコードするcDNA断片は、上記と同様
にして、mRNA画分を鋳型とするポリメラーゼチェイ
ンリアクション法によって増幅することにより、あるい
は上記で得られたACCase遺伝子またはその断片を
プローブとするハイブリダイゼーションによりcDNA
ライブラリーから選択することによって、得られる。
<3> cDNA encoding ACCase
Fragment A cDNA fragment encoding ACCase is amplified by the polymerase chain reaction method using the mRNA fraction as a template in the same manner as described above, or by hybridization using the ACCase gene or its fragment obtained above as a probe. cDNA
Obtained by selecting from the library.

【0029】cDNAライブラリーは、シロイヌナズナ
等の植物の茎葉等からmRNAを抽出し、逆転写酵素を
用いてcDNAを合成し、ポリメラーゼ反応によって2
本鎖化したものをベクターに挿入し、大腸菌等に形質転
換することにより作製することができる。cDNAクロ
ーニングキットが市販されているのでこれらを使用して
もよい。
For the cDNA library, mRNA is extracted from the foliage of plants such as Arabidopsis thaliana and the like, cDNA is synthesized using reverse transcriptase, and 2
It can be prepared by inserting the stranded chain into a vector and transforming into Escherichia coli or the like. Since cDNA cloning kits are commercially available, these may be used.

【0030】得られたcDNAライブラリーから、上記
で得られたACCase遺伝子またはその断片をプロー
ブに用いてハイブリダイゼーションを行うことによっ
て、ACCaseをコードするcDNA断片を有するベ
クターを保持する形質転換体が得られ、さらに、この形
質転換体からベクターを回収すれば、ACCaseをコ
ードするcDNA断片が得られる。また、cDNAライ
ブラリーからライブラリーDNAを調製し、これを鋳型
とするポリメラーゼチェインリアクション法によってA
CCaseをコードするcDNA断片を増幅してもよ
い。
From the obtained cDNA library, a transformant carrying a vector having a cDNA fragment encoding ACCase is obtained by carrying out hybridization using the ACCase gene or its fragment obtained above as a probe. If the vector is recovered from this transformant, a cDNA fragment encoding ACCase can be obtained. In addition, library DNA was prepared from a cDNA library, and A was prepared by the polymerase chain reaction method using this as a template.
A cDNA fragment encoding CCase may be amplified.

【0031】ライブラリーの作製に用いるベクターは、
多数種市販されており、これらを使用することができ
る。DNAの切断、連結、形質転換、遺伝子の塩基配列
の決定、ハイブリダイゼーション等一般の遺伝子組換え
に必要な方法は、各操作に使用する市販の酵素等に添付
されている説明書や、Molecular cloning (Maniatis T.
et al. Cold Spring Harbor Laboratory Press)に記載
されている。
The vector used for preparing the library is
Many types are commercially available and these can be used. The methods necessary for general gene recombination such as DNA cleavage, ligation, transformation, gene nucleotide sequence determination, and hybridization are described in the instructions attached to commercially available enzymes used for each operation, and Molecular cloning. (Maniatis T.
et al . Cold Spring Harbor Laboratory Press).

【0032】このようにして、後記実施例で得られたA
CCaseをコードするcDNA断片のヌクレオチド配
列及びアミノ酸配列を配列表の配列番号21に、アミノ
酸配列のみを配列番号22に示す。
In this way, A obtained in Examples described later was obtained.
The nucleotide sequence and amino acid sequence of the cDNA fragment encoding CCase are shown in SEQ ID NO: 21 and only the amino acid sequence is shown in SEQ ID NO: 22 in the sequence listing.

【0033】<4>ACCase遺伝子を導入された形
質転換植物 単離されたACCase遺伝子(以下、本項においては
ACCaseをコードするcDNA断片でもよい)を加
工して作出されるセンス・ACCase遺伝子あるいは
アンチセンス・ACCase遺伝子を植物に導入するこ
とにより、植物体内でのACCaseの発現を増大ある
いは抑制することができる。
<4> Transformed Plant Introduced with ACCase Gene A sense / ACCase gene or anti-body produced by processing the isolated ACCase gene (hereinafter, in this section, a cDNA fragment encoding ACCase may be used). By introducing the sense / ACCase gene into a plant, the expression of ACCase in the plant can be increased or suppressed.

【0034】センス・ACCase遺伝子は、ACCa
se遺伝子をカリフラワーモザイクウイルス由来のプロ
モーターなど植物で発現可能なプロモーターと結合し、
これを植物細胞に導入することによって発現させること
ができる。
The sense / ACCase gene is ACCa.
The se gene is linked to a plant-expressible promoter such as a promoter derived from cauliflower mosaic virus,
It can be expressed by introducing it into plant cells.

【0035】また、アンチセンスACCase遺伝子
は、ACCase遺伝子の全部又は一部を、逆方向にプ
ロモーターに結合し、これで植物細胞を形質転換するこ
とによって発現させることができる。
The antisense ACCase gene can be expressed by binding all or part of the ACCase gene to a promoter in the reverse direction and transforming a plant cell with this.

【0036】本明細書においては、「ACCase遺伝
子」とは、ACCaseをコードする構造遺伝子のみで
なく、センス・ACCase遺伝子あるいはアンチセン
ス・ACCase遺伝子をいうことがある。
In the present specification, the term "ACCase gene" may refer to not only a structural gene encoding ACCase but also a sense / ACCase gene or an antisense / ACCase gene.

【0037】上記遺伝子で植物を形質転換するには、上
記遺伝子をプラスミドに挿入したものを、エレクトロポ
レーション(電気的穿孔法)あるいはアグロバクテリウ
ムのTiプラスミドを利用する方法などによって、植物
細胞プロトプラストに導入することによって行うことが
できる。
In order to transform a plant with the above gene, a plant cell protoplast is prepared by inserting the above gene into a plasmid by electroporation (electroporation) or a method using a Ti plasmid of Agrobacterium. Can be done by introducing

【0038】このような植物としては、アブラナ、ダイ
ズ、ゴマ、ワタ、トウモロコシ、ヒマワリ、ラッカセ
イ、ベニバナなど脂肪生産に利用されている多くの植物
が挙げられる。また、脂肪生産能の優れるイソクリシス
(Isochrysis)、パブロバ(Pavlov
a)、クリプトモナス(Cryptomonas)、ク
リコスフェラ(Cricosphaera)、ケトセロ
ス(Chaetoceros)などの微細藻類も挙げら
れる。特に、シロイヌナズナおよびアブラナの属するア
ブラナ科植物は、良質脂肪の生産能が高い有用作物を含
んでおり、広く生産されている。本発明のACCase
遺伝子を用いる分子育種的手法によって、脂肪成分を増
大させることは、非常に高い経済効果が期待される。
Examples of such plants include rape, soybean, sesame, cotton, corn, sunflower, peanut, safflower and many other plants utilized for fat production. In addition, Isochrysis and Pavlov, which have excellent fat-producing ability,
a), Cryptomonas, Crycosphaera, and Chaetoceros. Particularly, Arabidopsis plants belonging to Arabidopsis thaliana and oilseed rape contain useful crops with high ability to produce high-quality fats and are widely produced. ACCase of the present invention
A very high economic effect can be expected by increasing the fat component by a molecular breeding method using a gene.

【0039】更に、本発明によって得られるACCas
e遺伝子は、その一部を特異的に変異させて、ACCa
seの人工的改変に利用することが可能である。これ
は、ACCaseの機能向上を求める研究に用いること
ができる。また、同時に酵素蛋白質の機能発現に関する
幅広い研究にも用いることができる。
Further, ACCas obtained by the present invention
Part of the e gene is specifically mutated to produce ACCa.
It can be used for artificial modification of se. It can be used in studies seeking to improve the function of ACCase. At the same time, it can be used for a wide range of studies on functional expression of enzyme proteins.

【0040】以上の操作に際し、DNAの切断、連結、
形質転換、遺伝子の塩基配列の決定、ハイブリダイゼー
ション等一般の遺伝子組換えに必要な方法は、各操作に
使用する市販の酵素等に添付されている説明書や、Mole
cular cloning (Maniatis T.et al. Cold Spring Harbo
r Laboratory Press)、あるいはCurrent Protocolsin M
olecular Biology(F.M.Ausubelら編集、John Wiley & S
ons,Inc.,1987)に記載されている。
In the above operation, DNA cleavage, ligation,
For methods required for general gene recombination such as transformation, determination of gene nucleotide sequence, hybridization, etc., refer to the instructions attached to commercially available enzymes used for each operation or Mole.
cular cloning (Maniatis T. et al. Cold Spring Harbo
r Laboratory Press), or Current Protocols in M
olecular Biology (edited by FM Ausubel et al., John Wiley & S
ons, Inc., 1987).

【0041】このようにしてセンス・ACCase遺伝
子及びアンチセンス・ACCase遺伝子で形質転換し
たシロイヌナズナは、株式会社三井業際植物バイオ研究
所(茨城県つくば市千現 2−1−6つくば研究支援セ
ンターA−10)にて保管栽培されており、本出願人
は、本件発明の確認のため役立て得ることを宣言する。
The Arabidopsis thaliana transformed with the sense / ACCase gene and the antisense / ACCase gene as described above is a plant bio-research laboratory of Mitsui Industrial Co., Ltd. It has been cultivated in storage at 10), and the present applicant declares that it can be useful for confirmation of the present invention.

【0042】[0042]

【実施例】以下に、本発明を実施例に基づき詳細に説明
する。操作の手順は特に記述しない限り、Curren
t Protocols in Molecular
Biology(F.M.Ausubelら編集、Jo
hn Wiley & Sons,Inc.,198
7)に記載されている方法に従った。
EXAMPLES The present invention will be described in detail below based on examples. Curren unless otherwise stated
t Protocols in Molecular
Biology (edited by FM Ausubel et al., Jo
hn Wiley & Sons, Inc. , 198
The method described in 7) was followed.

【0043】[0043]

【実施例1】 シロイヌナズナACCase遺伝子の単
離及びその発現 (1)シロイヌナズナACCase遺伝子断片のポリメ
ラーゼ連鎖反応による増幅 既に報告のある「ラット」,「ニワトリ」,「酵母」お
よび「大腸菌」のそれぞれのACCase遺伝子がコー
ドするアミノ酸配列を比較し、それらの間で共通した類
似性が認められるアミノ酸配列の中から、ACCase
のビオチンカルボキシラーゼ・ドメイン内の3ヶ所の領
域を選び出し、各々「α」、「β」および「γ」と名付
けた(図1)。
Example 1 Isolation of Arabidopsis thaliana ACCase gene and its expression (1) Amplification of Arabidopsis thaliana ACCase gene fragment by polymerase chain reaction ACCase of each of “rat”, “chicken”, “yeast” and “Escherichia coli” already reported. The amino acid sequences encoded by the genes are compared with each other, and among the amino acid sequences showing common similarity among them, ACCase
Three regions within the biotin carboxylase domain of Escherichia coli were selected and named "α", "β" and "γ", respectively (Fig. 1).

【0044】次に、「α」のアミノ酸配列を基に6種類
のオリゴヌクレオチドプライマーα1〜α6(配列表の
配列番号1〜6)を、「β」のアミノ酸配列を基に4種
類のオリゴヌクレオチドプライマーβ1〜β4(配列表
の配列番号7〜10)を、「γ」のアミノ酸配列を基に
4種類のオリゴヌクレオチドプライマーγ1〜γ4(配
列表の配列番号11〜14)を作製した。
Next, six types of oligonucleotide primers α1 to α6 (SEQ ID NOS: 1 to 6 in the sequence listing) based on the amino acid sequence of “α” and four types of oligonucleotide primers based on the amino acid sequence of “β” were used. Four kinds of oligonucleotide primers γ1 to γ4 (SEQ ID NOS: 11 to 14 in the sequence listing) were prepared from the primers β1 to β4 (SEQ ID NOS: 7 to 10 in the sequence listing) based on the amino acid sequence of “γ”.

【0045】これらα1〜α6のオリゴヌクレオチドプ
ライマーとγ1〜γ4のオリゴヌクレオチドプライマー
を組み合わせた24とおりのポリメラーゼ連鎖反応、な
らびにβ1〜β4のオリゴヌクレオチドプライマーとγ
1〜γ4のオリゴヌクレオチドプライマーを組み合わせ
た16とおりのポリメラーゼ連鎖反応をシロイヌナズナ
の全DNAを鋳型に用いて行った。
Twenty-four polymerase chain reactions combining these α1 to α6 oligonucleotide primers and γ1 to γ4 oligonucleotide primers, and β1 to β4 oligonucleotide primers and γ
Sixteen different polymerase chain reactions using 1 to γ4 oligonucleotide primers were performed using total Arabidopsis DNA as a template.

【0046】増幅反応の条件は以下の通りである。すな
わち,シロイヌナズナの全DNA40ng、2種類のオ
リゴヌクレオチドプライマー各40pmol、50mM KC
l、1.5mM MgCl2、0.001%ゼラチン、100μM dNTP、
0.4単位のDNAポリメラーゼ(Perkin-Elmer Cetus
社製 AmpliTaq DNA polymerase)を含む10 mM Tris-HCl
(pH8.3)40μlに15μlのミネラルオイルを重層
し、市販の装置(Perkin-Elmer Cetus社製 thermal cyc
ler)を用いて増幅反応を行った。
The conditions of the amplification reaction are as follows. 40 ng total Arabidopsis DNA, 40 pmol each of two oligonucleotide primers, 50 mM KC
l, 1.5 mM MgCl 2 , 0.001% gelatin, 100 μM dNTP,
0.4 units of DNA polymerase (Perkin-Elmer Cetus
10 mM Tris-HCl containing AmpliTaq DNA polymerase)
(PH 8.3) 40 μl was overlaid with 15 μl of mineral oil, and a commercially available device (perkin-Elmer Cetus thermal cyc
ler) was used to carry out the amplification reaction.

【0047】90℃で10分加熱してDNAを変成させ
た後、DNAの変性(94℃1分)、アニーリング(5
5℃2分)、ポリメラーゼ反応(72℃3分間)からな
るサイクルを、30回繰り返し、複数の増幅断片を得
た。
After heating at 90 ° C. for 10 minutes to denature the DNA, the DNA was denatured (94 ° C. for 1 minute) and annealed (5
The cycle consisting of 5 ° C. for 2 minutes) and polymerase reaction (72 ° C. for 3 minutes) was repeated 30 times to obtain a plurality of amplified fragments.

【0048】これらの増幅断片それぞれについて、プラ
スミドBluescript SK+にクローニングし
た後に、塩基配列を決定し、既知のACCase遺伝子
との比較を行なった。その結果、配列表の配列番号3に
示すα3と配列表の配列番号14に示すγ4のプライマ
ーを組み合わせたポリメラーゼ連鎖反応で増幅された9
27bpの断片が、動物のACCaseと60%の相同
性を示すアミノ酸配列をコードし得る塩基配列を含み、
シロイヌナズナACCase遺伝子の一部であることが
明らかとなった。
Each of these amplified fragments was cloned into the plasmid Bluescript SK +, and then the nucleotide sequence was determined and compared with the known ACCase gene. As a result, it was amplified by polymerase chain reaction in which α3 shown in SEQ ID NO: 3 of the sequence listing and γ4 primer shown in SEQ ID NO: 14 of the sequence listing were combined.
The 27 bp fragment contains a nucleotide sequence capable of encoding an amino acid sequence showing 60% homology with animal ACCase,
It was revealed to be a part of the Arabidopsis thaliana ACCase gene.

【0049】この927bpの遺伝子断片の塩基配列を
配列表の配列番号15に示した。同遺伝子断片において
は、酵素蛋白質のアミノ酸をコードする塩基配列が、4
ヶ所のイントロンによって分断されていた。
The nucleotide sequence of this 927 bp gene fragment is shown in SEQ ID NO: 15 of the sequence listing. In the same gene fragment, the nucleotide sequence encoding the amino acid of the enzyme protein was 4
It was divided by several introns.

【0050】一方、β1〜β4とγ1〜γ4のプライマ
ーを組み合わせたポリメラーゼ連鎖反応では、遺伝子断
片の増幅が見られなかった。これは、上記イントロンの
1つが、「β」領域をコードする塩基配列を分断してい
たために、β1〜β4のオリゴヌクレオチドがポリメラ
ーゼ連鎖反応のプライマーとして機能しなかったためで
あることがわかった。
On the other hand, in the polymerase chain reaction in which the primers of β1 to β4 and γ1 to γ4 were combined, no amplification of the gene fragment was observed. This was found to be because one of the above introns disrupted the nucleotide sequence encoding the “β” region, so that the oligonucleotides β1 to β4 did not function as primers for the polymerase chain reaction.

【0051】(2)シロイヌナズナのゲノムDNAの調
製とゲノムライブラリーの構築 シロイヌナズナ(Arabidopsis thaliana)のゲノムDN
Aは、RogersとBendichの方法(Plan
t Mol.Biol.,5,69(1985))に従
って調製した。得られたゲノムDNAを物理的に寸断
し、更にショ糖密度勾配遠心分離を行なって、4〜10
kbのDNA断片を得た。
(2) Preparation of Arabidopsis Genomic DNA and Construction of Genomic Library Genomic DN of Arabidopsis thaliana
A is the method of Rogers and Bendich (Plan
t Mol. Biol. , 5, 69 (1985)). The obtained genomic DNA is physically cut into pieces and further subjected to sucrose density gradient centrifugation to give 4 to 10
A kb DNA fragment was obtained.

【0052】このDNA断片の両末端に、ライゲーショ
ンキット(宝酒造社製)を用いてEcoRIアダプター
を連結した。これをEcoRIで切断したλZAPIIフ
ァージベクターのアームと連結した後、インビトロ パ
ッケージングキット(ストラタジーン社製、Gigap
ackII Gold)を用いて、ラムダファージのパッ
ケージングを行ない、大腸菌XL1−Blue株に感染
させることによって、多数の組換えλファージを得た。
これをシロイヌナズナのゲノムDNAライブラリーとし
た。ライブラリーの大きさは、2×106であった。
EcoRI adapters were ligated to both ends of this DNA fragment using a ligation kit (Takara Shuzo). This was ligated to an arm of a λZAPII phage vector cut with EcoRI, and then an in vitro packaging kit (Stratagene, Gigap)
A large number of recombinant λ phages were obtained by packaging lambda phage using ackII Gold) and infecting E. coli XL1-Blue strain.
This was designated as an Arabidopsis genomic DNA library. The size of the library was 2 × 10 6 .

【0053】(3)シロイヌナズナACCase遺伝子
のゲノムクローンの単離 前記シロイヌナズナのゲノムライブラリーを対象に、シ
ロイヌナズナACCase遺伝子を含むゲノムクローン
を、前述のシロイヌナズナのACCase遺伝子の一部
である927bpの増幅断片をプローブとして用いたプ
ラークハイブリダイゼーションによりスクリーニングを
行なった。
(3) Isolation of a genomic clone of the Arabidopsis thaliana ACCase gene A genomic clone containing the Arabidopsis thaliana ACCase gene was prepared from the above-mentioned genomic library of Arabidopsis thaliana, and an amplified fragment of 927 bp, which is a part of the above-mentioned Arabidopsis thaliana ACCase gene. Screening was performed by plaque hybridization used as a probe.

【0054】その結果、複数の陽性を示すゲノムクロー
ンを得た。それぞれのクローンは、ヘルパーファージを
感染させて、プラスミドに変換した。6種の制限酵素
(BamHI,BglII,EcoRV,HindIII,
PstI,XbaI)を用いて、ゲノムクローンの挿入
断片の物理的地図を作成し、それぞれのクローンの対応
関係を調査した。ゲノムクローンは、3群に分類され、
これらが染色体中の3つの部位に由来していることが確
認された。そこで、これら3つの部位に含まれるACC
ase遺伝子をそれぞれACCase−1,ACCas
e−2,ACCase−3と名付けた。また、プローブ
としたACCase遺伝子の一部である927bpの増
幅断片は、ACCase−1に由来していることを確認
した。
As a result, genomic clones showing a plurality of positives were obtained. Each clone was infected with helper phage and converted into a plasmid. Six restriction enzymes (BamHI, BglII, EcoRV, HindIII,
PstI, XbaI) was used to create a physical map of the insert of the genomic clone, and the correspondence between the clones was investigated. Genomic clones are classified into three groups,
It was confirmed that these were derived from three sites in the chromosome. Therefore, ACC contained in these three sites
ase genes are defined as ACCase-1 and ACCas, respectively.
It was named e-2 and ACCase-3. In addition, it was confirmed that the amplified fragment of 927 bp, which is a part of the ACCase gene used as a probe, was derived from ACCase-1.

【0055】更に、得られたACCase−1のゲノム
クローンの下流側部分をプローブに用いて、染色体歩行
を繰り返すことによって、新たにゲノムクローンを単離
し、ACCase−1,ACCase−2,ACCas
e−3それぞれの遺伝子全体をゲノムクローンでカバー
するに至った。各ACCase遺伝子の物理的地図を図
2に示す。
Further, by using the downstream portion of the obtained ACCase-1 genomic clone as a probe, a new genomic clone is isolated by repeating chromosomal walking to obtain ACCase-1, ACCase-2, ACCas.
The whole gene of each e-3 was covered by the genomic clone. A physical map of each ACCase gene is shown in FIG.

【0056】図2中、物理的地図中の制限酵素切断点
は、BamHI(Bm),BglII(Bg),EcoR
V(Ev),HindIII(Hd),PstI(P
s),XbaI(Xb)で示した。配列表の配列番号1
5および後述の配列表の配列番号20に示した塩基配列
は、それぞれACCase−1の物理的地図の上段の
「15」および「20」を付した太線で示される領域に
由来する。各物理的地図の下段の細線は、単離された個
々のゲノムクローンがカバーする領域を示している。
In FIG. 2, the restriction enzyme cleavage points in the physical map are BamHI (Bm), BglII (Bg) and EcoR.
V (Ev), HindIII (Hd), PstI (P
s) and XbaI (Xb). Sequence number 1 in the sequence listing
5 and the base sequence shown in SEQ ID NO: 20 in the sequence listing described below are derived from the regions indicated by bold lines with "15" and "20" at the top of the physical map of ACCase-1. The thin line at the bottom of each physical map shows the region covered by the isolated individual genomic clones.

【0057】また、a,b,cを付した細線は、上記の
ヘルパーファージの感染によりプラスミドに変換された
ゲノムクローンのうちの3クローン、pATgACC−
1a,pATgACC−1b,pATgACC−1cが
カバーする領域である。これらのプラスミドを保持する
大腸菌XL1−Blueは、工業技術院生命工学工業技
術研究所に、各々順にFERM P−13792、FE
RM P−13793、FERM P−13794として
寄託されている。
The thin lines with a, b, and c are pATgACC-, three of the genomic clones converted into plasmids by the above-mentioned helper phage infection.
1a, pATgACC-1b, pATgACC-1c are the areas covered. The Escherichia coli XL1-Blue carrying these plasmids was sequentially transferred to the Institute of Biotechnology, Institute of Industrial Science and Technology, FERM P-13792 and FE, respectively.
Deposited as RM P-13793 and FERM P-13794.

【0058】(4)シロイヌナズナACCase−1遺
伝子におけるビオチンカルボキシルキャリアープロテイ
ン・ドメインのコード域の検出 「ラット」,「ニワトリ」,および「酵母」のACCa
se遺伝子においては、ビオチンカルボキシラーゼ・ド
メインをコードする領域の下流に、ビオチンカルボキシ
ルキャリアープロテイン・ドメインのコード域が位置し
ている。シロイヌナズナのACCase遺伝子において
も、ビオチンカルボキシラーゼ・ドメインをコードする
領域の下流に位置すると推測されるビオチンカルボキシ
ルキャリアープロテイン・ドメインのコード域の検出を
行なった。
(4) Detection of coding region of biotin carboxyl carrier protein domain in Arabidopsis thaliana ACCase-1 gene "rat", "chicken", and "yeast" ACCa
In the se gene, the coding region for the biotin carboxyl carrier protein domain is located downstream of the region coding for the biotin carboxylase domain. Also in the Arabidopsis ACCase gene, the coding region of the biotin carboxyl carrier protein domain presumed to be located downstream of the region coding for the biotin carboxylase domain was detected.

【0059】既に報告のある「ラット」,「ニワト
リ」,「酵母」および「大腸菌」のそれぞれのACCa
se遺伝子がコードするビオチンカルボキシルキャリア
ープロテイン・ドメインのアミノ酸配列を比較し、それ
らの間で共通した類似性が認められるアミノ酸配列を選
び出し、「BCCP」と名付けた(図3)。図3におい
て、アミノ酸配列の先頭に付した数字は、それぞれの生
物のACCaseにおける開始メチオニンから数えたア
ミノ酸の番号である。
Each of the previously reported "rat", "chicken", "yeast" and "E. coli" ACCa
The amino acid sequences of the biotin carboxyl carrier protein domain encoded by the se gene were compared, and the amino acid sequences showing common similarity between them were selected and named as "BCCP" (Fig. 3). In FIG. 3, the number added to the beginning of the amino acid sequence is the number of the amino acid counted from the initiation methionine in ACCase of each organism.

【0060】次に、「BCCP」のアミノ酸配列を基に
4種類のオリゴヌクレオチドプライマーBCCP1〜B
CCP4(配列表の配列番号16〜19)を作製した。
それらBCCP1〜BCCP4のオリゴヌクレオチドプ
ライマーと、シロイヌナズナACCase−1遺伝子の
ビオチンカルボキシラーゼ・ドメインをコードする領域
に対応した前述のα3のオリゴヌクレオチドプライマー
を組み合わせた4とおりのポリメラーゼ連鎖反応を、前
記と同様の条件でシロイヌナズナのACCase−1遺
伝子のゲノムクローンを鋳型に用いて施した。
Next, four kinds of oligonucleotide primers BCCP1 to BCCP based on the amino acid sequence of "BCCP"
CCP4 (SEQ ID NOS: 16 to 19 in the sequence listing) was prepared.
Under the same conditions as described above, four kinds of polymerase chain reactions were performed, in which the oligonucleotide primers of BCCP1 to BCCP4 and the aforementioned oligonucleotide primer of α3 corresponding to the region encoding the biotin carboxylase domain of the Arabidopsis thaliana ACCase-1 gene were combined. Then, a genomic clone of the Arabidopsis ACCase-1 gene was used as a template.

【0061】その結果、BCCP2とα3,およびBC
CP3とα3のプライマーの組み合わせにおいて、3k
bの増幅断片が得られ、ビオチンカルボキシラーゼ・ド
メイン内の「α」の領域をコードする塩基配列の下流3
kbにビオチンカルボキシルキャリアープロテイン・ド
メインをコードする領域があることが示唆された。
As a result, BCCP2 and α3, and BC
3k in combination of CP3 and α3 primers
The amplified fragment of b was obtained, and it was located downstream of the nucleotide sequence encoding the "α" region in the biotincarboxylase domain 3
It was suggested that there is a region encoding the biotin carboxyl carrier protein domain in kb.

【0062】実際に、このビオチンカルボキシルキャリ
アープロテイン・ドメインのコード域が存在すると考え
られた領域のゲノムクローンの塩基配列を分析したとこ
ろ、1ヶ所のイントロンによって分断される形で、ビオ
チンカルボキシルキャリアープロテイン・ドメインのア
ミノ酸配列をコードし得る塩基配列(配列表の配列番号
20)を見出すことができた。
Actually, when the base sequence of the genomic clone in the region where the coding region of this biotin carboxyl carrier protein domain was considered to exist was analyzed, it was found that biotin carboxyl carrier protein A nucleotide sequence (SEQ ID NO: 20 in the sequence listing) capable of encoding the amino acid sequence of the domain could be found.

【0063】以上の結果は、本発明の遺伝子がACCa
seをコードする遺伝子であることを裏付けている。
The above results indicate that the gene of the present invention is ACCa.
This proves that it is a gene encoding se.

【0064】(5)シロイヌナズナACCase−1遺
伝子のRFLPマッピング 前述のシロイヌナズナのACCase−1遺伝子の一部
に由来する927bpの増幅断片をプローブとして用い
て、シロイヌナズナのコロンビア株ならびにランズバー
グ株のゲノムDNAとのサザンハイブリダイゼーション
を行なった。ACCase−1遺伝子のハイブリダイゼ
ーションバンドは、シグナル強度の差異によって、AC
Case−2遺伝子およびACCase−3遺伝子のバ
ンドと明瞭に区別された。また、制限酵素BamHIに
よるゲノムDNA分解物に対するACCase−1遺伝
子のハイブリダイゼーションバンドは、コロンビア株と
ランズバーグ株の間でRFLP(restriction fragment
length polymorphism)を示した(図4)。
(5) RFLP mapping of Arabidopsis thaliana ACCase-1 gene Using the 927 bp amplified fragment derived from a part of the above-mentioned Arabidopsis thaliana ACCase-1 gene as a probe, genomic DNA of Arabidopsis thaliana Colombia strain and Landsburg strain and Southern hybridization was performed. The hybridization band of the ACCase-1 gene shows that the AC
It was clearly distinguished from the bands of Case-2 gene and ACCase-3 gene. In addition, the hybridization band of the ACCase-1 gene against the genomic DNA degradation product by the restriction enzyme BamHI showed RFLP (restriction fragment) between the Columbia strain and the Landsburg strain.
length polymorphism) (Fig. 4).

【0065】このRFLPを用いれば、シロイヌナズナ
において既に作成されているRFLP地図との対応付け
により、ACCase−1遺伝子の染色体上での座位の
決定が可能である。シロイヌナズナのコロンビア株とラ
ンズバーグ株の交配後代のゲノムDNAを材料にして、
ACCase−1遺伝子に由来する927bpの増幅断
片と、既に座位の決定されているRFLPマーカーとを
プローブに用いたサザンハイブリダイゼーションを行な
い、組み換え価を算出してACCase−1遺伝子座の
決定を行なった。解析の結果、ACCase−1遺伝子
は、シロイヌナズナの第1染色体の中央部に位置付けら
れた(図5)。
Using this RFLP, the locus on the chromosome of the ACCase-1 gene can be determined by associating with the RFLP map already prepared in Arabidopsis. Using genomic DNA of progeny of Arabidopsis thaliana strain and Lansburgh strain,
Southern hybridization was performed using a 927 bp amplified fragment derived from the ACCase-1 gene and an RFLP marker whose locus had been determined as a probe, and recombination values were calculated to determine the ACCase-1 locus. . As a result of the analysis, the ACCase-1 gene was located in the central part of chromosome 1 of Arabidopsis thaliana (Fig. 5).

【0066】(6)アブラナのゲノムDNAの調製とゲ
ノムライブラリーの構築 アブラナ(ブラシカ ナプス:Brassica napus)のゲノ
ムDNAは、RogersとBendichの方法(Pl
ant Mol. Biol., 5, 69(1985))に従って調製した。得
られたゲノムDNAを制限酵素Sau3AIで限定分解
し、更にショ糖密度勾配遠心分離を行なって、10kb
以上のDNA断片を得た。
(6) Preparation of Rape Genomic DNA and Construction of Genomic Library The rape (Brassica napus) genomic DNA was obtained by the method of Rogers and Bendich (Pl.
ant Mol. Biol., 5, 69 (1985)). The obtained genomic DNA was digested with the restriction enzyme Sau3AI and further subjected to sucrose density gradient centrifugation to obtain 10 kb.
The above DNA fragments were obtained.

【0067】このDNA断片を、BamHIで切断した
λEMBL3ファージベクターのアームと連結後、イン
ビトロ パッケージングキット(ストラタジーン社製、
GigapackII Gold)を用いて、パッケージ
ングを行ない、大腸菌LE392株に感染させることに
よって、多数の組換えλファージを得た。これをアブラ
ナのゲノムDNAライブラリーとした。ライブラリーの
大きさは、1.9×106であった。
This DNA fragment was ligated to an arm of a λEMBL3 phage vector cleaved with BamHI, and then an in vitro packaging kit (Stratagene,
GigapackII Gold) was used for packaging and infecting E. coli strain LE392 to obtain a large number of recombinant λ phages. This was used as a canola genomic DNA library. The size of the library was 1.9 × 10 6 .

【0068】(7)アブラナACCase遺伝子のゲノ
ムクローンの単離 前記アブラナのゲノムライブラリーを対象に、前述のシ
ロイヌナズナのACCase−1遺伝子を含むゲノムク
ローンをプローブとして用いたプラークハイブリダイゼ
ーションにより、アブラナACCase遺伝子を含むゲ
ノムクローンのスクリーニングを行なった。
(7) Isolation of a genomic clone of the canola ACCase gene By subjecting the rapeseed genomic library to plaque hybridization using the above-mentioned genomic clone containing the Arabidopsis ACCASE-1 gene as a probe, the canola ACCase gene was isolated. Was screened for genomic clones containing

【0069】その結果、4種の陽性を示すゲノムクロー
ンを得た。それぞれのクローンについて、λDNAを調
製して、3種の制限酵素(BamHI,SalI,Xh
oI)を用いて、挿入断片の物理的地図を作成した。物
理的地図の比較から、4種のゲノムクローンは、2群に
分類され、それらが染色体中の2つの部位に由来してい
ることが確認された。更に、シロイヌナズナのACCa
se遺伝子と相同性を有するアブラナACCase遺伝
子の領域を特定した。図6に、アブラナのACCase
遺伝子を含むゲノムクローンの物理的地図を示す。図6
中、制限酵素切断点は、BamHI(Bm),SalI
(S),XhoI(Xh)で示した。各物理的地図の下
段の細線は、単離された個々のゲノムクローンがカバー
する領域を示している。シロイヌナズナのACCase
遺伝子と相同性を有するアブラナACCase遺伝子の
領域を影を付けて示した。
As a result, 4 kinds of positive genomic clones were obtained. For each clone, λDNA was prepared and three restriction enzymes (BamHI, SalI, Xh) were prepared.
oI) was used to create a physical map of the insert. From the comparison of physical maps, it was confirmed that the four genomic clones were classified into two groups and that they were derived from two sites in the chromosome. In addition, Arabidopsis ACCa
A region of the canola ACCase gene having homology with the se gene was identified. Figure 6 shows the rapeseed ACCase.
1 shows a physical map of a genomic clone containing a gene. Figure 6
Among them, the restriction enzyme cleavage points are BamHI (Bm) and SalI.
(S), XhoI (Xh). The thin line at the bottom of each physical map shows the region covered by the isolated individual genomic clones. ACCASE of Arabidopsis
The region of the canola ACCase gene having homology with the gene is shown shaded.

【0070】(8)ACCaseの発現の増大 シロイヌナズナACCase−1遺伝子を含むゲノムD
NA断片を用いて、センス・ACCase遺伝子の構築
を行なった(図7)。ACCaseの酵素蛋白質をコー
ドする全塩基配列ならびに発現制御を行なうプロモータ
ー配列とを含むゲノムDNA断片を得るために、3種の
ゲノムクローン(pATgACC−1a,pATgAC
C−1b,pATgACC−1c)に分断されているA
CCase−1遺伝子領域の連結を行なった後、制限酵
素EcoRVで部分分解して、11.8kbのゲノムD
NA断片を得た。制限酵素HindIIIならびにEco
RIで切断し、平滑末端化したバイナリーベクターpB
I121(R.Jefferson et al.,E
MBO J.,6,3901−3907(1987))
に上記11.8kbのゲノムDNA断片を挿入し、セン
ス・ACCase遺伝子とした(図7)。このベクター
は、カナマイシン耐性遺伝子(Kmr)をマーカーとし
て有している。また、図7において、上段の線は、シロ
イヌナズナACCase−1遺伝子の物理的地図を示
す。物理的地図の下段のa,b,cを付した細線は、A
CCase−1遺伝子の連結に用いたゲノムクローンp
ATgACC−1a,pATgACC−1b,pATg
ACC−1cがカバーする領域を示している。
(8) Increased expression of ACCase Genome D containing Arabidopsis ACCase-1 gene
Construction of the sense / ACCase gene was performed using the NA fragment (FIG. 7). Three genomic clones (pATgACC-1a, pATgAC) were obtained in order to obtain a genomic DNA fragment containing the entire nucleotide sequence encoding the ACCase enzyme protein and a promoter sequence for controlling the expression.
A divided into C-1b and pATgACC-1c)
After the CCase-1 gene region was ligated, it was partially digested with the restriction enzyme EcoRV to obtain a genome D of 11.8 kb.
The NA fragment was obtained. Restriction enzymes HindIII and Eco
Binary vector pB cut with RI and blunt-ended
I121 (R. Jefferson et al., E.
MBO J. , 6,3901-3907 (1987)).
The above-mentioned 11.8 kb genomic DNA fragment was inserted into to obtain a sense / ACCase gene (FIG. 7). This vector has a kanamycin resistance gene (Km r ) as a marker. Further, in FIG. 7, the upper line shows a physical map of the Arabidopsis thaliana ACCase-1 gene. The thin lines with a, b, and c at the bottom of the physical map are A
Genomic clone p used for ligation of CCase-1 gene
ATgACC-1a, pATgACC-1b, pATg
The area covered by ACC-1c is shown.

【0071】センス・ACCase遺伝子を導入した形
質転換シロイヌナズナを、アグロバクテリウムを介した
遺伝子導入法によって作成した。まず、上記センス・A
CCase発現ベクターをアグロバクテリウム(Agroba
cterium tumefaciens)に転移させるために、センス・
ACCase発現ベクターを有する大腸菌,転移因子プ
ラスミドpRK2013を有する大腸菌,およびアグロ
バクテリウムの混合培養を100μg/mlリファンピ
シンと25μg/mlのカナマイシンを含むLB寒天培
地(1%バクトトリプトン,0.5%酵母抽出液,0.
5%塩化ナトリウム,1.2%バクトアガー)上で28
℃,2日間行なって、センス・ACCase遺伝子の転
移によりカナマイシン耐性の付与されたアグロバクテリ
ウムのコロニ−を選抜した。次いで、センス・ACCa
se遺伝子を有するアグロバクテリウムを100μg/
mlリファンピシンと25μg/mlのカナマイシンを
含むLB液体培地(1%バクトトリプトン,0.5%酵
母抽出液,0.5%塩化ナトリウム)で28℃,16時
間培養した培養液を用意した。
Transformed Arabidopsis into which the sense / ACCase gene was introduced was prepared by the Agrobacterium-mediated gene introduction method. First, the sense A
The CCase expression vector was added to Agrobacterium (Agroba
cterium tumefaciens)
A mixed culture of Escherichia coli having an ACCase expression vector, Escherichia coli having a transposable element plasmid pRK2013, and Agrobacterium was mixed with LB agar medium containing 100 μg / ml rifampicin and 25 μg / ml kanamycin (1% bactotryptone, 0.5% yeast). Extract, 0.
28 on 5% sodium chloride, 1.2% Bacto agar
After 2 days at C, colonies of Agrobacterium to which kanamycin resistance was imparted by transfer of the sense / ACCase gene were selected. Then, sense, ACCa
100 μg of Agrobacterium having se gene /
A culture solution was prepared by culturing at 28 ° C. for 16 hours in an LB liquid medium (1% bactotryptone, 0.5% yeast extract, 0.5% sodium chloride) containing ml rifampicin and 25 μg / ml kanamycin.

【0072】一方、シロイヌナズナは、種子をシャーレ
の寒天培地に播種し、22℃で20日間生育させて、抽
台した直後の花茎を切除した。このシロイヌナズナの切
り口に、上記のセンス・ACCase遺伝子を有するア
グロバクテリウムの培養液を注射器を用いて注入し、感
染を行なわせた。感染後の植物を1カ月間栽培して採種
した。その種子を100μg/mlのカナマイシンの含
まれたシャーレ中の寒天培地に播種し、22℃で培養し
て、カナマイシンに耐性を示す後代植物を選抜し、形質
転換シロイヌナズナを得た。更に、形質転換シロイヌナ
ズナは、2カ月間栽培して採種した。この形質転換シロ
イヌナズナから得られた種子を用いて、ACCaseの
活性をNikolauらの方法(Arch.Bioch
em.Biophys.,211,605−612(1
981))に従って調査した。0.1M Trisー塩
酸緩衝液(pH8),1mM ATP,2.5mM M
gCl2 ,50mMKCl,30mM NaH14CO
3 ,1mM ジチオスレイトール,0.3mMアセチル
CoAを含む反応混液を作成し、30℃で5分間振とう
した。この液を濾紙上にスポットし、温風で未反応のH
14CO3 -を蒸発させ、残った反応産物の放射能をトルエ
ン系シンチレーターを用いて測定した。その結果、形質
転換シロイヌナズナから得られた種子では、センス・A
CCase遺伝子の付与によって、ACCaseの活性
が増大していた。
On the other hand, as for Arabidopsis thaliana, seeds were sown on an agar medium of a petri dish, grown at 22 ° C. for 20 days, and the flower stalks immediately after being pulled were excised. A culture solution of the above-mentioned Agrobacterium having the sense / ACCase gene was injected into the cut end of this Arabidopsis thaliana using a syringe to infect it. The infected plants were cultivated for one month and seeded. The seeds were sown on an agar medium in a petri dish containing 100 μg / ml of kanamycin and cultured at 22 ° C. to select progeny plants resistant to kanamycin to obtain transformed Arabidopsis thaliana. Further, the transformed Arabidopsis thaliana was cultivated for 2 months and seeded. Using the seeds obtained from this transformed Arabidopsis thaliana, the activity of ACCase was determined by the method of Nikolau et al. (Arch. Bioch.
em. Biophys. , 211, 605-612 (1
981)). 0.1 M Tris-HCl buffer (pH 8), 1 mM ATP, 2.5 mM M
gCl 2 , 50 mM KCl, 30 mM NaH 14 CO
A reaction mixture containing 3 , 1 mM dithiothreitol and 0.3 mM acetyl-CoA was prepared and shaken at 30 ° C. for 5 minutes. Spot this solution on filter paper, and use hot air to
14 CO 3 was evaporated, and the radioactivity of the remaining reaction product was measured using a toluene scintillator. As a result, in the seeds obtained from the transformed Arabidopsis thaliana, Sense A
The activity of ACCase was increased by the addition of the CCase gene.

【0073】(9)ACCaseの発現の抑制 シロイヌナズナACCase−1遺伝子を含むゲノムD
NA断片を用いて、アンチセンスACCase遺伝子の
構築を行なった(図8)。前記pATgACC−1bに
含まれるACCase−1遺伝子断片を制限酵素Xba
Iで切断して、1.8kbのゲノムDNA断片を得た。
このゲノムDNA断片をバイナリーベクターpBI12
1(R.Jefferson et al.,EMBO
J.,6,3901−3907(1987))のプロ
モーター下流に位置するXbaIサイトに挿入し、AC
Case酵素蛋白質をコードするmRNAと相補的な転
写物RNAを合成し得るものを選択し、アンチセンス・
ACCase遺伝子とした(図8)。図8において、上
段の線は、シロイヌナズナACCase−1遺伝子の物
理的地図を示す。
(9) Suppression of ACCase expression Genome D containing the Arabidopsis ACCase-1 gene
The NA fragment was used to construct an antisense ACCase gene (FIG. 8). The ACCase-1 gene fragment contained in the pATgACC-1b is a restriction enzyme Xba.
Cleavage with I gave a 1.8 kb genomic DNA fragment.
This genomic DNA fragment was used as the binary vector pBI12.
1 (R. Jefferson et al., EMBO
J. , 6,3901-3907 (1987)) at the XbaI site located downstream of the promoter,
Those capable of synthesizing a transcript RNA complementary to the mRNA encoding the Case enzyme protein are selected, and antisense
The ACCase gene was used (FIG. 8). In FIG. 8, the upper line shows a physical map of the Arabidopsis thaliana ACCase-1 gene.

【0074】このアンチセンス・ACCase遺伝子を
導入した形質転換シロイヌナズナを、前述の方法に準じ
て、アグロバクテリウムを介した遺伝子導入法によって
作成した。この形質転換シロイヌナズナから種子を得
て、ACCaseの活性を前述の方法に準じて測定し
た。その結果、ACCaseの活性は低下し、アンチセ
ンス・ACCase遺伝子によって、ACCaseの発
現が抑制されていることが示された。
The transformed Arabidopsis thaliana into which the antisense / ACCase gene was introduced was prepared by the Agrobacterium-mediated gene introduction method according to the method described above. Seeds were obtained from this transformed Arabidopsis thaliana, and the activity of ACCase was measured according to the method described above. As a result, it was shown that the activity of ACCase was reduced and the expression of ACCase was suppressed by the antisense / ACCase gene.

【0075】[0075]

【実施例2】 シロイヌナズナACCase−1mRN
Aの単離 (1)シロイヌナズナのmRNAの調製とcDNAライ
ブラリーの構築 温室内で4.5週間栽培したシロイヌナズナの茎葉か
ら、グアニジン法に従って、全RNAを調製した。得ら
れた全RNAから、オリゴdTセルロースカラムクロマ
トグラフィーによって、mRNAを精製した。
Example 2 Arabidopsis ACCase-1mRN
Isolation of A (1) Preparation of mRNA of Arabidopsis thaliana and construction of cDNA library Total RNA was prepared from the foliage of Arabidopsis thaliana cultivated in a greenhouse for 4.5 weeks according to the guanidine method. From the obtained total RNA, mRNA was purified by oligo dT cellulose column chromatography.

【0076】このmRNAを鋳型として、cDNA合成
キット(アマシャム社製)を利用して、オリゴdTプラ
イマーおよびランダムプライマーと逆転写酵素を用いて
cDNAを合成した。得られた二本鎖cDNAの両末端
に、ライゲーションキット(宝酒造社製)を用いてEc
oRIアダプターを連結した。これをEcoRIで切断
したλgt11ベクターのアームと連結した後、インビ
トロ パッケージングキット(ストラタジーン社製、G
igapackII Gold)を用いて、ラムダファ
ージのパッケージングを行ない、大腸菌Y1090株に
感染させることによって多数の組換えλファージを得
た。これをシロイヌナズナのcDNAライブラリーとした。
ライブラリーの大きさは、1.7x106であった。
Using this mRNA as a template, a cDNA synthesis kit (manufactured by Amersham) was used to synthesize cDNA using an oligo dT primer, a random primer and a reverse transcriptase. Ec was obtained by using a ligation kit (Takara Shuzo) on both ends of the obtained double-stranded cDNA.
The oRI adapter was ligated. This was ligated to an arm of a λgt11 vector cut with EcoRI, and then an in vitro packaging kit (G, Stratagene, G
A large number of recombinant λ phages were obtained by packaging lambda phage using igapackII Gold) and infecting Escherichia coli Y1090 strain. This was used as an Arabidopsis cDNA library.
The size of the library was 1.7 × 10 6 .

【0077】(2)シロイヌナズナACCaseのcD
NAクローンの単離及びその発現 前記シロイヌナズナのcDNAライブラリーを対象に、
シロイヌナズナACCaseのcDNAクローンをプラ
ークハイブリダイゼーションによって、スクリーニング
した。プローブには、前述のシロイヌナズナのACCa
se−1遺伝子の大部分を占めるゲノムクローンpAT
gACC−1bを用いた。
(2) cD of Arabidopsis ACCASE
Isolation of NA clone and its expression Targeting the cDNA library of Arabidopsis thaliana,
Arabidopsis ACCase cDNA clones were screened by plaque hybridization. The probe contains the above-mentioned Arabidopsis ACCa.
Genomic clone pAT occupying most of se-1 gene
gACC-1b was used.

【0078】その結果、複数の陽性を示すcDNAクロ
ーンを得た。それぞれのcDNAクローンについて、挿
入断片をEcoRIで切り出して、プラスミドベクター
にサブクローニングした。11種類の制限酵素(Bam
HI,BglII,EcoRI,EcoRV,Hinc
II,HindIII,PstI,SalI,Sst
I,XbaI,XhoI)を用いて、cDNAクローン
の挿入断片の物理的地図を作成し、それぞれのクローン
の対応関係を調査した。得られたcDNAクローンは、
cDNAの全長をカバーし得ていなかった。そこで、そ
れらcDNAクローンをプローブに用いて、新たにcD
NAクローンを単離する作業を繰り返すことによって、
ACCaseのcDNA全長をcDNAクローンでカバ
ーするに至った。ACCaseのcDNAの物理的地図
を図9に示す。
As a result, cDNA clones showing a plurality of positives were obtained. For each cDNA clone, the insert fragment was excised with EcoRI and subcloned into a plasmid vector. 11 kinds of restriction enzymes (Bam
HI, BglII, EcoRI, EcoRV, Hinc
II, HindIII, PstI, SalI, Sst
I, XbaI, XhoI) was used to create a physical map of the insert fragment of the cDNA clone, and the correspondence between the clones was investigated. The obtained cDNA clone is
It could not cover the full length of the cDNA. Therefore, using these cDNA clones as probes, new cDNA
By repeating the work of isolating NA clones,
The full-length ACCase cDNA was covered with a cDNA clone. A physical map of the ACCase cDNA is shown in FIG.

【0079】図9中、物理的地図の下段の細線は、単離
された個々のcDNAクローンがカバーする領域を示し
ている。また、四角で示した部分は、ACCaseをコ
ードしている領域である。
In FIG. 9, the thin line at the bottom of the physical map shows the region covered by the isolated individual cDNA clones. Moreover, the part shown by the square is the region encoding ACCase.

【0080】これらcDNAクローンの挿入断片の塩基
配列を決定した。その結果を配列表の配列番号21に示
した。cDNAの塩基配列は、2254のアミノ酸をコ
ードしており(配列番号22)、前述のゲノムDNAの
解析から得られたビオチンカルボキシラーゼ・ドメイン
(配列表の配列番号15)およびビオチンカルボキシル
キャリアープロテイン・ドメイン(配列表の配列番号2
0)の各配列に対応する領域を含んでいることが確認さ
れた。また、そのアミノ酸配列を既に報告のある「ラッ
ト」,「ニワトリ」,「酵母」のそれぞれのACCas
e遺伝子がコードするアミノ酸配列と比較した場合、同
一性の程度は、それぞれ38.9%,38.1%,3
9.4%と低かったが、ビオチンカルボキシラーゼ・ド
メイン,ビオチンカルボキシルキャリアープロテイン・
ドメインおよびトランスカルボキシラーゼ・ドメインで
は、共通した類似性が認められ、それらドメインの配置
もよく一致していた。これらの結果は、得られたcDN
Aが、シロイヌナズナのACCaseをコードすること
を裏付けるものである。
The nucleotide sequences of the inserted fragments of these cDNA clones were determined. The result is shown in SEQ ID NO: 21 of the sequence listing. The nucleotide sequence of the cDNA encodes 2254 amino acids (SEQ ID NO: 22), and the biotin carboxylase domain (SEQ ID NO: 15 in the sequence listing) and biotin carboxyl carrier protein domain (SEQ ID NO: 15) obtained from the analysis of the genomic DNA described above. Sequence number 2 in the sequence listing
It was confirmed that the region corresponding to each sequence of 0) was included. In addition, the amino acid sequences of the "Cas" of "rat", "chicken", and "yeast" which have been reported have been reported.
When compared to the amino acid sequence encoded by the e gene, the degree of identity was 38.9%, 38.1%, 3 respectively.
Although it was as low as 9.4%, biotin carboxylase domain, biotin carboxyl carrier protein
The domains and transcarboxylase domains showed common similarities, and the arrangements of these domains were also in good agreement. These results show that the obtained cDNA
This confirms that A encodes an Arabidopsis ACCase.

【0081】(3)cDNAの導入によるACCase
の発現増大 シロイヌナズナACCaseのcDNAを用いて、構成
的強発現をするセンス・ACCase遺伝子の構築を行
なった(図10)。ACCaseの酵素蛋白質をコード
する全塩基配列を含むcDNA断片を得るために、8種
のcDNAクローン(pATcACC−a,pATcA
CC−b,pATcACC−c,pATcACC−d,
pATcACC−e,pATcACC−f,pATcA
CC−g,pATcACC−h)に分断されているcD
NAを連結した後に、制限酵素HindIIIで部分分
解して、6.95kbのcDNA断片を得た。バイナリ
ーベクターpBI121(R.Jefferson e
t al.,EMBO J.,6,3901−3907
(1987))の構成的強発現プロモーター(カリフラ
ワーモザイクウイルス35Sプロモーター)の下流に位
置するXbaIサイトとEcoRIサイトを切断し、平
滑末端化したものに上記の6950bのcDNA断片を
平滑末端化して挿入し、構成的強発現をするセンス・A
CCase遺伝子とした(図10)。このセンス・AC
Case遺伝子は、前述のゲノムDNA断片を用いて構
築したセンス・ACCase遺伝子に比べて、プロモー
ターが改変されているために遺伝子発現が増大する点で
優れるほか、遺伝子領域にイントロンが含まれておらず
短いために、宿主染色体への遺伝子の導入が行なわれ易
くなる。
(3) ACCase by introduction of cDNA
Expression enhancement of Arabidopsis thaliana ACCase cDNA was used to construct a constitutively strong sense ACCase gene (FIG. 10). In order to obtain a cDNA fragment containing the entire base sequence encoding the enzyme protein of ACCase, 8 kinds of cDNA clones (pATcACC-a, pATcA) were obtained.
CC-b, pATcACC-c, pATcACC-d,
pATcACC-e, pATcACC-f, pATcA
CD divided into CC-g, pATcACC-h)
After ligating NA, it was partially digested with a restriction enzyme HindIII to obtain a 6.95 kb cDNA fragment. Binary vector pBI121 (R. Jefferson e
t al. , EMBO J .; , 6,3901-3907
(1987)), the XbaI site and the EcoRI site located downstream of the constitutive strong expression promoter (cauliflower mosaic virus 35S promoter) were cleaved, and the 6950b cDNA fragment was blunt-ended and inserted into the blunt-ended product. , Sense A with strong constitutive expression
It was designated as CCase gene (FIG. 10). This sense AC
The Case gene is superior to the sense / ACCase gene constructed using the above-mentioned genomic DNA fragment in that gene expression is increased because the promoter is modified, and the gene region does not contain introns. The short length facilitates the introduction of the gene into the host chromosome.

【0082】構成的強発現をするセンス・ACCase
遺伝子を導入した形質転換シロイヌナズナを、アグロバ
クテリウムを介した遺伝子導入法によって作成した。ま
ず、上記の構成的強発現をするセンス・ACCase発
現ベクターをアグロバクテリウム(Agrobacte
rium tumefaciens)に転移させるため
に、構成的強発現をするセンス・ACCase発現ベク
ターを有する大腸菌,転移因子プラスミドpRK201
3を有する大腸菌,およびアグロバクテリウムの混合培
養を100μg/ml リファンピシンと25μg/m
l カナマイシンを含むLB寒天培地(1%バクトトリ
プトン,0.5%酵母抽出液,0.5%塩化ナトリウ
ム,1.2%バクトアガー)上で28℃,2日間行なっ
て、構成的強発現をするセンス・ACCase発現ベク
ターの転移によりカナマイシン耐性の付与されたアグロ
バクテリウムのコロニーを選抜した。次いで、センス・
ACCase遺伝子を有するアグロバクテリウムを10
0μg/ml リファンピシンと25μg/ml カナマ
イシンを含むLB液体培地(1%バクトトリプトン,
0.5%酵母抽出液,0.5%塩化ナトリウム)で28
℃,16時間培養した培養液を用意した。
Sense / ACCase with constitutive strong expression
A transgenic Arabidopsis thaliana in which a gene was introduced was prepared by an Agrobacterium-mediated gene introduction method. First, the sense / ACCase expression vector that expresses the constitutive strong expression described above is used as an Agrobacterium (Agrobacterium).
Escherichia coli, transposable element plasmid pRK201 having a sense / ACCase expression vector for constitutively strong expression in order to transfer it to Rium tumefaciens).
A mixed culture of Escherichia coli having 3 and Agrobacterium was mixed with 100 μg / ml rifampicin and 25 μg / m 2.
1 Constitutive strong expression was performed on LB agar medium (1% bactotryptone, 0.5% yeast extract, 0.5% sodium chloride, 1.2% bacto agar) containing kanamycin at 28 ° C for 2 days. A colony of Agrobacterium to which kanamycin resistance was imparted by transfer of a sense / ACCase expression vector was selected. Then sense
10 Agrobacterium carrying ACCase gene
LB liquid medium containing 1 μg / ml rifampicin and 25 μg / ml kanamycin (1% bactotryptone,
28 with 0.5% yeast extract, 0.5% sodium chloride)
A culture solution was prepared by culturing at 16 ° C for 16 hours.

【0083】一方、シロイヌナズナは、種子をシャーレ
中の寒天培地に播種し、22℃で20日間生育させて、
抽台した直後の花芽を切除した。このシロイヌナズナの
切り口に、上記の構成的強発現をするセンス・ACCa
se発現ベクターを有するアグロバクテリウムの培養液
を注射器を用いて注入し、アグロバクテリムを感染させ
た。感染後の植物を1カ月間栽培して採種した。その種
子を100μg/mlのカナマイシンの含まれたシャー
レ中の寒天培地に播種し、22℃で培養して、カナマイ
シンに耐性を示す後代植物を選抜し、形質転換シロイヌ
ナズナを得た。形質転換シロイヌナズナは、2カ月間栽
培して採種した。
On the other hand, for Arabidopsis thaliana, seeds were sown on an agar medium in a petri dish and grown at 22 ° C. for 20 days,
The flower buds were excised immediately after being pulled. At the cut end of this Arabidopsis thaliana, which has the above-mentioned constitutive strong expression, Sense / ACCa
A culture solution of Agrobacterium containing the se expression vector was injected using a syringe to infect Agrobacterium. The infected plants were cultivated for one month and seeded. The seeds were sown on an agar medium in a petri dish containing 100 μg / ml of kanamycin and cultured at 22 ° C. to select progeny plants resistant to kanamycin to obtain transformed Arabidopsis thaliana. The transformed Arabidopsis thaliana was cultivated and seeded for 2 months.

【0084】この形質転換シロイヌナズナから得られた
種子を用いて、ACCaseの活性を、Nikolau
らの方法(Arch.Biochem.Biophy
s.,211,605−612(1981))に従って
調査した。0.1M Tris−塩酸緩衝液(pH
8),1mM ATP,2.5mM MgCl2,50
mMKCl,30mM NaH14CO3,1mM ジチ
オスレイトール,0.3mMアセチルCoAを含む反応
混液を作成し、30℃で5分間振盪した。この反応混液
を濾紙上にスポットし、温風で未反応のH14CO3 -を蒸
発させ、残った反応産物の放射能をトルエン系シンチレ
ータを用いて測定した。その結果、形質転換シロイヌナ
ズナから得られた種子では、構成的強発現をするセンス
・ACCase遺伝子の付与によって、前述のゲノムD
NA断片を用いて構築したセンス・ACCase遺伝子
の付与された形質転換シロイヌナズナの種子よりも更
に、ACCaseの活性が増大していた。
Using the seeds obtained from this transformed Arabidopsis thaliana, the activity of ACCase was examined by Nikolau.
Et al. (Arch. Biochem. Biophy.
s. , 211, 605-612 (1981)). 0.1 M Tris-HCl buffer (pH
8), 1 mM ATP, 2.5 mM MgCl 2 , 50
A reaction mixture containing mMKCl, 30 mM NaH 14 CO 3 , 1 mM dithiothreitol and 0.3 mM acetyl CoA was prepared and shaken at 30 ° C. for 5 minutes. The reaction mixture was spotted on a filter paper, unreacted H 14 CO 3 was evaporated with warm air, and the radioactivity of the remaining reaction product was measured using a toluene scintillator. As a result, in the seeds obtained from the transformed Arabidopsis thaliana, the above-mentioned genome D was obtained by the addition of the sense / ACCase gene that strongly expresses constitutively.
The activity of ACCase was further increased as compared with the seed of transformed Arabidopsis thaliana to which the sense / ACCase gene was constructed, which was constructed using the NA fragment.

【0085】[0085]

【発明の効果】本発明によって、ACCase遺伝子あ
るいはその一部をコードする遺伝子断片が得られる。こ
れらの断片を植物に導入することによって、ACCas
eの酵素活性を増大させて、脂肪含量の増大を求めるこ
とが可能である。
Industrial Applicability According to the present invention, a gene fragment encoding the ACCase gene or a part thereof can be obtained. By introducing these fragments into plants, ACCas
It is possible to increase the enzymatic activity of e to determine an increase in fat content.

【0086】また、本発明によって得られたACCas
e遺伝子の全部あるいはその一部を含むDNA断片を用
いて、ACCase遺伝子に対するアンチセンス遺伝子
の構築が可能である。これを植物に導入することによっ
て、ACCase活性を抑えることが可能である。
ACCas obtained by the present invention
An antisense gene for the ACCase gene can be constructed using a DNA fragment containing all or part of the e gene. It is possible to suppress ACCase activity by introducing this into plants.

【0087】[0087]

【配列表】[Sequence list]

配列番号:1 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTGA TNATTAAAGC 20 SEQ ID NO: 1 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TATCCGGTGA TNATTAAAGC 20

【0088】配列番号:2 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTCA TNATTAAGGC 20SEQ ID NO: 2 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TATCCGGTCA TNATTAAGGC 20

【0089】配列番号:3 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTGA TNATCAAAGC 20SEQ ID NO: 3 Sequence Length: 20 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence TATCCGGTGA TNATCAAAGC 20

【0090】配列番号:4 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTTA TNATCAAGGC 20SEQ ID NO: 4 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TATCCGGTTA TNATCAAGGC 20

【0091】配列番号:5 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTGA TNATAAAAGC 20SEQ ID NO: 5 Sequence Length: 20 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence TATCCGGTGA TNATAAAAGC 20

【0092】配列番号:6 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TATCCGGTCA TNATAAAGGC 20SEQ ID NO: 6 Sequence length: 20 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TATCCGGTCA TNATAAAGGC 20

【0093】配列番号:7 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 ATCAGAAGGT CGTNGAAGAA G 21SEQ ID NO: 7 Sequence Length: 21 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence ATCAGAAGGT CGTNGAAGAA G 21

【0094】配列番号:8 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 ATCAGAAGGT CGTNGAAGAG G 21SEQ ID NO: 8 Sequence length: 21 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence ATCAGAAGGT CGTNGAAGAG G 21

【0095】配列番号:9 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 ATCAGAAGGT CGTNGAGGAA G 21SEQ ID NO: 9 Sequence Length: 21 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence ATCAGAAGGT CGTNGAGGAA G 21

【0096】配列番号:10 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 ATCAGAAGGT CGTNGAGGAG G 21SEQ ID NO: 10 Sequence length: 21 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence ATCAGAAGGT CGTNGAGGAG G 21

【0097】配列番号:11 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 CATTTCAGTG ACNGGATGTT C 21SEQ ID NO: 11 Sequence Length: 21 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence CATTTCAGTG ACNGGATGTT C 21

【0098】配列番号:12 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 CATTTCAGTG ACNGGGTGTT C 21SEQ ID NO: 12 Sequence length: 21 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence CATTTCAGTG ACNGGGTGTT C 21

【0099】配列番号:13 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 CATTTCAGTG ACNGGATGCT C 21SEQ ID NO: 13 Sequence Length: 21 Sequence Type: Nucleic Acid Number of Strands: Single Strand Sequence Type: Other Nucleic Acid (Synthetic Oligonucleotide) Sequence CATTTCAGTG ACNGGATGCT C 21

【0100】配列番号:14 配列の長さ:21 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 CATTTCAGTG ACNGGGTGCT C 21SEQ ID NO: 14 Sequence length: 21 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence CATTTCAGTG ACNGGGTGCT C 21

【0101】配列番号:15 配列の長さ:927 配列の型:核酸 鎖の数:二本鎖 配列の種類:Genomic DNA 起源 生物名:シロイヌナズナ(Arabidopsis thaliana) 配列の特徴 特徴を表す記号:CDS 存在位置:1..53 特徴を決定した方法:S 特徴を表す記号:intron 存在位置:54..134 特徴を決定した方法:P 特徴を表す記号:CDS 存在位置:135..227 特徴を決定した方法:S 特徴を表す記号:intron 存在位置:228..359 特徴を決定した方法:P 特徴を表す記号:CDS 存在位置:360..455 特徴を決定した方法:S 特徴を表す記号:intron 存在位置:456..636 特徴を決定した方法:P 特徴を表す記号:CDS 存在位置:637..810 特徴を決定した方法:S 特徴を表す記号:intron 存在位置:811..903 特徴を決定した方法:P 特徴を表す記号:CDS 存在位置:904..927 特徴を決定した方法:S 他の情報:HindIII認識配列 存在位置:258..263 特徴を決定した方法:S 他の情報:XbaI認識配列 存在位置:368..373 特徴を決定した方法:S 他の情報:PstI認識配列 存在位置:823..828 特徴を決定した方法:S 配列 TATCGGTGATAATCAAA GCA TCG TGG GGT GGT GGT GGT AAA GGA ATC 47 Ser Val Ile Ile Lys Ala Ser Trp Gly Gly Gly Gly Lys Gly Ile 1 5 10 15 AGG AAG GTCAGCTTCT GTAGATATGC CTTTTGATTG TGGACTAAGC CGATTACTAT 103 Arg Lys ATAAGTACTT ATTCTGGTTT TAAATTTATA G GTT CAT AAT GAT GAT GAG GTT 155 Val His Asn Asp Asp Glu Val 20 AGG GCT CTA TTC AAG CAA GTT CAG GGT GAG GTC CCA GGC TCA CCA ATA 203 Arg Ala Leu Phe Lys Gln Val Gln Gly Glu Val Pro Gly Ser Pro Ile 25 30 35 40 TTC ATA ATG AAG GTT GCG TCA CAG GTATGGCTCC TTAACTATAT CTCTTGATCG 257 Phe Ile Met Lys Val Ala Ser Gln 45 AAGCTTAGCT GAGTTCTTAT CTGGTTACTT TACTAGAGAA TTTAAAGTAG TAATGCATTG 317 CTTTTCTTTA CATTTCATTT TTTCTAATTT TTTTTTGTAT AG AGT CGG CAT CTA 371 Ser Arg His Leu 50 GAG GTC CAG CTG CTC TGT GAC AAG CAT GGA AAT GTT TCA GCT CTG CAT 419 Glu Val Gln Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His 55 60 65 AGC CGT GAT TGT AGC GTC CAG AGA AGA CAT CAA AAG GTTTGTTAGT 465 Ser Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys 70 75 80 GGTTGATTCT GGATTTTTAA TTGTCTGGTT AGTGGTTATA TAGAAAAACA TTCTGTCCAT 525 TTATTCTTAT ATAGTTATAT ACATCAATTT TTGTTCTCCA ACTGAGTTAT AGTCCCTTTT 585 AGCGCATTGC AAATTATTGC ATGAGCTCTT ACCTTATCGT TTGTATCGTA G ATC ATA 642 Ile Ile GAG GAG GGT CCA ATT ACT GGT CGT CCG CCA GAA ACT GTC AAG AAA CTT 690 Glu Glu Gly Pro Ile Thr Gly Arg Pro Pro Glu Thr Val Lys Lys Leu 85 90 95 GAA CAA GCA GCT AGA AGG TTG GCT AAG AGT GTT AAC TAT GTT GGA GCT 738 Glu Gln Ala Ala Arg Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala 100 105 110 GCT ACT GTT GAG TAT CTC TAC AGT ATG GAC ACT GGG GAG TAC TAC TTC 786 Ala Thr Val Glu Tyr Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe 115 120 125 130 TTA GAG CTT AAC CCT CGC TTA CAG GTTGGTTTCA TACTGCAGCT TTTTGCGTTG 840 Leu Glu Leu Asn Pro Arg Leu Gln 135 AAATATATTG AAGGTCCGGA CTTGAAAATT GAATGACTTG TTTAACTTGA TGTTTGAGGT 900 CAG GTT GAG CAC CCT GTC ACT GAA ATG 927 Val Glu His Pro Val Thr Glu Met 140 145SEQ ID NO: 15 Sequence length: 927 Sequence type: Nucleic acid Number of strands: Double stranded Sequence type: Genomic DNA Origin organism name: Arabidopsis thaliana Sequence features Characteristic symbols: CDS Existence Location: 1..53 Method of determining features: S Characteristic symbol: intron Presence position: 54..134 Method of determining features: P Characteristic symbol: CDS Location: 135..227 Characteristic determination Method: S Feature symbol: intron Location: 228..359 Feature determination method: P Feature symbol: CDS Location: 360..455 Feature determination method: S Feature symbol: intron Location: 456..636 Method of determining features: P Characteristic symbol: CDS Location of existence: 637..810 Method of determining features: S Characteristic symbol: intron Location of existence: 811..903 Characteristic was determined Method: P Characteristic symbol: CDS Location: 904..927 Method of determining characteristic: S Other information: Hind III Recognition sequence Location: 258..263 Method by which the feature was determined: S Other information: XbaI recognition sequence Location: 368..373 Method by which the feature was determined: S Other information: PstI recognition sequence Location: 823. .828 Characterization Method: S-Sequence TATCGGTGATAATCAAA GCA TCG TGG GGT GGT GGT GGT AAA GGA ATC 47 Ser Val Ile Ile Lys Ala Ser Trp Gly Gly Gly Gly Lys Gly Ile 1 5 10 15 AGG AAG GTCAGCTTCT GTAGATATGC CTTTTGATTG TGGACTAAGCCGATT Lys ATAAGTACTT ATTCTGGTTT TAAATTTATA G GTT CAT AAT GAT GAT GAG GTT 155 Val His Asn Asp Asp Glu Val 20 AGG GCT CTA TTC AAG CAA GTT CAG GGT GAG GTC CCA GGC TCA CCA ATA 203 Arg Ala Leu Phe Lys Glu Val Pron Gly Glu Gly Ser Pro Ile 25 30 35 40 TTC ATA ATG AAG GTT GCG TCA CAG GTATGGCTCC TTAACTATAT CTCTTGATCG 257 Phe Ile Met Lys Val Ala Ser Gln 45 AAGCTTAGCT GAGTTCTTAT CTGGTTACTu TACTAGAGAA TTTAAAGTAG TAATGCATTG 317 CTTTTCTTTATT CAT 50 GAG GTC CAG CTG CTC TGT GAC AAG CAT G GA AAT GTT TCA GCT CTG CAT 419 Glu Val Gln Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His 55 60 65 AGC CGT GAT TGT AGC GTC CAG AGA AGA CAT CAA AAG GTTTGTTAGT 465 Ser Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys 70 75 80 GGTTGATTCT GGATTTTTAA TTGTCTGGTT AGTGGTTATA TAGAAAAACA TTCTGTCCAT 525 TTATTCTTAT ATAGTTATAT ACATCAATTT TTGTTCTCCA ACTGAGTTAT AGTCCCTTTT 585 AGCGCATTGC AAATTATTGC ATGAGCTCTT ACCTTATCGT TTGTATCGTA G ATC ATA 642 Ile Ile GAG GAG GGT CCA ATT ACT GGT CGT CCG CCA GAA ACT GTC AAG AAA CTT 690 Glu Glu Gly Pro Ile Thr Gly Arg Pro Pro Glu Thr Val Lys Lys Leu 85 90 95 GAA CAA GCA GCT AGA AGG TTG GCT AAG AGT GTT AAC TAT GTT GGA GCT 738 Glu Gln Ala Ala Arg Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala 100 105 110 GCT ACT GTT GAG TAT CTC TAC AGT ATG GAC ACT GGG GAG TAC TAC TTC 786 Ala Thr Val Glu Tyr Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe 115 120 125 130 TTA GAG CTT AAC CCT CGC TTA CAG GTTGGTTTCA TACTGCAGCT TTTTGCGTTG 840 Leu Glu Leu Asn Pro Arg Leu Gln 135 AAATATATTG AAGGTCCGGA CTTGAAAATT GAATGACTTG TTTAACTTGA TGTTTGAGGT 900 CAG GTT GAG CAC CCT GTC ACT GAA ATG 927 Val Glu His Pro Val Thr Glu Met 140 145

【0102】配列番号:16 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TGATCATCTT CATAACYTC 19SEQ ID NO: 16 Sequence length: 19 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TGATCATCTT CATAACYTC 19

【0103】配列番号:17 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TGATCATCTT CATGGCYTC 19SEQ ID NO: 17 Sequence length: 19 Sequence type: Nucleic acid Number of strands: Single strand Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TGATCATCTT CATGGCYTC 19

【0104】配列番号:18 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TGACCATCTT CATGACYTC 19SEQ ID NO: 18 Sequence length: 19 Sequence type: Nucleic acid Number of strands: Single stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TGACCATCTT CATGACYTC 19

【0105】配列番号:19 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 配列の種類:他の核酸(合成オリゴヌクレオチド) 配列 TGACCATCTT CATAGCYTC 19SEQ ID NO: 19 Sequence length: 19 Sequence type: Nucleic acid Number of strands: Single-stranded Sequence type: Other nucleic acid (synthetic oligonucleotide) Sequence TGACCATCTT CATAGCYTC 19

【0106】配列番号:20 配列の長さ:292 配列の型:核酸 鎖の数:二本鎖 配列の種類:Genomic DNA 起源 生物名:シロイヌナズナ(Arabidopsis thaliana) 配列の特徴 特徴を表す記号:CDS 存在位置:1..42 特徴を決定した方法:S 特徴を表す記号:intron 存在位置:43..139 特徴を決定した方法:P 特徴を表す記号:CDS 存在位置:140..292 特徴を決定した方法:S 配列 GGA ACT CGT CTT CTC ATT GAT GGA AGA ACT TGT TTG CTA CAG 42 Gly Thr Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln 1 5 10 GTTTCTGCTA ATTTTTTTGT GTGTTTACCA TTTTACTTCA CGTTTCTCTG AAGTCATCTT 102 TAGCTTTTAA GCTGTCTGTC AATTTTGGCT TATTCAG AAT GAC CAC GAT CCA TCA 157 Asn Asp His Asp Pro Ser 15 20 AAG TTA ATG GCT GAG ACA CCG TGC AAG TTG ATG AGG TAT TTG ATT TCC 205 Lys Leu Met Ala Glu Thr Pro Cys Lys Leu Met Arg Tyr Leu Ile Ser 25 30 35 GAC AAC AGC AAT ATT GAC GCT GAT ACG CCT TAT GCC GAA GTT GAG GTC 253 Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr Ala Glu Val Glu Val 40 45 50 ATG AAG ATG TGC ATG CCA CTT CTT TCA CCT GCT TCA GGA 292 Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala Ser Gly 55 60 65SEQ ID NO: 20 Sequence length: 292 Sequence type: Nucleic acid Number of strands: Double stranded Sequence type: Genomic DNA Origin Biological name: Arabidopsis thaliana Characteristic of sequence: Characteristic symbol: CDS Existence Location: 1..42 Method of determining features: S Characteristic symbol: intron Presence position: 43..139 Method of determining features: P Characteristic symbol: CDS Location of existence: 140..292 Characteristic determination Method: S-sequence GGA ACT CGT CTT CTC ATT GAT GGA AGA ACT TGT TTG CTA CAG 42 Gly Thr Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln 1 5 10 GTTTCTGCTA ATTTTTACGTGTGTTTACCA TTTTACTTCA CGTTTCTCA ATCCTTTTATA 102A GAT CCA TCA 157 Asn Asp His Asp Pro Ser 15 20 AAG TTA ATG GCT GAG ACA CCG TGC AAG TTG ATG AGG TAT TTG ATT TCC 205 Lys Leu Met Ala Glu Thr Pro Cys Lys Leu Met Arg Tyr Leu Ile Ser 25 30 35 GAC AAC AGC AAT ATT GAC GCT GAT ACG CCT TAT GCC GAA GTT GAG GTC 253 Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr Ala Glu Val Glu Val 40 45 50 ATG AAG ATG TGC ATG CCA CTT CTT TCA CCT GCT TCA GGA 292 Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala Ser Gly 55 60 65

【0107】配列番号:21 配列の長さ:7340 配列の型:核酸 鎖の数:二本鎖 配列の種類:cDNA to mRNA 起源 生物名:シロイヌナズナ(Arabidopsis thaliana) 配列の特徴 特徴を表す記号:CDS 存在位置:408..7169 特徴を決定した方法:P 配列 TCCCCAAATC TCTCGAAGCA GAGACTCGCA TAGTCTCTGA AGTCATCTAT AATCTGCTCG 60 CTTAGAAAAC CGCCGTATTC ATCTTCAAGA TCCTGTGGTA TGTCCCAATG AAAGATAGTA 120 ACAAGAGGAG TGATTTCATT GGCTAAGAGT TCATCAATAA CATCATTGTA AAACTTAATT 180 CCTTCTTCAC TAACTCCTCT ATCCCTTTTG CCATAAGGTA GAACTCGTGG CCAAGCAATG 240 GAAAGCCGAA ACGAATCCAT GTTTATATCC TTCATTCTCT TAATATCTTC CTCTCTGTTA 300 TTCTTTAGCT AAACACCCAC AATTCTGGCC TTCTCTGATG CCTCTTTAAG CCAATTTGTA 360 TCTCTGCTTC CTTACAAGAT ATATCTGAAG CTTAAAGGGC AGTGACA ATG GCT GGC 416 Met Ala Gly 1 TCG GTT AAC GGG AAT CAT AGT GCT GTA GGA CCT GGT ATA AAT TAT GAG 462 Ser Val Asn Gly Asn His Ser Ala Val Gly Pro Gly Ile Asn Tyr Glu 5 10 15 ACG GTG TCT CAA GTG GAT GAG TTC TGT AAA GCA CTT AGA GGG AAA AGG 510 Thr Val Ser Gln Val Asp Glu Phe Cys Lys Ala Leu Arg Gly Lys Arg 20 25 30 35 CCG ATC CAT AGT ATT TTG ATA GCT AAC AAT GGA ATG GCG GCT GTG AAG 558 Pro Ile His Ser Ile Leu Ile Ala Asn Asn Gly Met Ala Ala Val Lys 40 45 50 TTT ATA CGT AGT GTC AGA ACA TGG GCT TAT GAA ACA TTT GGT ACG GAA 606 Phe Ile Arg Ser Val Arg Thr Trp Ala Tyr Glu Thr Phe Gly Thr Glu 55 60 65 AAA GCC ATA TTG TTG GTG GGG ATG GCA ACC CCT GAA GAC ATG CGG ATC 654 Lys Ala Ile Leu Leu Val Gly Met Ala Thr Pro Glu Asp Met Arg Ile 70 75 80 AAT GCG GAG CAT ATC AGA ATC GCT GAT CAG TTT GTT GAG GTT CCC GGA 702 Asn Ala Glu His Ile Arg Ile Ala Asp Gln Phe Val Glu Val Pro Gly 85 90 95 GGA ACC AAC AAT AAC AAT TAT GCT AAC GTT CAG CTG ATT GTG GAG ATG 750 Gly Thr Asn Asn Asn Asn Tyr Ala Asn Val Gln Leu Ile Val Glu Met 100 105 110 115 GCT GAA GTA ACA CGC GTG GAT GCA GTT TGG CCT GGT TGG GGT CAT GCA 798 Ala Glu Val Thr Arg Val Asp Ala Val Trp Pro Gly Trp Gly His Ala 120 125 130 TCT GAA AAC CCC GAA TTA CCT GAT GCC CTA GAT GCA AAA GGA ATC ATA 846 Ser Glu Asn Pro Glu Leu Pro Asp Ala Leu Asp Ala Lys Gly Ile Ile 135 140 145 TTT CTT GGT CCT CCA GCA TCT TCA ATG GCA GCA CTG GGA GAT AAG ATT 894 Phe Leu Gly Pro Pro Ala Ser Ser Met Ala Ala Leu Gly Asp Lys Ile 150 155 160 GGT TCT TCG TTG ATT GCA CAA GCT GCT GAT GTA CCC ACT CTG CCA TGG 942 Gly Ser Ser Leu Ile Ala Gln Ala Ala Asp Val Pro Thr Leu Pro Trp 165 170 175 AGT GGT TCC CAT GTT AAA ATA CCT CCT AAT AGC AAC TTG GTA ACC ATC 990 Ser Gly Ser His Val Lys Ile Pro Pro Asn Ser Asn Leu Val Thr Ile 180 185 190 195 CCA GAG GAG ATC TAC CGG CAA GCA TGT GTC TAC ACA ACT GAA GAA GCG 1038 Pro Glu Glu Ile Tyr Arg Gln Ala Cys Val Tyr Thr Thr Glu Glu Ala 200 205 210 ATT GCT AGC TGT CAA GTT GTC GGT TAC CCA GCA ATG ATC AAA GCA TCG 1086 Ile Ala Ser Cys Gln Val Val Gly Tyr Pro Ala Met Ile Lys Ala Ser 215 220 225 TGG GGT GGT GGT GGT AAA GGA ATC AGG AAG GTT CAT AAT GAT GAT GAG 1134 Trp Gly Gly Gly Gly Lys Gly Ile Arg Lys Val His Asn Asp Asp Glu 230 235 240 GTT AGG GCT CTA TTC AAG CAA GTT CAG GGT GAG GTC CCA GGC TCA CCA 1182 Val Arg Ala Leu Phe Lys Gln Val Gln Gly Glu Val Pro Gly Ser Pro 245 250 255 ATA TTC ATA ATG AAG GTT GCG TCA CAG AGT CGG CAT CTA GAG GTC CAG 1230 Ile Phe Ile Met Lys Val Ala Ser Gln Ser Arg His Leu Glu Val Gln 260 265 270 275 CTG CTC TGT GAC AAG CAT GGA AAT GTT TCA GCT CTG CAT AGC CGT GAT 1278 Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His Ser Arg Asp 280 285 290 TGT AGC GTC CAG AGA AGA CAT CAA AAG ATC ATA GAG GAG GGT CCA ATT 1326 Cys Ser Val Gln Arg Arg His Gln Lys Ile Ile Glu Glu Gly Pro Ile 295 300 305 ACT GTG GCT CCG CCA GAA ACT GTC AAG AAA CTT GAA CAA GCA GCT AGA 1374 Thr Val Ala Pro Pro Glu Thr Val Lys Lys Leu Glu Gln Ala Ala Arg 310 315 320 AGG TTG GCT AAG AGT GTT AAC TAT GTT GGA GCT GCT ACT GTT GAG TAT 1422 Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala Ala Thr Val Glu Tyr 325 330 335 CTC TAC AGT ATG GAC ACT GGG GAG TAC TAC TTC TTA GAG CTT AAC CCT 1470 Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe Leu Glu Leu Asn Pro 340 345 350 355 CGC TTA CAG GTT GAG CAT CCT GTC ACT GAG TGG ATT GCC GAG ATA AAT 1518 Arg Leu Gln Val Glu His Pro Val Thr Glu Trp Ile Ala Glu Ile Asn 360 365 370 CTT CCT GCT GCC CAA GTT GCT GTG GGG ATG GGA ATT CCT CTC TGG CAA 1566 Leu Pro Ala Ala Gln Val Ala Val Gly Met Gly Ile Pro Leu Trp Gln 375 380 385 ATC CCT GAG ATA AGA CGG TTC TAT GGA ATA GAA CAT GGT GGA GGT TAT 1614 Ile Pro Glu Ile Arg Arg Phe Tyr Gly Ile Glu His Gly Gly Gly Tyr 390 395 400 GAT TCT TGG CGA AAA ACA TCT GTT GTA GCC TTC CCT TTT GAT TTT GAT 1662 Asp Ser Trp Arg Lys Thr Ser Val Val Ala Phe Pro Phe Asp Phe Asp 405 410 415 AAA GCT CAA TCT ATA AGG CCA AAA GGT CAT TGT GTG GCT GTA CGT GTG 1710 Lys Ala Gln Ser Ile Arg Pro Lys Gly His Cys Val Ala Val Arg Val 420 425 430 435 ACA AGT GAG GAT CCT GAT GAC GGG TTC AAA CCA ACC AGC GGT AGA GTT 1758 Thr Ser Glu Asp Pro Asp Asp Gly Phe Lys Pro Thr Ser Gly Arg Val 440 445 450 CAG GAG TTG AGT TTT AAG AGC AAG CCA AAT GTG TGG GCG TAC TTC TCT 1806 Gln Glu Leu Ser Phe Lys Ser Lys Pro Asn Val Trp Ala Tyr Phe Ser 455 460 465 GTC AAG TCT GGT GGA GGC ATC CAC GAG TTC TCG GAT TCC CAG TTT GGA 1854 Val Lys Ser Gly Gly Gly Ile His Glu Phe Ser Asp Ser Gln Phe Gly 470 475 480 CAT GTT TTT GCA TTT GGG GAA TCC AGA GCC CTG GCG ATA GCG AAT ATG 1902 His Val Phe Ala Phe Gly Glu Ser Arg Ala Leu Ala Ile Ala Asn Met 485 490 495 GTT CTT GGG CTA AAA GAA ATT CAG ATC CGT GGA GAA ATT AGG ACT AAC 1950 Val Leu Gly Leu Lys Glu Ile Gln Ile Arg Gly Glu Ile Arg Thr Asn 500 505 510 515 GTT GAC TAC ACG ATC GAC CTT TTA CAT GCT TCT GAT TAC CGT GAT AAC 1998 Val Asp Tyr Thr Ile Asp Leu Leu His Ala Ser Asp Tyr Arg Asp Asn 520 525 530 AAA ATT CAC ACT GGT TGG TTG GAT AGT AGG ATT GCT ATG CGG GTC AGA 2046 Lys Ile His Thr Gly Trp Leu Asp Ser Arg Ile Ala Met Arg Val Arg 535 540 545 GCT GAG AGG CCT CCA TGG TAT CTC TCT GTT GTC GGC GGA GCT CTC TAT 2094 Ala Glu Arg Pro Pro Trp Tyr Leu Ser Val Val Gly Gly Ala Leu Tyr 550 555 560 AAA GCA TCA GCG ACC AGT GCT GCT GTG GTT TCA GAT TAC GTT GGT TAT 2142 Lys Ala Ser Ala Thr Ser Ala Ala Val Val Ser Asp Tyr Val Gly Tyr 565 570 575 CTG GAG AAG GGG CAA ATC CCT CCA AAG CAT ATA TCT CTT GTA CAT TCT 2190 Leu Glu Lys Gly Gln Ile Pro Pro Lys His Ile Ser Leu Val His Ser 580 585 590 595 CAA GTG TCT CTG AAT ATT GAA GGA AGT AAA TAT ACG ATT GAT GTA GTC 2238 Gln Val Ser Leu Asn Ile Glu Gly Ser Lys Tyr Thr Ile Asp Val Val 600 605 610 CGG GGT GGA TCA GGA ACC TAC AGG CTA AGA ATG AAC AAG TCA GAA GTG 2286 Arg Gly Gly Ser Gly Thr Tyr Arg Leu Arg Met Asn Lys Ser Glu Val 615 620 625 GTA GCA GAA ATA CAC ACT CTA CGT GAT GGA GGT CTG TTG ATG CAG TTG 2334 Val Ala Glu Ile His Thr Leu Arg Asp Gly Gly Leu Leu Met Gln Leu 630 635 640 GAT GGC AAA AGC CAT GTG ATA TAT GCA GAG GAA GAA GCT GCA GGA ACT 2382 Asp Gly Lys Ser His Val Ile Tyr Ala Glu Glu Glu Ala Ala Gly Thr 645 650 655 CGT CTT CTC ATT GAT GGA AGA ACT TGT TTG CTA CAG AAT GAC CAC GAT 2430 Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln Asn Asp His Asp 660 665 670 675 CCA TCA AAG TTA ATG GCT GAG ACA CCG TGC AAG TTG ATG AGG TAT TTG 2478 Pro Ser Lys Leu Met Ala Glu Thr Pro Cys Lys Leu Met Arg Tyr Leu 680 685 690 ATT TCC GAC AAC AGC AAT ATT GAC GCT GAT ACG CCT TAT GCC GAA GTT 2526 Ile Ser Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr Ala Glu Val 695 700 705 GAG GTC ATG AAG ATG TGC ATG CCA CTT CTT TCA CCT GCT TCA GGA GTT 2574 Glu Val Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala Ser Gly Val 710 715 720 ATC CAT TTT AAA ATG TCT GAA GGA CAA GCC ATG CAG GCT GGT GAA CTT 2622 Ile His Phe Lys Met Ser Glu Gly Gln Ala Met Gln Ala Gly Glu Leu 725 730 735 ATA GCC AAT CTT GAT CTT GAT GAT CCT TCT GCT GTA AGA AAG GCC GAA 2670 Ile Ala Asn Leu Asp Leu Asp Asp Pro Ser Ala Val Arg Lys Ala Glu 740 745 750 755 CCC TTC CAT GGA AGT TTC CCA AGA TTA GGG CTT CCA ACT GCA ATA TCC 2718 Pro Phe His Gly Ser Phe Pro Arg Leu Gly Leu Pro Thr Ala Ile Ser 760 765 770 GGT AGA GTT CAT CAG AGA TGT GCC GCA ACA TTA AAT GCT GCA CGC ATG 2766 Gly Arg Val His Gln Arg Cys Ala Ala Thr Leu Asn Ala Ala Arg Met 775 780 785 ATT CTT GCT GGC TAT GAG CAT AAA GTA GAT GAG GTT GTT CAA GAC TTA 2814 Ile Leu Ala Gly Tyr Glu His Lys Val Asp Glu Val Val Gln Asp Leu 790 795 800 CTT AAT TGC CTT GAT AGC CCT GAA CTC CCA TTT CTT CAG TGG CAA GAG 2862 Leu Asn Cys Leu Asp Ser Pro Glu Leu Pro Phe Leu Gln Trp Gln Glu 805 810 815 TGC TTT GCA GTT CTG GCG ACA CGA CTA CCT AAA AAT CTC AGG AAC ATG 2910 Cys Phe Ala Val Leu Ala Thr Arg Leu Pro Lys Asn Leu Arg Asn Met 820 825 830 835 CTA GAA TCA AAG TAT AGG GAA TTT GAG AGT ATT TCC AGA AAC TCT TTG 2958 Leu Glu Ser Lys Tyr Arg Glu Phe Glu Ser Ile Ser Arg Asn Ser Leu 840 845 850 ACC ACC GAT TTC CCT GCC AAA CTT TTA AAA GGC ATT CTT GAG GCA CAT 3006 Thr Thr Asp Phe Pro Ala Lys Leu Leu Lys Gly Ile Leu Glu Ala His 855 860 865 TTA TCT TCT TGT GAT GAG AAA GAG AGA GGT GCC CTT GAA AGG CTC ATT 3054 Leu Ser Ser Cys Asp Glu Lys Glu Arg Gly Ala Leu Glu Arg Leu Ile 870 875 880 GAA CCA TTG ATG AGC CTT GCA AAA TCT TAT GAA GGT GGT AGA GAA AGT 3102 Glu Pro Leu Met Ser Leu Ala Lys Ser Tyr Glu Gly Gly Arg Glu Ser 885 890 895 CAT GCC CGT GTT ATT GTT CAT TCT CTC TTT GAA GAA TAT CTA TCA GTA 3150 His Ala Arg Val Ile Val His Ser Leu Phe Glu Glu Tyr Leu Ser Val 900 905 910 915 GAA GAA TTA TTC AAT GAT AAC ATG CTG GCT GAT GTT ATA GAA CGC ATG 3198 Glu Glu Leu Phe Asn Asp Asn Met Leu Ala Asp Val Ile Glu Arg Met 920 925 930 CGT CAG CTA TAC AAG AAA GAT CTG TTG AAA ATT GTG GAT ATA GTG CTC 3246 Arg Gln Leu Tyr Lys Lys Asp Leu Leu Lys Ile Val Asp Ile Val Leu 935 940 945 TCA CAC CAG GGC ATA AAA AAC AAA AAC AAA CTC GTT CTC CGG CTC ATG 3294 Ser His Gln Gly Ile Lys Asn Lys Asn Lys Leu Val Leu Arg Leu Met 950 955 960 GAG CAG CTT GTT TAC CCT AAT CCT GCT GCT TAC AGA GAT AAA CTT ATT 3342 Glu Gln Leu Val Tyr Pro Asn Pro Ala Ala Tyr Arg Asp Lys Leu Ile 965 970 975 CGA TTC TCA ACA CTT AAC CAT ACT AAC TAC TCT GAG TTG GCG CTC AAG 3390 Arg Phe Ser Thr Leu Asn His Thr Asn Tyr Ser Glu Leu Ala Leu Lys 980 985 990 995 GCG AGT CAA TTA CTT GAA CAG ACC AAA CTA AGT GAG CTT CGT TCA AAC 3438 Ala Ser Gln Leu Leu Glu Gln Thr Lys Leu Ser Glu Leu Arg Ser Asn 1000 1005 1010 ATT GCT AGA AGC CTT TCA GAG TTA GAA ATG TTT ACA GAG GAC GGA GAA 3486 Ile Ala Arg Ser Leu Ser Glu Leu Glu Met Phe Thr Glu Asp Gly Glu 1015 1020 1025 AAT ATG GAT ACT CCC AAG AGG AAA AGT GCC ATT AAT GAA AGA ATA GAA 3534 Asn Met Asp Thr Pro Lys Arg Lys Ser Ala Ile Asn Glu Arg Ile Glu 1030 1035 1040 GAT CTT GTA AGC GCA TCT TTA GCT GTT GAA GAC GCT CTC GTG GGA CTA 3582 Asp Leu Val Ser Ala Ser Leu Ala Val Glu Asp Ala Leu Val Gly Leu 1045 1050 1055 TTT GAC CAT AGC GAT CAC ACA CTT CAA AGA CGG GTT GTT GAG ACT TAT 3630 Phe Asp His Ser Asp His Thr Leu Gln Arg Arg Val Val Glu Thr Tyr 1060 1065 1070 1075 ATT CGC AGA TTA TAC CAG CCC TAC GTC GTT AAA GAT AGC GTG AGG ATG 3678 Ile Arg Arg Leu Tyr Gln Pro Tyr Val Val Lys Asp Ser Val Arg Met 1080 1085 1090 CAG TGG CAC CGT TCT GGT CTT CTT GCT TCC TGG GAG TTC CTA GAG GAG 3726 Gln Trp His Arg Ser Gly Leu Leu Ala Ser Trp Glu Phe Leu Glu Glu 1095 1100 1105 CAT ATG GAA AGA AAA AAC ATT GGC TTA GAC GAT CCC GAC ACA TCT GAA 3774 His Met Glu Arg Lys Asn Ile Gly Leu Asp Asp Pro Asp Thr Ser Glu 1110 1115 1120 AAA GGA TTG GTT GAG AAG CGT AGT AAG AGA AAA TGG GGG GCT ATG GTT 3822 Lys Gly Leu Val Glu Lys Arg Ser Lys Arg Lys Trp Gly Ala Met Val 1125 1130 1135 ATA ATC AAA TCT TTG CAG TTT CTT CCA AGT ATA ATA AGT GCA GCA TTG 3870 Ile Ile Lys Ser Leu Gln Phe Leu Pro Ser Ile Ile Ser Ala Ala Leu 1140 1145 1150 1155 AGA GAA ACA AAG CAC AAC GAC TAT GAA ACT GCC GGA GCT CCT TTA TCT 3918 Arg Glu Thr Lys His Asn Asp Tyr Glu Thr Ala Gly Ala Pro Leu Ser 1160 1165 1170 GGC AAT ATG ATG CAC ATT GCT ATT GTG GGC ATC AAC AAC CAG ATG AGT 3966 Gly Asn Met Met His Ile Ala Ile Val Gly Ile Asn Asn Gln Met Ser 1175 1180 1185 CTG CTT CAG GAC AGT GGG GAT GAA GAC CAA GCT CAG GAA AGA GTA AAC 4014 Leu Leu Gln Asp Ser Gly Asp Glu Asp Gln Ala Gln Glu Arg Val Asn 1190 1195 1200 AAG TTG GCC AAA ATT CTT AAA GAG GAA GAA GTG AGT TCA AGC CTC TGT 4062 Lys Leu Ala Lys Ile Leu Lys Glu Glu Glu Val Ser Ser Ser Leu Cys 1205 1210 1215 TCT GCC GGT GTT GGT GTA ATC AGC TGT ATA ATT CAG CGA GAT GAA GGA 4110 Ser Ala Gly Val Gly Val Ile Ser Cys Ile Ile Gln Arg Asp Glu Gly 1220 1225 1230 1235 CGA ACA CCC ATG AGA CAT TCT TTC CAT TGG TCG TTG GAG AAA CAG TAT 4158 Arg Thr Pro Met Arg His Ser Phe His Trp Ser Leu Glu Lys Gln Tyr 1240 1245 1250 TAT GTA GAA GAG CCG TTG CTG CGT CAT CTT GAA CCT CCT CTG TCC ATT 4206 Tyr Val Glu Glu Pro Leu Leu Arg His Leu Glu Pro Pro Leu Ser Ile 1255 1260 1265 TAC CTT GAG TTG GAT AAG CTG AAA GGA TAC TCA AAT ATA CAA TAT ACG 4256 Tyr Leu Glu Leu Asp Lys Leu Lys Gly Tyr Ser Asn Ile Gln Tyr Thr 1270 1275 1280 CCT TCT CGA GAT CGT CAA TGG CAT CTG TAT ACT GTT ACA GAC AAG CCA 4304 Pro Ser Arg Asp Arg Gln Trp His Leu Tyr Thr Val Thr Asp Lys Pro 1285 1290 1295 GTG CCA ATC AAG AGG ATG TTC CTG AGA TCT CTT GTT CGA CAG GCT ACA 4352 Val Pro Ile Lys Arg Met Phe Leu Arg Ser Leu Val Arg Gln Ala Thr 1300 1305 1310 1315 ATG AAC GAT GGA TTT ATA TTG CAG CAA GGG CAG GAT AAG CAG CTT AGC 4400 Met Asn Asp Gly Phe Ile Leu Gln Gln Gly Gln Asp Lys Gln Leu Ser 1320 1325 1330 CAA ACA CTG ATC TCC ATG GCG TTT ACG TCG AAA TGT GTT CTG AGG TCT 4448 Gln Thr Leu Ile Ser Met Ala Phe Thr Ser Lys Cys Val Leu Arg Ser 1335 1340 1345 TTG ATG GAT GCC ATG GAG GAA CTG GAA CTG AAT GCC CAT AAT GCT GCA 4496 Leu Met Asp Ala Met Glu Glu Leu Glu Leu Asn Ala His Asn Ala Ala 1350 1355 1360 ATG AAA CCA GAT CAC GCA CAT ATG TTT CTT TGC ATA TTG CGT GAG CAG 4544 Met Lys Pro Asp His Ala His Met Phe Leu Cys Ile Leu Arg Glu Gln 1365 1370 1375 CAG ATA GAT GAT CTT GTG CCT TTC CCC AGG AGA GTT GAA GTG AAT GCG 4592 Gln Ile Asp Asp Leu Val Pro Phe Pro Arg Arg Val Glu Val Asn Ala 1380 1385 1390 1395 GAG GAT GAA GAA ACT ACA GTT GAA ATG ATC TTA GAA GAA GCA GCA CGA 4640 Glu Asp Glu Glu Thr Thr Val Glu Met Ile Leu Glu Glu Ala Ala Arg 1400 1405 1410 GAG ATA CAT AGA TCT GTT GGA GTG AGA ATG CAT AGG TTG GGC GTG TGC 4688 Glu Ile His Arg Ser Val Gly Val Arg Met His Arg Leu Gly Val Cys 1415 1420 1425 GAG TGG GAA GTG CGG CTG TGG TTG GTG TCC TCT GGA CTG GCA TGT GGT 4736 Glu Trp Glu Val Arg Leu Trp Leu Val Ser Ser Gly Leu Ala Cys Gly 1430 1435 1440 GCT TGG AGG GTT GTG GTT GCA AAC GTG ACA GGC CGT ACA TGC ACT GTC 4784 Ala Trp Arg Val Val Val Ala Asn Val Thr Gly Arg Thr Cys Thr Val 1445 1450 1455 CAC ATA TAC CGA GAA GTT GAA ACT CCT GGA AGA AAC AGT TTA ATC TAC 4832 His Ile Tyr Arg Glu Val Glu Thr Pro Gly Arg Asn Ser Leu Ile Tyr 1460 1465 1470 1475 CAC TCA ATA ACC AAG AAG GGA CCT TTG CAT GAA ACA CCA ATC AGT GAT 4880 His Ser Ile Thr Lys Lys Gly Pro Leu His Glu Thr Pro Ile Ser Asp 1480 1485 1490 CAA TAT AAG CCC CTG GGA TAT CTC GAC AGG CAA CGT TTA GCA GCA AGG 4928 Gln Tyr Lys Pro Leu Gly Tyr Leu Asp Arg Gln Arg Leu Ala Ala Arg 1495 1500 1505 AGG AGT AAC ACT ACT TAT TGC TAT GAC TTC CCG TTG GCA TTT GGG ACA 4976 Arg Ser Asn Thr Thr Tyr Cys Tyr Asp Phe Pro Leu Ala Phe Gly Thr 1510 1515 1520 GCC TTG GAA CTG TTG TGG GCA TCA CAA CAC CCA GGA GTT AAG AAA CCA 5024 Ala Leu Glu Leu Leu Trp Ala Ser Gln His Pro Gly Val Lys Lys Pro 1525 1530 1535 TAT AAG GAT ACT CTG ATC AAT GTT AAA GAG CTT GTA TTC TCA AAA CCA 5072 Tyr Lys Asp Thr Leu Ile Asn Val Lys Glu Leu Val Phe Ser Lys Pro 1540 1545 1550 1555 GAA GGT TCT TCG GGT ACA TCT CTA GAT CTG GTT GAA AGA CCA CCC GGT 5120 Glu Gly Ser Ser Gly Thr Ser Leu Asp Leu Val Glu Arg Pro Pro Gly 1560 1565 1570 CTC AAC GAC TTT GGA ATG GTT GCC TGG TGC CTA GAT ATG TCG ACC CCA 5168 Leu Asn Asp Phe Gly Met Val Ala Trp Cys Leu Asp Met Ser Thr Pro 1575 1580 1585 GAG TTT CCT ATG GGG CGG AAA CTT CTC GTG ATT GCG AAT GAT GTC ACC 5216 Glu Phe Pro Met Gly Arg Lys Leu Leu Val Ile Ala Asn Asp Val Thr 1590 1595 1600 TTC AAA GCT GGT TCT TTT GGT CCT AGA GAG GAC GCG TTT TTC CTT GCT 5264 Phe Lys Ala Gly Ser Phe Gly Pro Arg Glu Asp Ala Phe Phe Leu Ala 1605 1610 1615 GTT ACT GAA CTC GCT TGT GCC AAG AAG CTT CCC TTG ATT TAC TTG GCA 5312 Val Thr Glu Leu Ala Cys Ala Lys Lys Leu Pro Leu Ile Tyr Leu Ala 1620 1625 1630 1635 GCA AAT TCT GGT GCC CGA CTT GGG GTT GCT GAA GAA GTC AAA GCC TGC 5360 Ala Asn Ser Gly Ala Arg Leu Gly Val Ala Glu Glu Val Lys Ala Cys 1640 1645 1650 TTC AAA GTT GGA TGG TCG GAT GAA ATT TCC CCT GAG AAT GGT TTT CAG 5408 Phe Lys Val Gly Trp Ser Asp Glu Ile Ser Pro Glu Asn Gly Phe Gln 1655 1660 1665 TAT ATA TAC CTA AGC CCT GAA GAC CAC GAA AGG ATT GGA TCA TCT GTC 5456 Tyr Ile Tyr Leu Ser Pro Glu Asp His Glu Arg Ile Gly Ser Ser Val 1670 1675 1680 ATT GCC CAT GAA GTA AAG CTC TCT AGT GGG GAA ACT AGG TGG GTG ATT 5504 Ile Ala His Glu Val Lys Leu Ser Ser Gly Glu Thr Arg Trp Val Ile 1685 1690 1695 GAT ACG ATC GTT GGC AAA GAA GAT GGT ATT GGT GTA GAG AAC TTA ACA 5552 Asp Thr Ile Val Gly Lys Glu Asp Gly Ile Gly Val Glu Asn Leu Thr 1700 1705 1710 1715 GGA AGT GGG GCC ATA GCG GGT GCT TAC TCA AAG GCA TAC AAT GAA ACT 5600 Gly Ser Gly Ala Ile Ala Gly Ala Tyr Ser Lys Ala Tyr Asn Glu Thr 1720 1725 1730 TTT ACT TTA ACC TTT GTT AGT GGA AGA ACG GTT GGA ATT GGT GCT TAT 5648 Phe Thr Leu Thr Phe Val Ser Gly Arg Thr Val Gly Ile Gly Ala Tyr 1735 1740 1745 CTT GCC CGC CTA GGT ATG CGG TGC ATA CAG AGA CTT GAT CAG CCG ATC 5696 Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu Asp Gln Pro Ile 1750 1755 1760 ATC TTG ACT GGC TTC TCT ACA CTC AAC AAG TTA CTT GGG CGT GAG GTC 5744 Ile Leu Thr Gly Phe Ser Thr Leu Asn Lys Leu Leu Gly Arg Glu Val 1765 1770 1775 TAT AGC TCT CAC ATG CAA CTG GGT GGC CCG AAA ATC ATG GGC ACA AAT 5792 Tyr Ser Ser His Met Gln Leu Gly Gly Pro Lys Ile Met Gly Thr Asn 1780 1785 1790 1795 GGT GTT GTT CAT CTT ACA GTC TCA GAT GAT CTT GAA GGC GTA TCA GCA 5840 Gly Val Val His Leu Thr Val Ser Asp Asp Leu Glu Gly Val Ser Ala 1800 1805 1810 ATT CTC AAC TGG CTC AGC TAC ATT CCT GCT TAC GTG GGT GGT CCT CTT 5888 Ile Leu Asn Trp Leu Ser Tyr Ile Pro Ala Tyr Val Gly Gly Pro Leu 1815 1820 1825 CCT GTT CTT GCC CCT TTA GAT CCA CCG GAG AGA ATT GTG GAG TAT GTC 5936 Pro Val Leu Ala Pro Leu Asp Pro Pro Glu Arg Ile Val Glu Tyr Val 1830 1835 1840 CCA GAG AAC TCT TGC GAC CCA CGA GCG GCT ATA GCT GGG GTC AAA GAC 5984 Pro Glu Asn Ser Cys Asp Pro Arg Ala Ala Ile Ala Gly Val Lys Asp 1845 1850 1855 AAT ACC GGT AAA TGG CTT GGA GGT ATC TTT GAT AAA AAT AGT TTC ATT 6032 Asn Thr Gly Lys Trp Leu Gly Gly Ile Phe Asp Lys Asn Ser Phe Ile 1860 1865 1870 1875 GAG ACT CTT GAA GGC TGG GCA AGG ACG GTA GTG ACT GGT AGA GCC AAG 6080 Glu Thr Leu Glu Gly Trp Ala Arg Thr Val Val Thr Gly Arg Ala Lys 1880 1885 1890 CTC GGG GGA ATA CCC GTT GGA GTT GTT GCA GTT GAG ACA CAG ACT GTC 6128 Leu Gly Gly Ile Pro Val Gly Val Val Ala Val Glu Thr Gln Thr Val 1895 1900 1905 ATG CAG ATC ATC CCA GCC GAT CCT GGA CAG CTT GAC TCT CAT GAA AGA 6176 Met Gln Ile Ile Pro Ala Asp Pro Gly Gln Leu Asp Ser His Glu Arg 1910 1915 1920 GTG GTT CCG CAA GCA GGG CAA GTC TGG TTT CCT GAT TCA GCG GCC AAG 6224 Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp Ser Ala Ala Lys 1925 1930 1935 ACT GCT CAA GCG CTT ATG GAT TTC AAC CGG GAA GAG CTT CCA TTG TTT 6272 Thr Ala Gln Ala Leu Met Asp Phe Asn Arg Glu Glu Leu Pro Leu Phe 1940 1945 1950 1955 ATC CTA GCG AAC TGG AGA GGG TTT TCA GGT GGG CAG AGA GAT CTT TTC 6320 Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln Arg Asp Leu Phe 1960 1965 1970 GAA GGA ATA CTT CAG GCA GGT TCA ACT ATA GTA GAA AAT CTG AGA ACC 6368 Glu Gly Ile Leu Gln Ala Gly Ser Thr Ile Val Glu Asn Leu Arg Thr 1975 1980 1985 TAT CGT CAG CCA GTG TTT GTG TAC ATC CCA ATG ATG GGA GAG CTG CGC 6416 Tyr Arg Gln Pro Val Phe Val Tyr Ile Pro Met Met Gly Glu Leu Arg 1990 1995 2000 GGT GGA GCG TGG GTT GTT GTT GAC AGC CAG ATA AAT TCG GAT TAT GTT 6464 Gly Gly Ala Trp Val Val Val Asp Ser Gln Ile Asn Ser Asp Tyr Val 2005 2010 2015 GAA ATG TAT GCT GAT GAA ACA GCT CGT GGA AAT GTG CTT GAG CCA GAA 6512 Glu Met Tyr Ala Asp Glu Thr Ala Arg Gly Asn Val Leu Glu Pro Glu 2020 2025 2030 2035 GGG ACA ATA GAG ATA AAA TTT AGA ACA AAA GAG CTA TTA GAG TGC ATG 6560 Gly Thr Ile Glu Ile Lys Phe Arg Thr Lys Glu Leu Leu Glu Cys Met 2040 2045 2050 GGA AGG TTG GAC CAG AAG CTA ATC AGT CTG AAA GCA AAA CTG CAA GAT 6608 Gly Arg Leu Asp Gln Lys Leu Ile Ser Leu Lys Ala Lys Leu Gln Asp 2055 2060 2065 GCC AAG CAA AGC GAG GCC TAT GCA AAC ATC GAG CTT CTC CAG CAA CAG 6656 Ala Lys Gln Ser Glu Ala Tyr Ala Asn Ile Glu Leu Leu Gln Gln Gln 2070 2075 2080 ATT AAA GCC CGA GAG AAA CAG CTT TTA CCA GTT TAT ATC CAA ATC GCC 6704 Ile Lys Ala Arg Glu Lys Gln Leu Leu Pro Val Tyr Ile Gln Ile Ala 2085 2090 2095 ACC AAA TTT GCA GAA CTT CAT GAC ACT TCC ATG AGA ATG GCT GCA AAG 6752 Thr Lys Phe Ala Glu Leu His Asp Thr Ser Met Arg Met Ala Ala Lys 2100 2105 2110 2115 GGA GTG ATC AAA AGT GTT GTG GAA TGG AGC GGC TCG CGG TCC TTC TTC 6798 Gly Val Ile Lys Ser Val Val Glu Trp Ser Gly Ser Arg Ser Phe Phe 2120 2125 2130 TAC AAA AAG CTC AAT AGG AGA ATC GCT GAG AGC TCT CTT GTG AAA AAC 6848 Tyr Lys Lys Leu Asn Arg Arg Ile Ala Glu Ser Ser Leu Val Lys Asn 2135 2140 2145 GTA AGA GAA GCA TCT GGA GAC AAC TTA GCA TAT AAA TCT TCA ATG CGT 6896 Val Arg Glu Ala Ser Gly Asp Asn Leu Ala Tyr Lys Ser Ser Met Arg 2150 2155 2160 CTG ATT CAG GAT TGG TTC TGC AAC TCT GAT ATT GCA AAG GGG AAA GAA 6944 Leu Ile Gln Asp Trp Phe Cys Asn Ser Asp Ile Ala Lys Gly Lys Glu 2165 2170 2175 GAA GCT TGG ACA GAC GAC CAA GTG TTC TTT ACA TGG AAG GAC AAT GTT 6992 Glu Ala Trp Thr Asp Asp Gln Val Phe Phe Thr Trp Lys Asp Asn Val 2180 2185 2190 2195 AGT AAC TAC GAG TTG AAG CTG AGC GAG TTG AGA GCG CAG AAA CTA CTG 7040 Ser Asn Tyr Glu Leu Lys Leu Ser Glu Leu Arg Ala Gln Lys Leu Leu 2200 2205 2210 AAC CAA CTT GCA GAG ATT GGG AAT TCC TCA GAT TTG CAA GCT CTG CCA 7088 Asn Gln Leu Ala Glu Ile Gly Asn Ser Ser Asp Leu Gln Ala Leu Pro 2215 2220 2225 CAA GGA CTT GCT AAT CTT CTA AAC AAG GTG GAG CCG TCG AAA AGA GAA 7136 Gln Gly Leu Ala Asn Leu Leu Asn Lys Val Glu Pro Ser Lys Arg Glu 2230 2235 2240 GAG CTG GTG GCT GCT ATT CGA AAG GTC TTG GGT TGACTGATAT CGAAGACTTT 7189 Glu Leu Val Ala Ala Ile Arg Lys Val Leu Gly 2245 2250 AGCTTCTAAT CCAAGAAAGA TGGACATTTA AAGTTTGCTT GTGTCCGTTT GGATTGATAA 7249 TTATATATTT GTTGGTCACA GTTGTAAATG TTGTTGTAGC TTTGTCATTT CCGTATAAAC 7309 AAATACGCAA TAATTCATTC AACAAAAAAA A 7340SEQ ID NO: 21 Sequence length: 7340 Sequence type: Nucleic acid Number of strands: Double stranded Sequence type: cDNA to mRNA Origin Organism name: Arabidopsis thaliana Sequence features Characteristic symbols: CDS the location: 408..7169 method to determine the characteristics: P sequence TCCCCAAATC TCTCGAAGCA GAGACTCGCA TAGTCTCTGA AGTCATCTAT AATCTGCTCG 60 CTTAGAAAAC CGCCGTATTC ATCTTCAAGA TCCTGTGGTA TGTCCCAATG AAAGATAGTA 120 ACAAGAGGAG TGATTTCATT GGCTAAGAGT TCATCAATAA CATCATTGTA AAACTTAATT 180 CCTTCTTCAC TAACTCCTCT ATCCCTTTTG CCATAAGGTA GAACTCGTGG CCAAGCAATG 240 GAAAGCCGAA ACGAATCCAT GTTTATATCC TTCATTCTCT TAATATCTTC CTCTCTGTTA 300 TTCTTTAGCT AAACACCCAC AATTCTGGCC TTCTCTGATG CCTCTTTAAG CCAATTTGTA 360 TCTCTGCTTC CTTACAAGAT ATATCTGAAG CTTAAAGGGC AGTGACA ATG GCT GGC 416 Met Ala Gly 1 TCG GTT AAC GGG Aly Gn Aly Gn CLA GAT Asn Tyr Glu 5 10 15 ACG GTG TCT CAA GTG GAT GAG TTC TGT AAA GCA CTT AGA GGG AAA AGG 510 Thr Val Ser Gln Val Asp Glu Phe Cys Lys Ala Leu Arg Gly Lys Arg 20 25 30 35 CCG ATC CAT AGT ATT TTG ATA GCT AAC AAT GGA ATG GCG GCT GTG AAG 558 Pro Ile His Ser Ile Leu Ile Ala Asn Asn Gly Met Ala Ala Val Lys 40 45 50 TTT ATA CGT AGT GTC AGA ACA TGG GCT TAT GAA ACA TTT GGT ACG GAA 606 Phe Ile Arg Ser Val Arg Thr Trp Ala Tyr Glu Thr Phe Gly Thr Glu 55 60 65 AAA GCC ATA TTG TTG GTG GGG ATG GCA ACC CCT GAA GAC ATG CGG ATC 654 Lys Ala Ile Leu Leu Val Gly Met Ala Thr Pro Glu Asp Met Arg Ile 70 75 80 AAT GCG GAG CAT ATC AGA ATC GCT GAT CAG TTT GTT GAG GTT CCC GGA 702 Asn Ala Glu His Ile Arg Ile Ala Asp Gln Phe Val Glu Val Pro Gly 85 90 95 GGA ACC AAC AAT AAC AAT TAT GCT AAC GTT CAG CTG ATT GTG GAG ATG 750 Gly Thr Asn Asn Asn Asn Tyr Ala Asn Val Gln Leu Ile Val Glu Met 100 105 110 115 GCT GAA GTA ACA CGC GTG GAT GCA GTT TGG CCT GGT TGG GGT CAT GCA 798 Ala Glu Val Thr Arg Val Asp Ala Val Trp Pro Gly Trp Gly His Ala 120 125 130 TCT GAA AAC CCC GAA TTA CCT GAT GCC CTA GAT GCA AAA GGA ATC ATA 846 Ser Glu Asn Pro Glu Leu Pro Asp Ala Leu Asp Ala Lys Gly Ile Ile 135 140 145 TTT CTT GGT CCT CCA GCA TCT TCA ATG GCA GCA CTG GGA GAT AAG ATT 894 Phe Leu Gly Pro Pro Ala Ser Ser Met Ala Ala Leu Gly Asp Lys Ile 150 155 160 GGT TCT TCG TTG ATT GCA CAA GCT GCT GAT GTA CCC ACT CTG CCA TGG 942 Gly Ser Ser Leu Ile Ala Gln Ala Ala Asp Val Pro Thr Leu Pro Trp 165 170 175 AGT GGT TCC CAT GTT AAA ATA CCT CCT AAT AGC AAC TTG GTA ACC ATC 990 Ser Gly Ser His Val Lys Ile Pro Pro Asn Ser Asn Leu Val Thr Ile 180 185 190 195 CCA GAG GAG ATC TAC CGG CAA GCA TGT GTC TAC ACA ACT GAA GAA GCG 1038 Pro Glu Glu Ile Tyr Arg Gln Ala Cys Val Tyr Thr Thr Glu Glu Ala 200 205 210 ATT GCT AGC TGT CAA GTT GTC GGT TAC CCA GCA ATG ATC AAA GCA TCG 1086 Ile Ala Ser Cys Gln Val Val Gly Tyr Pro Ala Met Ile Lys Ala Ser 215 220 225 TGG GGT GGT GGT GGT AAA GGA ATC AGG AAG GTT CAT AAT GAT GAT GAG 1134 Trp Gly Gly Gly Gly Lys Gly Ile Arg Lys Val His Asn Asp Asp Glu 230 235 240 GTT AGG GCT CTA TTC AAG CAA GTT C AG GGT GAG GTC CCA GGC TCA CCA 1182 Val Arg Ala Leu Phe Lys Gln Val Gln Gly Glu Val Pro Gly Ser Pro 245 250 255 ATA TTC ATA ATG AAG GTT GCG TCA CAG AGT CGG CAT CTA GAG GTC CAG 1230 Ile Phe Ile Met Lys Val Ala Ser Gln Ser Arg His Leu Glu Val Gln 260 265 270 275 CTG CTC TGT GAC AAG CAT GGA AAT GTT TCA GCT CTG CAT AGC CGT GAT 1278 Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His Ser Arg Asp 280 285 290 TGT AGC GTC CAG AGA AGA CAT CAA AAG ATC ATA GAG GAG GGT CCA ATT 1326 Cys Ser Val Gln Arg Arg His Gln Lys Ile Ile Glu Glu Gly Pro Ile 295 300 305 ACT GTG GCT CCG CCA GAA ACT GTC AAG AAA CTT GAA CAA GCA GCT AGA 1374 Thr Val Ala Pro Pro Glu Thr Val Lys Lys Leu Glu Gln Ala Ala Arg 310 315 320 AGG TTG GCT AAG AGT GTT AAC TAT GTT GGA GCT GCT ACT GTT GAG TAT 1422 Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala Ala Thr Val Glu Tyr 325 330 335 CTC TAC AGT ATG GAC ACT GGG GAG TAC TAC TTC TTA GAG CTT AAC CCT 1470 Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe Leu Glu Leu Asn Pro 340 345 350 355 CGC TTA CA G GTT GAG CAT CCT GTC ACT GAG TGG ATT GCC GAG ATA AAT 1518 Arg Leu Gln Val Glu His Pro Val Thr Glu Trp Ile Ala Glu Ile Asn 360 365 370 CTT CCT GCT GCC CAA GTT GCT GTG GGG ATG GGA ATT CCT CTC TGG CAA 1566 Leu Pro Ala Ala Gln Val Ala Val Gly Met Gly Ile Pro Leu Trp Gln 375 380 385 ATC CCT GAG ATA AGA CGG TTC TAT GGA ATA GAA CAT GGT GGA GGT TAT 1614 Ile Pro Glu Ile Arg Arg Phe Tyr Gly Ile Glu His Gly Gly Gly Tyr 390 395 400 GAT TCT TGG CGA AAA ACA TCT GTT GTA GCC TTC CCT TTT GAT TTT GAT 1662 Asp Ser Trp Arg Lys Thr Ser Val Val Ala Phe Pro Phe Asp Phe Asp 405 410 415 AAA GCT CAA TCT ATA AGG CCA AAA GGT CAT TGT GTG GCT GTA CGT GTG 1710 Lys Ala Gln Ser Ile Arg Pro Lys Gly His Cys Val Ala Val Arg Val 420 425 430 435 ACA AGT GAG GAT CCT GAT GAC GGG TTC AAA CCA ACC AGC GGT AGA GTT 1758 Thr Ser Glu Asp Pro Asp Asp Gly Phe Lys Pro Thr Ser Gly Arg Val 440 445 450 CAG GAG TTG AGT TTT AAG AGC AAG CCA AAT GTG TGG GCG TAC TTC TCT 1806 Gln Glu Leu Ser Phe Lys Ser Lys Pro Asn Val Trp Ala Tyr Phe Ser 455 460 465 GTC AAG TCT GGT GGA GGC ATC CAC GAG TTC TCG GAT TCC CAG TTT GGA 1854 Val Lys Ser Gly Gly Gly Ile His Glu Phe Ser Asp Ser Gln Phe Gly 470 475 480 CAT GTT TTT GCA TTT GGG GAA TCC AGA GCC CTG GCG ATA GCG AAT ATG 1902 His Val Phe Ala Phe Gly Glu Ser Arg Ala Leu Ala Ile Ala Asn Met 485 490 495 GTT CTT GGG CTA AAA GAA ATT CAG ATC CGT GGA GAA ATT AGG ACT AAC 1950 Val Leu Gly Leu Lys Glu Ile Gln Ile Arg Gly Glu Ile Arg Thr Asn 500 505 510 515 GTT GAC TAC ACG ATC GAC CTT TTA CAT GCT TCT GAT TAC CGT GAT AAC 1998 Val Asp Tyr Thr Ile Asp Leu Leu His Ala Ser Asp Tyr Arg Asp Asn 520 525 530 AAA ATT CAC ACT GGT TGG TTG GAT AGT AGG ATT GCT ATG CGG GTC AGA 2046 Lys Ile His Thr Gly Trp Leu Asp Ser Arg Ile Ala Met Arg Val Arg 535 540 545 GCT GAG AGG CCT CCA TGG TAT CTC TCT GTT GTC GGC GGA GCT CTC TAT 2094 Ala Glu Arg Pro Pro Trp Tyr Leu Ser Val Val Gly Gly Ala Leu Tyr 550 555 560 AAA GCA TCA GCG ACC AGT GCT GCT GTG GTT TCA GAT TAC GTT GGT TAT 2142 Lys Ala Ser Ala Thr Ser Ala Ala Val Val Ser Asp Tyr Val Gly Tyr 565 570 575 CTG GAG AAG GGG CAA ATC CCT CCA AAG CAT ATA TCT CTT GTA CAT TCT 2190 Leu Glu Lys Gly Gln Ile Pro Pro Lys His Ile Ser Leu Val His Ser 580 585 590 595 CAA GTG TCT CTG AAT ATT GAA GGA AGT AAA TAT ACG ATT GAT GTA GTC 2238 Gln Val Ser Leu Asn Ile Glu Gly Ser Lys Tyr Thr Ile Asp Val Val 600 605 610 CGG GGT GGA TCA GGA ACC TAC AGG CTA AGA ATG AAC AAG TCA GAA GTG 2286 Arg Gly Gly Ser Gly Thr Tyr Arg Leu Arg Met Asn Lys Ser Glu Val 615 620 625 GTA GCA GAA ATA CAC ACT CTA CGT GAT GGA GGT CTG TTG ATG CAG TTG 2334 Val Ala Glu Ile His Thr Leu Arg Asp Gly Gly Leu Leu Met Gln Leu 630 635 640 GAT GGC AAA AGC CAT GTG ATA TAT GCA GAG GAA GAA GCT GCA GGA ACT 2382 Asp Gly Lys Ser His Val Ile Tyr Ala Glu Glu Glu Ala Ala Gly Thr 645 650 655 CGT CTT CTC ATT GAT GGA AGA ACT TGT TTG CTA CAG AAT GAC CAC GAT 2430 Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln Asn Asp His Asp 660 665 670 675 CCA TCA AAG TTA ATG GCT GAG ACA CCG TGC AAG TTG ATG AGG TAT TTG 2478 Pro Ser Lys Leu Met Ala G lu Thr Pro Cys Lys Leu Met Arg Tyr Leu 680 685 690 ATT TCC GAC AAC AGC AAT ATT GAC GCT GAT ACG CCT TAT GCC GAA GTT 2526 Ile Ser Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr Ala Glu Val 695 700 705 GAG GTC ATG AAG ATG TGC ATG CCA CTT CTT TCA CCT GCT TCA GGA GTT 2574 Glu Val Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala Ser Gly Val 710 715 720 ATC CAT TTT AAA ATG TCT GAA GGA CAA GCC ATG CAG GCT GGT GAA CTT 2622 Ile His Phe Lys Met Ser Glu Gly Gln Ala Met Gln Ala Gly Glu Leu 725 730 735 ATA GCC AAT CTT GAT CTT GAT GAT CCT TCT GCT GTA AGA AAG GCC GAA 2670 Ile Ala Asn Leu Asp Leu Asp Asp Pro Ser Ala Val Arg Lys Ala Glu 740 745 750 755 CCC TTC CAT GGA AGT TTC CCA AGA TTA GGG CTT CCA ACT GCA ATA TCC 2718 Pro Phe His Gly Ser Phe Pro Arg Leu Gly Leu Pro Thr Ala Ile Ser 760 765 770 GGT AGA GTT CAT CAG AGA TGT GCC GCA ACA TTA AAT GCT GCA CGC ATG 2766 Gly Arg Val His Gln Arg Cys Ala Ala Thr Leu Asn Ala Ala Arg Met 775 780 785 ATT ATT CTT GCT GGC TAT GAG CAT AAA GTA GAT GAG GTT GTT CAA GAC TTA 2814 Ile Le u Ala Gly Tyr Glu His Lys Val Asp Glu Val Val Gln Asp Leu 790 795 800 CTT AAT TGC CTT GAT AGC CCT GAA CTC CCA TTT CTT CAG TGG CAA GAG 2862 Leu Asn Cys Leu Asp Ser Pro Glu Leu Pro Phe Leu Gln Trp Gln Glu 805 810 815 TGC TTT GCA GTT CTG GCG ACA CGA CTA CCT AAA AAT CTC AGG AAC ATG 2910 Cys Phe Ala Val Leu Ala Thr Arg Leu Pro Lys Asn Leu Arg Asn Met 820 825 830 835 CTA GAA TCA AAG TAT AGG GAA TTT GAG AGT ATT TCC AGA AAC TCT TTG 2958 Leu Glu Ser Lys Tyr Arg Glu Phe Glu Ser Ile Ser Arg Asn Ser Leu 840 845 850 ACC ACC GAT TTC CCT GCC AAA CTT TTA AAA GGC ATT CTT GAG GCA CAT 3006 Thr Thr Asp Phe Pro Ala Lys Leu Leu Lys Gly Ile Leu Glu Ala His 855 860 865 TTA TCT TCT TGT GAT GAG AAA GAG AGA GGT GCC CTT GAA AGG CTC ATT 3054 Leu Ser Ser Cys Asp Glu Lys Glu Arg Gly Ala Leu Glu Arg Leu Ile 870 875 880 GAA CCA TTG ATG AGC CTT GCA AAA TCT TAT GAA GGT GGT AGA GAA AGT 3102 Glu Pro Leu Met Ser Leu Ala Lys Ser Tyr Glu Gly Gly Arg Glu Ser 885 890 895 CAT GCC CGT GTT ATT GTT CAT TCT CTC TTT GAA GAA TAT CTA TCA GTA 3150 His Ala Arg Val Ile Val His Ser Leu Phe Glu Glu Tyr Leu Ser Val 900 905 910 915 GAA GAA TTA TTC AAT GAT AAC ATG CTG GCT GAT GTT ATA GAA CGC ATG 3198 Glu Glu Leu Phe Asn Asp Asn Met Leu Ala Asp Val Ile Glu Arg Met 920 925 930 CGT CAG CTA TAC AAG AAA GAT CTG TTG AAA ATT GTG GAT ATA GTG CTC 3246 Arg Gln Leu Tyr Lys Lys Asp Leu Leu Lys Ile Val Asp Ile Val Leu 935 940 945 TCA CAC CAG GGC ATA AAA AAC AAA AAC AAA CTC GTT CTC CGG CTC ATG 3294 Ser His Gln Gly Ile Lys Asn Lys Asn Lys Leu Val Leu Arg Leu Met 950 955 960 GAG CAG CTT GTT TAC CCT AAT CCT GCT GCT TAC AGA GAT AAA CTT ATT 3342 Glu Gln Leu Val Tyr Pro Asn Pro Ala Ala Tyr Arg Asp Lys Leu Ile 965 970 975 CGA TTC TCA ACA CTT AAC CAT ACT AAC TAC TCT GAG TTG GCG CTC AAG 3390 Arg Phe Ser Thr Leu Asn His Thr Asn Tyr Ser Glu Leu Ala Leu Lys 980 985 990 995 GCG AGT CAA TTA CTT GAA CAG ACC AAA CTA AGT GAG CTT CGT TCA AAC 3438 Ala Ser Gln Leu Leu Glu Gln Thr Lys Leu Ser Glu Leu Arg Ser Asn 1000 1005 1010 ATT GCT AGA AGC CTT TCA GAG TT A GAA ATG TTT ACA GAG GAC GGA GAA 3486 Ile Ala Arg Ser Leu Ser Glu Leu Glu Met Phe Thr Glu Asp Gly Glu 1015 1020 1025 AAT ATG GAT ACT CCC AAG AGG AAA AGT GCC ATT AAT GAA AGA ATA GAA 3534 Asn Met Asp Thr Pro Lys Arg Lys Ser Ala Ile Asn Glu Arg Ile Glu 1030 1035 1040 GAT CTT GTA AGC GCA TCT TTA GCT GTT GAA GAC GCT CTC GTG GGA CTA 3582 Asp Leu Val Ser Ala Ser Leu Ala Val Glu Asp Ala Leu Val Gly Leu 1045 1050 1055 TTT GAC CAT AGC GAT CAC ACA CTT CAA AGA CGG GTT GTT GAG ACT TAT 3630 Phe Asp His Ser Asp His Thr Leu Gln Arg Arg Val Val Glu Thr Tyr 1060 1065 1070 1075 ATT CGC AGA TTA TAC CAG CCC TAC GTC GTT AAA GAT AGC GTG AGG ATG 3678 Ile Arg Arg Leu Tyr Gln Pro Tyr Val Val Lys Asp Ser Val Arg Met 1080 1085 1090 CAG TGG CAC CGT TCT GGT CTT CTT GCT TCC TGG GAG TTC CTA GAG GAG 3726 Gln Trp His Arg Ser Gly Leu Leu Ala Ser Trp Glu Phe Leu Glu Glu 1095 1100 1105 CAT ATG GAA AGA AAA AAC ATT GGC TTA GAC GAT CCC GAC ACA TCT GAA 3774 His Met Glu Arg Lys Asn Ile Gly Leu Asp Asp Pro Asp Thr Ser Glu 1110 1115 1120 AAA GGA TTG GTT GAG AAG CGT AGT AAG AGA AAA TGG GGG GCT ATG GTT 3822 Lys Gly Leu Val Glu Lys Arg Ser Lys Arg Lys Trp Gly Ala Met Val 1125 1130 1135 ATA ATC AAA TCT TTG CAG TTT CTT CCA AGT ATA ATA AGT GCA GCA TTG 3870 Ile Ile Lys Ser Leu Gln Phe Leu Pro Ser Ile Ile Ser Ala Ala Leu 1140 1145 1150 1155 AGA GAA ACA AAG CAC AAC GAC TAT GAA ACT GCC GGA GCT CCT TTA TCT 3918 Arg Glu Thr Lys His Asn Asp Tyr Glu Thr Ala Gly Ala Pro Leu Ser 1160 1165 1170 GGC AAT ATG ATG CAC ATT GCT ATT GTG GGC ATC AAC AAC CAG ATG AGT 3966 Gly Asn Met Met His Ile Ala Ile Val Gly Ile Asn Asn Gln Met Ser 1175 1180 1185 CTG CTT CAG GAC AGT GGG GAT GAA GAC CAA GCT CAG GAA AGA GTA AAC 4014 Leu Leu Gln Asp Ser Gly Asp Glu Asp Gln Ala Gln Glu Arg Val Asn 1190 1195 1200 AAG TTG GCC AAA ATT CTT AAA GAG GAA GAA GTG AGT TCA AGC CTC TGT 4062 Lys Leu Ala Lys Ile Leu Lys Glu Glu Glu Val Ser Ser Ser Leu Cys 1205 1210 1215 TCT GCC GGT GTT GGT GTA ATC AGC TGT ATA ATT CAG CGA GAT GAA GGA 4110 Ser Ala Gly Val Gly Val Ile Ser Cys Ile Ile Gln Arg Asp Glu Gly 1220 1225 1230 1235 CGA ACA CCC ATG AGA CAT TCT TTC CAT TGG TCG TTG GAG AAA CAG TAT 4158 Arg Thr Pro Met Arg His Ser Phe His Trp Ser Leu Glu Lys Gln Tyr 1240 1245 1250 TAT GTA GAA GAG CCG TTG CTG CGT CAT CTT GAA CCT CCT CTG TCC ATT 4206 Tyr Val Glu Glu Pro Leu Leu Arg His Leu Glu Pro Pro Leu Ser Ile 1255 1260 1265 TAC CTT GAG TTG GAT AAG CTG AAA GGA TAC TCA AAT ATA CAA TAT ACG 4256 Tyr Leu Glu Leu Asp Lys Leu Lys Gly Tyr Ser Asn Ile Gln Tyr Thr 1270 1275 1280 CCT TCT CGA GAT CGT CAA TGG CAT CTG TAT ACT GTT ACA GAC AAG CCA 4304 Pro Ser Arg Asp Arg Gln Trp His Leu Tyr Thr Val Thr Asp Lys Pro 1285 1290 1295 GTG CCA ATC AAG AGG ATG TTC CTG AGA TCT CTT GTT CGA CAG GCT ACA 4352 Val Pro Ile Lys Arg Met Phe Leu Arg Ser Leu Val Arg Gln Ala Thr 1300 1305 1310 1315 ATG AAC GAT GGA TTT ATA TTG CAG CAA GGG CAG GAT AAG CAG CTT AGC 4400 Met Asn Asp Gly Phe Ile Leu Gln Gln Gly Gln Asp Lys Gln Leu Ser 1320 1325 1330 CAA ACA CTG ATC TCC ATG GCG TTT ACG TCG AAA TGT GT T CTG AGG TCT 4448 Gln Thr Leu Ile Ser Met Ala Phe Thr Ser Lys Cys Val Leu Arg Ser 1335 1340 1345 TTG ATG GAT GCC ATG GAG GAA CTG GAA CTG AAT GCC CAT AAT GCT GCA 4496 Leu Met Asp Ala Met Glu Glu Leu Glu Leu Asn Ala His Asn Ala Ala 1350 1355 1360 ATG AAA CCA GAT CAC GCA CAT ATG TTT CTT TGC ATA TTG CGT GAG CAG 4544 Met Lys Pro Asp His Ala His Met Phe Leu Cys Ile Leu Arg Glu Gln 1365 1370 1375 CAG ATA GAT GAT CTT GTG CCT TTC CCC AGG AGA GTT GAA GTG AAT GCG 4592 Gln Ile Asp Asp Leu Val Pro Phe Pro Arg Arg Val Glu Val Asn Ala 1380 1385 1390 1395 GAG GAT GAA GAA ACT ACA GTT GAA ATG ATC TTA GAA GAA GCA GCA CGA 4640 Glu Asp Glu Glu Thr Thr Val Glu Met Ile Leu Glu Glu Ala Ala Arg 1400 1405 1410 GAG ATA CAT AGA TCT GTT GGA GTG AGA ATG CAT AGG TTG GGC GTG TGC 4688 Glu Ile His Arg Ser Val Gly Val Arg Met His Arg Leu Gly Val Cys 1415 1420 1425 GAG TGG GAA GTG CGG CTG TGG TTG GTG TCC TCT GGA CTG GCA TGT GGT 4736 Glu Trp Glu Val Arg Leu Trp Leu Val Ser Ser Gly Leu Ala Cys Gly 1430 1435 1440 GCT TGG A GG GTT GTG GTT GCA AAC GTG ACA GGC CGT ACA TGC ACT GTC 4784 Ala Trp Arg Val Val Val Ala Asn Val Thr Gly Arg Thr Cys Thr Val 1445 1450 1455 CAC ATA TAC CGA GAA GTT GAA ACT CCT GGA AGA AAC AGT TTA ATC TAC 4832 His Ile Tyr Arg Glu Val Glu Thr Pro Gly Arg Asn Ser Leu Ile Tyr 1460 1465 1470 1475 CAC TCA ATA ACC AAG AAG GGA CCT TTG CAT GAA ACA CCA ATC AGT GAT 4880 His Ser Ile Thr Lys Lys Gly Pro Leu His Glu Thr Pro Ile Ser Asp 1480 1485 1490 CAA TAT AAG CCC CTG GGA TAT CTC GAC AGG CAA CGT TTA GCA GCA AGG 4928 Gln Tyr Lys Pro Leu Gly Tyr Leu Asp Arg Gln Arg Leu Ala Ala Arg 1495 1500 1505 AGG AGT AAC ACT ACT TAT TGC TAT GAC TTC CCG TTG GCA TTT GGG ACA 4976 Arg Ser Asn Thr Thr Tyr Cys Tyr Asp Phe Pro Leu Ala Phe Gly Thr 1510 1515 1520 GCC TTG GAA CTG TTG TGG GCA TCA CAA CAC CCA GGA GTT AAG AAA CCA 5024 Ala Leu Glu Leu Leu Trp Ala Ser Gln His Pro Gly Val Lys Lys Pro 1525 1530 1535 TAT AAG GAT ACT CTG ATC AAT GTT AAA GAG CTT GTA TTC TCA AAA CCA 5072 Tyr Lys Asp Thr Leu Ile Asn Val Lys Glu Leu Val Phe Ser Lys Pro 1540 1545 1550 1555 GAA GGT TCT TCG GGT ACA TCT CTA GAT CTG GTT GAA AGA CCA CCC GGT 5120 Glu Gly Ser Ser Gly Thr Ser Leu Asp Leu Val Glu Arg Pro Pro Gly 1560 1565 1570 CTC AAC GAC TTT GGA ATG GTT GCC TGG TGC CTA GAT ATG TCG ACC CCA 5168 Leu Asn Asp Phe Gly Met Val Ala Trp Cys Leu Asp Met Ser Thr Pro 1575 1580 1585 GAG TTT CCT ATG GGG CGG AAA CTT CTC GTG ATT GCG AAT GAT GTC ACC 5216 Glu Phe Pro Met Gly Arg Lys Leu Leu Val Ile Ala Asn Asp Val Thr 1590 1595 1600 TTC AAA GCT GGT TCT TTT GGT CCT AGA GAG GAC GCG TTT TTC CTT GCT 5264 Phe Lys Ala Gly Ser Phe Gly Pro Arg Glu Asp Ala Phe Phe Leu Ala 1605 1610 1615 GTT ACT GAA CTC GCT TGT GCC AAG AAG CTT CCC TTG ATT TAC TTG GCA 5312 Val Thr Glu Leu Ala Cys Ala Lys Lys Leu Pro Leu Ile Tyr Leu Ala 1620 1625 1630 1635 GCA AAT TCT GGT GCC CGA CTT GGG GTT GCT GAA GAA GTC AAA GCC TGC 5360 Ala Asn Ser Gly Ala Arg Leu Gly Val Ala Glu Glu Val Lys Ala Cys 1640 1645 1650 TTC AAA GTT GGA TGG TCG GAT GAA ATT TCC CCT GAG AAT GGT TTT CAG 5408 P he Lys Val Gly Trp Ser Asp Glu Ile Ser Pro Glu Asn Gly Phe Gln 1655 1660 1665 TAT ATA TAC CTA AGC CCT GAA GAC CAC GAA AGG ATT GGA TCA TCT GTC 5456 Tyr Ile Tyr Leu Ser Pro Glu Asp His Glu Arg Ile Gly Ser Ser Val 1670 1675 1680 ATT GCC CAT GAA GTA AAG CTC TCT AGT GGG GAA ACT AGG TGG GTG ATT 5504 Ile Ala His Glu Val Lys Leu Ser Ser Gly Glu Thr Arg Trp Val Ile 1685 1690 1695 GAT ACG ATC GTT GGC AAA GAA GAT GGT ATT GGT GTA GAG AAC TTA ACA 5552 Asp Thr Ile Val Gly Lys Glu Asp Gly Ile Gly Val Glu Asn Leu Thr 1700 1705 1710 1715 GGA AGT GGG GCC ATA GCG GGT GCT TAC TCA AAG GCA TAC AAT GAA ACT 5600 Gly Ser Gly Ala Ile Ala Gly Ala Tyr Ser Lys Ala Tyr Asn Glu Thr 1720 1725 1730 TTT ACT TTA ACC TTT GTT AGT GGA AGA ACG GTT GGA ATT GGT GCT TAT 5648 Phe Thr Leu Thr Phe Val Ser Gly Arg Thr Val Gly Ile Gly Ala Tyr 1735 1740 1745 CTT GCC CGC CTA GGT ATG CGG TGC ATA CAG AGA CTT GAT CAG CCG ATC 5696 Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu Asp Gln Pro Ile 1750 1755 1760 ATC TTG ACT GGC TTC TCT ACA C TC AAC AAG TTA CTT GGG CGT GAG GTC 5744 Ile Leu Thr Gly Phe Ser Thr Leu Asn Lys Leu Leu Gly Arg Glu Val 1765 1770 1775 TAT AGC TCT CAC ATG CAA CTG GGT GGC CCG AAA ATC ATG GGC ACA AAT 5792 Tyr Ser Ser His Met Gln Leu Gly Gly Pro Lys Ile Met Gly Thr Asn 1780 1785 1790 1795 GGT GTT GTT CAT CTT ACA GTC TCA GAT GAT CTT GAA GGC GTA TCA GCA 5840 Gly Val Val His Leu Thr Val Ser Asp Asp Leu Glu Gly Val Ser Ala 1800 1805 1810 ATT CTC AAC TGG CTC AGC TAC ATT CCT GCT TAC GTG GGT GGT CCT CTT 5888 Ile Leu Asn Trp Leu Ser Tyr Ile Pro Ala Tyr Val Gly Gly Pro Leu 1815 1820 1825 CCT GTT CTT GCC CCT TTA GAT CCA CCG GAG AGA ATT GTG GAG TAT GTC 5936 Pro Val Leu Ala Pro Leu Asp Pro Pro Glu Arg Ile Val Glu Tyr Val 1830 1835 1840 CCA GAG AAC TCT TGC GAC CCA CGA GCG GCT ATA GCT GGG GTC AAA GAC 5984 Pro Glu Asn Ser Cys Asp Pro Arg Ala Ala Ile Ala Gly Val Lys Asp 1845 1850 1855 AAT ACC GGT AAA TGG CTT GGA GGT ATC TTT GAT AAA AAT AGT TTC ATT 6032 Asn Thr Gly Lys Trp Leu Gly Gly Ile Phe Asp Lys Asn Ser Phe Ile 186 0 1865 1870 1875 GAG ACT CTT GAA GGC TGG GCA AGG ACG GTA GTG ACT GGT AGA GCC AAG 6080 Glu Thr Leu Glu Gly Trp Ala Arg Thr Val Val Thr Gly Arg Ala Lys 1880 1885 1890 CTC GGG GGA ATA CCC GTT GGA GTT GTT GCA GTT GAG ACA CAG ACT GTC 6128 Leu Gly Gly Ile Pro Val Gly Val Val Ala Val Glu Thr Gln Thr Val 1895 1900 1905 ATG CAG ATC ATC CCA GCC GAT CCT GGA CAG CTT GAC TCT CAT GAA AGA 6176 Met Gln Ile Ile Pro Ala Asp Pro Gly Gln Leu Asp Ser His Glu Arg 1910 1915 1920 GTG GTT CCG CAA GCA GGG CAA GTC TGG TTT CCT GAT TCA GCG GCC AAG 6224 Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp Ser Ala Ala Lys 1925 1930 1935 ACT GCT CAA GCG CTT ATG GAT TTC AAC CGG GAA GAG CTT CCA TTG TTT 6272 Thr Ala Gln Ala Leu Met Asp Phe Asn Arg Glu Glu Leu Pro Leu Phe 1940 1945 1950 1955 ATC CTA GCG AAC TGG AGA GGG TTT TCA GGT GGG CAG AGA GAT CTT TTC 6320 Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln Arg Asp Leu Phe 1960 1965 1970 GAA GGA ATA CTT CAG GCA GGT TCA ACT ATA GTA GAA AAT CTG AGA ACC 6368 Glu Gly Ile Leu Gln A la Gly Ser Thr Ile Val Glu Asn Leu Arg Thr 1975 1980 1985 TAT CGT CAG CCA GTG TTT GTG TAC ATC CCA ATG ATG GGA GAG CTG CGC 6416 Tyr Arg Gln Pro Val Phe Val Tyr Ile Pro Met Met Gly Glu Leu Arg 1990 1995 2000 GGT GGA GCG TGG GTT GTT GTT GAC AGC CAG ATA AAT TCG GAT TAT GTT 6464 Gly Gly Ala Trp Val Val Val Asp Ser Gln Ile Asn Ser Asp Tyr Val 2005 2010 2015 GAA ATG TAT GCT GAT GAA ACA GCT CGT GGA AAT GTG CTT GAG CCA GAA 6512 Glu Met Tyr Ala Asp Glu Thr Ala Arg Gly Asn Val Leu Glu Pro Glu 2020 2025 2030 2035 GGG ACA ATA GAG ATA AAA TTT AGA ACA AAA GAG CTA TTA GAG TGC ATG 6560 Gly Thr Ile Glu Ile Lys Phe Arg Thr Lys Glu Leu Leu Glu Cys Met 2040 2045 2050 GGA AGG TTG GAC CAG AAG CTA ATC AGT CTG AAA GCA AAA CTG CAA GAT 6608 Gly Arg Leu Asp Gln Lys Leu Ile Ser Leu Lys Ala Lys Leu Gln Asp 2055 2060 2065 GCC AAG CAA AGC GAG GCC TAT GCA AAC ATC GAG CTT CTC CAG CAA CAG 6656 Ala Lys Gln Ser Glu Ala Tyr Ala Asn Ile Glu Leu Leu Gln Gln Gln 2070 2075 2080 ATT AAA GCC CGA GAG AAA CAG CTT TTA CCA GTT TAT A TC CAA ATC GCC 6704 Ile Lys Ala Arg Glu Lys Gln Leu Leu Pro Val Tyr Ile Gln Ile Ala 2085 2090 2095 ACC AAA TTT GCA GAA CTT CAT GAC ACT TCC ATG AGA ATG GCT GCA AAG 6752 Thr Lys Phe Ala Glu Leu His Asp Thr Ser Met Arg Met Ala Ala Lys 2100 2105 2110 2115 GGA GTG ATC AAA AGT GTT GTG GAA TGG AGC GGC TCG CGG TCC TTC TTC 6798 Gly Val Ile Lys Ser Val Val Glu Trp Ser Gly Ser Arg Ser Phe Phe 2120 2125 2130 TAC AAA AAG CTC AAT AGG AGA ATC GCT GAG AGC TCT CTT GTG AAA AAC 6848 Tyr Lys Lys Leu Asn Arg Arg Ile Ala Glu Ser Ser Leu Val Lys Asn 2135 2140 2145 GTA AGA GAA GCA TCT GGA GAC AAC TTA GCA TAT AAA TCT TCA ATG CGT 6896 Val Arg Glu Ala Ser Gly Asp Asn Leu Ala Tyr Lys Ser Ser Met Arg 2150 2155 2160 CTG ATT CAG GAT TGG TTC TGC AAC TCT GAT ATT GCA AAG GGG AAA GAA 6944 Leu Ile Gln Asp Trp Phe Cys Asn Ser Asp Ile Ala Lys Gly Lys Glu 2165 2170 2175 GAA GCT TGG ACA GAC GAC CAA GTG TTC TTT ACA TGG AAG GAC AAT GTT 6992 Glu Ala Trp Thr Asp Asp Gln Val Phe Phe Thr Trp Lys Asp Asn Val 2180 2185 2190 2195 AGT AAC TAC GAG TTG AAG CTG AGC GAG TTG AGA GCG CAG AAA CTA CTG 7040 Ser Asn Tyr Glu Leu Lys Leu Ser Glu Leu Arg Ala Gln Lys Leu Leu 2200 2205 2210 AAC CAA CTT GCA GAG ATT GGG AAT TCC TCA GAT TTG CAA GCT CTG CCA 7088 Asn Gln Leu Ala Glu Ile Gly Asn Ser Ser Asp Leu Gln Ala Leu Pro 2215 2220 2225 CAA GGA CTT GCT AAT CTT CTA AAC AAG GTG GAG CCG TCG AAA AGA GAA 7136 Gln Gly Leu Ala Asn Leu Leu Asn Lys Val Glu Pro Ser Lys Arg Glu 2230 2235 2240 GAG CTG GTG GCT GCT ATT CGA AAG GTC TTG GGT TGACTGATAT CGAAGACTTT 7189 Glu Leu Val Ala Ala Ila Arle Lyg Val Leu Gly 2245 2250GTTGCCATTCATTTACTAGTAGTATCA CCAAGAAAGA TGGACATTTA AAGTTTGCTT GTGTCCCC AACAAAAAAA A 7340

【0108】配列番号:22 配列の長さ:2254 配列の型:アミノ酸 起源 生物名:シロイヌナズナ(Arabidopsis thaliana) 配列 Met Ala Gly Ser Val Asn Gly Asn His Ser Ala Val Gly Pro Gly Ile 1 5 10 15 Asn Tyr Glu Thr Val Ser Gln Val Asp Glu Phe Cys Lys Ala Leu Arg 20 25 30 Gly Lys Arg Pro Ile His Ser Ile Leu Ile Ala Asn Asn Gly Met Ala 35 40 45 Ala Val Lys Phe Ile Arg Ser Val Arg Thr Trp Ala Tyr Glu Thr Phe 50 55 60 Gly Thr Glu Lys Ala Ile Leu Leu Val Gly Met Ala Thr Pro Glu Asp 65 70 75 80 Met Arg Ile Asn Ala Glu His Ile Arg Ile Ala Asp Gln Phe Val Glu 85 90 95 Val Pro Gly Gly Thr Asn Asn Asn Asn Tyr Ala Asn Val Gln Leu Ile 100 105 110 Val Glu Met Ala Glu Val Thr Arg Val Asp Ala Val Trp Pro Gly Trp 115 120 125 Gly His Ala Ser Glu Asn Pro Glu Leu Pro Asp Ala Leu Asp Ala Lys 130 135 140 Gly Ile Ile Phe Leu Gly Pro Pro Ala Ser Ser Met Ala Ala Leu Gly 145 150 155 160 Asp Lys Ile Gly Ser Ser Leu Ile Ala Gln Ala Ala Asp Val Pro Thr 165 170 175 Leu Pro Trp Ser Gly Ser His Val Lys Ile Pro Pro Asn Ser Asn Leu 180 185 190 Val Thr Ile Pro Glu Glu Ile Tyr Arg Gln Ala Cys Val Tyr Thr Thr 195 200 205 Glu Glu Ala Ile Ala Ser Cys Gln Val Val Gly Tyr Pro Ala Met Ile 210 215 220 Lys Ala Ser Trp Gly Gly Gly Gly Lys Gly Ile Arg Lys Val His Asn 225 230 235 240 Asp Asp Glu Val Arg Ala Leu Phe Lys Gln Val Gln Gly Glu Val Pro 245 250 255 Gly Ser Pro Ile Phe Ile Met Lys Val Ala Ser Gln Ser Arg His Leu 260 265 270 Glu Val Gln Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His 275 280 285 Ser Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Ile Ile Glu Glu 290 295 300 Gly Pro Ile Thr Val Ala Pro Pro Glu Thr Val Lys Lys Leu Glu Gln 305 310 315 320 Ala Ala Arg Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala Ala Thr 325 330 335 Val Glu Tyr Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe Leu Glu 340 345 350 Leu Asn Pro Arg Leu Gln Val Glu His Pro Val Thr Glu Trp Ile Ala 355 360 365 Glu Ile Asn Leu Pro Ala Ala Gln Val Ala Val Gly Met Gly Ile Pro 370 375 380 Leu Trp Gln Ile Pro Glu Ile Arg Arg Phe Tyr Gly Ile Glu His Gly 385 390 395 400 Gly Gly Tyr Asp Ser Trp Arg Lys Thr Ser Val Val Ala Phe Pro Phe 405 410 415 Asp Phe Asp Lys Ala Gln Ser Ile Arg Pro Lys Gly His Cys Val Ala 420 425 430 Val Arg Val Thr Ser Glu Asp Pro Asp Asp Gly Phe Lys Pro Thr Ser 435 440 445 Gly Arg Val Gln Glu Leu Ser Phe Lys Ser Lys Pro Asn Val Trp Ala 450 455 460 Tyr Phe Ser Val Lys Ser Gly Gly Gly Ile His Glu Phe Ser Asp Ser 465 470 475 480 Gln Phe Gly His Val Phe Ala Phe Gly Glu Ser Arg Ala Leu Ala Ile 485 490 495 Ala Asn Met Val Leu Gly Leu Lys Glu Ile Gln Ile Arg Gly Glu Ile 500 505 510 Arg Thr Asn Val Asp Tyr Thr Ile Asp Leu Leu His Ala Ser Asp Tyr 515 520 525 Arg Asp Asn Lys Ile His Thr Gly Trp Leu Asp Ser Arg Ile Ala Met 530 535 540 Arg Val Arg Ala Glu Arg Pro Pro Trp Tyr Leu Ser Val Val Gly Gly 545 550 555 560 Ala Leu Tyr Lys Ala Ser Ala Thr Ser Ala Ala Val Val Ser Asp Tyr 565 570 575 Val Gly Tyr Leu Glu Lys Gly Gln Ile Pro Pro Lys His Ile Ser Leu 580 585 590 Val His Ser Gln Val Ser Leu Asn Ile Glu Gly Ser Lys Tyr Thr Ile 595 600 605 Asp Val Val Arg Gly Gly Ser Gly Thr Tyr Arg Leu Arg Met Asn Lys 610 615 620 Ser Glu Val Val Ala Glu Ile His Thr Leu Arg Asp Gly Gly Leu Leu 625 630 635 640 Met Gln Leu Asp Gly Lys Ser His Val Ile Tyr Ala Glu Glu Glu Ala 645 650 655 Ala Gly Thr Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln Asn 660 665 670 Asp His Asp Pro Ser Lys Leu Met Ala Glu Thr Pro Cys Lys Leu Met 675 680 685 Arg Tyr Leu Ile Ser Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr 690 695 700 Ala Glu Val Glu Val Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala 705 710 715 720 Ser Gly Val Ile His Phe Lys Met Ser Glu Gly Gln Ala Met Gln Ala 725 730 735 Gly Glu Leu Ile Ala Asn Leu Asp Leu Asp Asp Pro Ser Ala Val Arg 740 745 750 Lys Ala Glu Pro Phe His Gly Ser Phe Pro Arg Leu Gly Leu Pro Thr 755 760 765 Ala Ile Ser Gly Arg Val His Gln Arg Cys Ala Ala Thr Leu Asn Ala 770 775 780 Ala Arg Met Ile Leu Ala Gly Tyr Glu His Lys Val Asp Glu Val Val 785 790 795 800 Gln Asp Leu Leu Asn Cys Leu Asp Ser Pro Glu Leu Pro Phe Leu Gln 805 810 815 Trp Gln Glu Cys Phe Ala Val Leu Ala Thr Arg Leu Pro Lys Asn Leu 820 825 830 Arg Asn Met Leu Glu Ser Lys Tyr Arg Glu Phe Glu Ser Ile Ser Arg 835 840 845 Asn Ser Leu Thr Thr Asp Phe Pro Ala Lys Leu Leu Lys Gly Ile Leu 850 855 860 Glu Ala His Leu Ser Ser Cys Asp Glu Lys Glu Arg Gly Ala Leu Glu 865 870 875 880 Arg Leu Ile Glu Pro Leu Met Ser Leu Ala Lys Ser Tyr Glu Gly Gly 885 890 895 Arg Glu Ser His Ala Arg Val Ile Val His Ser Leu Phe Glu Glu Tyr 900 905 910 Leu Ser Val Glu Glu Leu Phe Asn Asp Asn Met Leu Ala Asp Val Ile 915 920 925 Glu Arg Met Arg Gln Leu Tyr Lys Lys Asp Leu Leu Lys Ile Val Asp 930 935 940 Ile Val Leu Ser His Gln Gly Ile Lys Asn Lys Asn Lys Leu Val Leu 945 950 955 960 Arg Leu Met Glu Gln Leu Val Tyr Pro Asn Pro Ala Ala Tyr Arg Asp 965 970 975 Lys Leu Ile Arg Phe Ser Thr Leu Asn His Thr Asn Tyr Ser Glu Leu 980 985 990 Ala Leu Lys Ala Ser Gln Leu Leu Glu Gln Thr Lys Leu Ser Glu Leu 995 1000 1005 Arg Ser Asn Ile Ala Arg Ser Leu Ser Glu Leu Glu Met Phe Thr Glu 1010 1015 1020 Asp Gly Glu Asn Met Asp Thr Pro Lys Arg Lys Ser Ala Ile Asn Glu 1025 1030 1035 1040 Arg Ile Glu Asp Leu Val Ser Ala Ser Leu Ala Val Glu Asp Ala Leu 1045 1050 1055 Val Gly Leu Phe Asp His Ser Asp His Thr Leu Gln Arg Arg Val Val 1060 1065 1070 Glu Thr Tyr Ile Arg Arg Leu Tyr Gln Pro Tyr Val Val Lys Asp Ser 1075 1080 1085 Val Arg Met Gln Trp His Arg Ser Gly Leu Leu Ala Ser Trp Glu Phe 1090 1095 1100 Leu Glu Glu His Met Glu Arg Lys Asn Ile Gly Leu Asp Asp Pro Asp 1105 1110 1115 1120 Thr Ser Glu Lys Gly Leu Val Glu Lys Arg Ser Lys Arg Lys Trp Gly 1125 1130 1135 Ala Met Val Ile Ile Lys Ser Leu Gln Phe Leu Pro Ser Ile Ile Ser 1140 1145 1150 Ala Ala Leu Arg Glu Thr Lys His Asn Asp Tyr Glu Thr Ala Gly Ala 1155 1160 1165 Pro Leu Ser Gly Asn Met Met His Ile Ala Ile Val Gly Ile Asn Asn 1170 1175 1180 Gln Met Ser Leu Leu Gln Asp Ser Gly Asp Glu Asp Gln Ala Gln Glu 1185 1190 1195 1200 Arg Val Asn Lys Leu Ala Lys Ile Leu Lys Glu Glu Glu Val Ser Ser 1205 1210 1215 Ser Leu Cys Ser Ala Gly Val Gly Val Ile Ser Cys Ile Ile Gln Arg 1220 1225 1230 Asp Glu Gly Arg Thr Pro Met Arg His Ser Phe His Trp Ser Leu Glu 1235 1240 1245 Lys Gln Tyr Tyr Val Glu Glu Pro Leu Leu Arg His Leu Glu Pro Pro 1250 1255 1260 Leu Ser Ile Tyr Leu Glu Leu Asp Lys Leu Lys Gly Tyr Ser Asn Ile 1265 1270 1275 1280 Gln Tyr Thr Pro Ser Arg Asp Arg Gln Trp His Leu Tyr Thr Val Thr 1285 1290 1295 Asp Lys Pro Val Pro Ile Lys Arg Met Phe Leu Arg Ser Leu Val Arg 1300 1305 1310 Gln Ala Thr Met Asn Asp Gly Phe Ile Leu Gln Gln Gly Gln Asp Lys 1315 1320 1325 Gln Leu Ser Gln Thr Leu Ile Ser Met Ala Phe Thr Ser Lys Cys Val 1330 1335 1340 Leu Arg Ser Leu Met Asp Ala Met Glu Glu Leu Glu Leu Asn Ala His 1345 1350 1355 1360 Asn Ala Ala Met Lys Pro Asp His Ala His Met Phe Leu Cys Ile Leu 1365 1370 1375 Arg Glu Gln Gln Ile Asp Asp Leu Val Pro Phe Pro Arg Arg Val Glu 1380 1385 1390 Val Asn Ala Glu Asp Glu Glu Thr Thr Val Glu Met Ile Leu Glu Glu 1395 1400 1405 Ala Ala Arg Glu Ile His Arg Ser Val Gly Val Arg Met His Arg Leu 1410 1415 1420 Gly Val Cys Glu Trp Glu Val Arg Leu Trp Leu Val Ser Ser Gly Leu 1425 1430 1435 1440 Ala Cys Gly Ala Trp Arg Val Val Val Ala Asn Val Thr Gly Arg Thr 1445 1450 1455 Cys Thr Val His Ile Tyr Arg Glu Val Glu Thr Pro Gly Arg Asn Ser 1460 1465 1470 Leu Ile Tyr His Ser Ile Thr Lys Lys Gly Pro Leu His Glu Thr Pro 1475 1480 1485 Ile Ser Asp Gln Tyr Lys Pro Leu Gly Tyr Leu Asp Arg Gln Arg Leu 1490 1495 1500 Ala Ala Arg Arg Ser Asn Thr Thr Tyr Cys Tyr Asp Phe Pro Leu Ala 1505 1510 1515 1520 Phe Gly Thr Ala Leu Glu Leu Leu Trp Ala Ser Gln His Pro Gly Val 1525 1530 1535 Lys Lys Pro Tyr Lys Asp Thr Leu Ile Asn Val Lys Glu Leu Val Phe 1540 1545 1550 Ser Lys Pro Glu Gly Ser Ser Gly Thr Ser Leu Asp Leu Val Glu Arg 1555 1560 1565 Pro Pro Gly Leu Asn Asp Phe Gly Met Val Ala Trp Cys Leu Asp Met 1570 1575 1580 Ser Thr Pro Glu Phe Pro Met Gly Arg Lys Leu Leu Val Ile Ala Asn 1585 1590 1595 1600 Asp Val Thr Phe Lys Ala Gly Ser Phe Gly Pro Arg Glu Asp Ala Phe 1605 1610 1615 Phe Leu Ala Val Thr Glu Leu Ala Cys Ala Lys Lys Leu Pro Leu Ile 1620 1625 1630 Tyr Leu Ala Ala Asn Ser Gly Ala Arg Leu Gly Val Ala Glu Glu Val 1635 1640 1645 Lys Ala Cys Phe Lys Val Gly Trp Ser Asp Glu Ile Ser Pro Glu Asn 1650 1655 1660 Gly Phe Gln Tyr Ile Tyr Leu Ser Pro Glu Asp His Glu Arg Ile Gly 1665 1670 1675 1680 Ser Ser Val Ile Ala His Glu Val Lys Leu Ser Ser Gly Glu Thr Arg 1685 1690 1695 Trp Val Ile Asp Thr Ile Val Gly Lys Glu Asp Gly Ile Gly Val Glu 1700 1705 1710 Asn Leu Thr Gly Ser Gly Ala Ile Ala Gly Ala Tyr Ser Lys Ala Tyr 1715 1720 1725 Asn Glu Thr Phe Thr Leu Thr Phe Val Ser Gly Arg Thr Val Gly Ile 1730 1735 1740 Gly Ala Tyr Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu Asp 1745 1750 1755 1760 Gln Pro Ile Ile Leu Thr Gly Phe Ser Thr Leu Asn Lys Leu Leu Gly 1765 1770 1775 Arg Glu Val Tyr Ser Ser His Met Gln Leu Gly Gly Pro Lys Ile Met 1780 1785 1790 Gly Thr Asn Gly Val Val His Leu Thr Val Ser Asp Asp Leu Glu Gly 1795 1800 1805 Val Ser Ala Ile Leu Asn Trp Leu Ser Tyr Ile Pro Ala Tyr Val Gly 1810 1815 1820 Gly Pro Leu Pro Val Leu Ala Pro Leu Asp Pro Pro Glu Arg Ile Val 1825 1830 1835 1840 Glu Tyr Val Pro Glu Asn Ser Cys Asp Pro Arg Ala Ala Ile Ala Gly 1845 1850 1855 Val Lys Asp Asn Thr Gly Lys Trp Leu Gly Gly Ile Phe Asp Lys Asn 1860 1865 1870 Ser Phe Ile Glu Thr Leu Glu Gly Trp Ala Arg Thr Val Val Thr Gly 1875 1880 1885 Arg Ala Lys Leu Gly Gly Ile Pro Val Gly Val Val Ala Val Glu Thr 1890 1895 1900 Gln Thr Val Met Gln Ile Ile Pro Ala Asp Pro Gly Gln Leu Asp Ser 1905 1910 1915 1920 His Glu Arg Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp Ser 1925 1930 1935 Ala Ala Lys Thr Ala Gln Ala Leu Met Asp Phe Asn Arg Glu Glu Leu 1940 1945 1950 Pro Leu Phe Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln Arg 1955 1960 1965 Asp Leu Phe Glu Gly Ile Leu Gln Ala Gly Ser Thr Ile Val Glu Asn 1970 1975 1980 Leu Arg Thr Tyr Arg Gln Pro Val Phe Val Tyr Ile Pro Met Met Gly 1985 1990 1995 2000 Glu Leu Arg Gly Gly Ala Trp Val Val Val Asp Ser Gln Ile Asn Ser 2005 2010 2015 Asp Tyr Val Glu Met Tyr Ala Asp Glu Thr Ala Arg Gly Asn Val Leu 2020 2025 2030 Glu Pro Glu Gly Thr Ile Glu Ile Lys Phe Arg Thr Lys Glu Leu Leu 2035 2040 2045 Glu Cys Met Gly Arg Leu Asp Gln Lys Leu Ile Ser Leu Lys Ala Lys 2050 2055 2060 Leu Gln Asp Ala Lys Gln Ser Glu Ala Tyr Ala Asn Ile Glu Leu Leu 2065 2070 2075 2080 Gln Gln Gln Ile Lys Ala Arg Glu Lys Gln Leu Leu Pro Val Tyr Ile 2085 2090 2095 Gln Ile Ala Thr Lys Phe Ala Glu Leu His Asp Thr Ser Met Arg Met 2100 2105 2110 Ala Ala Lys Gly Val Ile Lys Ser Val Val Glu Trp Ser Gly Ser Arg 2115 2120 2125 Ser Phe Phe Tyr Lys Lys Leu Asn Arg Arg Ile Ala Glu Ser Ser Leu 2130 2135 2140 Val Lys Asn Val Arg Glu Ala Ser Gly Asp Asn Leu Ala Tyr Lys Ser 2145 2150 2155 2160 Ser Met Arg Leu Ile Gln Asp Trp Phe Cys Asn Ser Asp Ile Ala Lys 2165 2170 2175 Gly Lys Glu Glu Ala Trp Thr Asp Asp Gln Val Phe Phe Thr Trp Lys 2180 2185 2190 Asp Asn Val Ser Asn Tyr Glu Leu Lys Leu Ser Glu Leu Arg Ala Gln 2195 2200 2205 Lys Leu Leu Asn Gln Leu Ala Glu Ile Gly Asn Ser Ser Asp Leu Gln 2210 2215 2220 Ala Leu Pro Gln Gly Leu Ala Asn Leu Leu Asn Lys Val Glu Pro Ser 2225 2230 2235 2240 Lys Arg Glu Glu Leu Val Ala Ala Ile Arg Lys Val Leu Gly 2245 2250 2254SEQ ID NO: 22 Sequence length: 2254 Sequence type: Amino acid Origin organism name: Arabidopsis thaliana Sequence Met Ala Gly Ser Val Asn Gly Asn His Ser Ala Val Gly Pro Gly Ile 1 5 10 15 Asn Tyr Glu Thr Val Ser Gln Val Asp Glu Phe Cys Lys Ala Leu Arg 20 25 30 Gly Lys Arg Pro Ile His Ser Ile Leu Ile Ala Asn Asn Gly Met Ala 35 40 45 Ala Val Lys Phe Ile Arg Ser Val Arg Thr Trp Ala Tyr Glu Thr Phe 50 55 60 Gly Thr Glu Lys Ala Ile Leu Leu Val Gly Met Ala Thr Pro Glu Asp 65 70 75 80 Met Arg Ile Asn Ala Glu His Ile Arg Ile Ala Asp Gln Phe Val Glu 85 90 95 Val Pro Gly Gly Thr Asn Asn Asn Asn Tyr Ala Asn Val Gln Leu Ile 100 105 110 Val Glu Met Ala Glu Val Thr Arg Val Asp Ala Val Trp Pro Gly Trp 115 120 125 Gly His Ala Ser Glu Asn Pro Glu Leu Pro Asp Ala Leu Asp Ala Lys 130 135 140 Gly Ile Ile Phe Leu Gly Pro Pro Ala Ser Ser Met Ala Ala Leu Gly 145 150 155 160 Asp Lys Ile Gly Ser Ser Leu Ile Ala Gln Ala Ala Asp Val Pro Thr 165 170 175 Leu Pro Trp Ser Gly Ser His Val Lys Ile Pro Pro Asn Ser Asn Leu 180 185 190 Val Thr Ile Pro Glu Glu Ile Tyr Arg Gln Ala Cys Val Tyr Thr Thr 195 200 205 Glu Glu Ala Ile Ala Ser Cys Gln Val Val Gly Tyr Pro Ala Met Ile 210 215 220 Lys Ala Ser Trp Gly Gly Gly Gly Lys Gly Ile Arg Lys Val His Asn 225 230 235 240 Asp Asp Glu Val Arg Ala Leu Phe Lys Gln Val Gln Gly Glu Val Pro 245 250 255 Gly Ser Pro Ile Phe Ile Met Lys Val Ala Ser Gln Ser Arg His Leu 260 265 270 Glu Val Gln Leu Leu Cys Asp Lys His Gly Asn Val Ser Ala Leu His 275 280 285 Ser Arg Asp Cys Ser Val Gln Arg Arg His Gln Lys Ile Ile Glu Glu 290 295 300 Gly Pro Ile Thr Val Ala Pro Pro Glu Thr Val Lys Lys Leu Glu Gln 305 310 315 320 Ala Ala Arg Arg Leu Ala Lys Ser Val Asn Tyr Val Gly Ala Ala Thr 325 330 335 Val Glu Tyr Leu Tyr Ser Met Asp Thr Gly Glu Tyr Tyr Phe Leu Glu 340 345 350 Leu Asn Pro Arg Leu Gln Val Glu His Pro Val Thr Glu Trp Ile Ala 355 360 365 Glu Ile Asn Leu Pro Ala Ala Gln Val Ala Val Gly Met Gly Ile Pro 370 375 380 Leu Trp Gln IlePro Glu Ile Arg Arg Phe Tyr Gly Ile Glu His Gly 385 390 395 400 Gly Gly Tyr Asp Ser Trp Arg Lys Thr Ser Val Val Ala Phe Pro Phe 405 410 415 Asp Phe Asp Lys Ala Gln Ser Ile Arg Pro Lys Gly His Cys Val Ala 420 425 430 Val Arg Val Thr Ser Glu Asp Pro Asp Asp Gly Phe Lys Pro Thr Ser 435 440 445 Gly Arg Val Gln Glu Leu Ser Phe Lys Ser Lys Pro Asn Val Trp Ala 450 455 460 Tyr Phe Ser Val Lys Ser Gly Gly Gly Ile His Glu Phe Ser Asp Ser 465 470 475 480 Gln Phe Gly His Val Phe Ala Phe Gly Glu Ser Arg Ala Leu Ala Ile 485 490 495 Ala Asn Met Val Leu Gly Leu Lys Glu Ile Gln Ile Arg Gly Glu Ile 500 505 510 Arg Thr Asn Val Asp Tyr Thr Ile Asp Leu Leu His Ala Ser Asp Tyr 515 520 525 Arg Asp Asn Lys Ile His Thr Gly Trp Leu Asp Ser Arg Ile Ala Met 530 535 540 Arg Val Arg Ala Glu Arg Pro Pro Trp Tyr Leu Ser Val Val Gly Gly 545 550 555 560 Ala Leu Tyr Lys Ala Ser Ala Thr Ser Ala Ala Val Val Ser Asp Tyr 565 570 575 Val Gly Tyr Leu Glu Lys Gly Gln Ile Pro Pro Lys His Ile Ser Leu 580 585 590 Val His Ser GlnVal Ser Leu Asn Ile Glu Gly Ser Lys Tyr Thr Ile 595 600 605 Asp Val Val Arg Gly Gly Ser Gly Thr Tyr Arg Leu Arg Met Asn Lys 610 615 620 Ser Glu Val Val Ala Glu Ile His Thr Leu Arg Asp Gly Gly Leu Leu 625 630 635 640 Met Gln Leu Asp Gly Lys Ser His Val Ile Tyr Ala Glu Glu Glu Ala 645 650 655 Ala Gly Thr Arg Leu Leu Ile Asp Gly Arg Thr Cys Leu Leu Gln Asn 660 665 670 Asp His Asp Pro Ser Lys Leu Met Ala Glu Thr Pro Cys Lys Leu Met 675 680 685 Arg Tyr Leu Ile Ser Asp Asn Ser Asn Ile Asp Ala Asp Thr Pro Tyr 690 695 700 Ala Glu Val Glu Val Met Lys Met Cys Met Pro Leu Leu Ser Pro Ala 705 710 715 720 Ser Gly Val Ile His Phe Lys Met Ser Glu Gly Gln Ala Met Gln Ala 725 730 735 Gly Glu Leu Ile Ala Asn Leu Asp Leu Asp Asp Pro Ser Ala Val Arg 740 745 750 Lys Ala Glu Pro Phe His Gly Ser Phe Pro Arg Leu Gly Leu Pro Thr 755 760 765 Ala Ile Ser Gly Arg Val His Gln Arg Cys Ala Ala Thr Leu Asn Ala 770 775 780 Ala Arg Met Ile Leu Ala Gly Tyr Glu His Lys Val Asp Glu Val Val 785 790 795 800 Gln Asp Leu LeuAsn Cys Leu Asp Ser Pro Glu Leu Pro Phe Leu Gln 805 810 815 Trp Gln Glu Cys Phe Ala Val Leu Ala Thr Arg Leu Pro Lys Asn Leu 820 825 830 Arg Asn Met Leu Glu Ser Lys Tyr Arg Glu Phe Glu Ser Ile Ser Arg 835 840 845 Asn Ser Leu Thr Thr Asp Phe Pro Ala Lys Leu Leu Lys Gly Ile Leu 850 855 860 Glu Ala His Leu Ser Ser Cys Asp Glu Lys Glu Arg Gly Ala Leu Glu 865 870 875 880 Arg Leu Ile Glu Pro Leu Met Ser Leu Ala Lys Ser Tyr Glu Gly Gly 885 890 895 Arg Glu Ser His Ala Arg Val Ile Val His Ser Leu Phe Glu Glu Tyr 900 905 910 Leu Ser Val Glu Glu Leu Phe Asn Asp Asn Met Leu Ala Asp Val Ile 915 920 925 Glu Arg Met Arg Gln Leu Tyr Lys Lys Asp Leu Leu Lys Ile Val Asp 930 935 940 Ile Val Leu Ser His Gln Gly Ile Lys Asn Lys Asn Lys Leu Val Leu 945 950 955 960 Arg Leu Met Glu Gln Leu Val Tyr Pro Asn Pro Ala Ala Tyr Arg Asp 965 970 975 Lys Leu Ile Arg Phe Ser Thr Leu Asn His Thr Asn Tyr Ser Glu Leu 980 985 990 Ala Leu Lys Ala Ser Gln Leu Leu Glu Gln Thr Lys Leu Ser Glu Leu 995 1000 1005 Arg Ser Asn Ile Al a Arg Ser Leu Ser Glu Leu Glu Met Phe Thr Glu 1010 1015 1020 Asp Gly Glu Asn Met Asp Thr Pro Lys Arg Lys Ser Ala Ile Asn Glu 1025 1030 1035 1040 Arg Ile Glu Asp Leu Val Ser Ala Ser Leu Ala Val Glu Asp Ala Leu 1045 1050 1055 Val Gly Leu Phe Asp His Ser Asp His Thr Leu Gln Arg Arg Val Val 1060 1065 1070 Glu Thr Tyr Ile Arg Arg Leu Tyr Gln Pro Tyr Val Val Lys Asp Ser 1075 1080 1085 Val Arg Met Gln Trp His Arg Ser Gly Leu Leu Ala Ser Trp Glu Phe 1090 1095 1100 Leu Glu Glu His Met Glu Arg Lys Asn Ile Gly Leu Asp Asp Pro Asp 1105 1110 1115 1120 Thr Ser Glu Lys Gly Leu Val Glu Lys Arg Ser Lys Arg Lys Trp Gly 1125 1130 1135 Ala Met Val Ile Ile Lys Ser Leu Gln Phe Leu Pro Ser Ile Ile Ser 1140 1145 1150 Ala Ala Leu Arg Glu Thr Lys His Asn Asp Tyr Glu Thr Ala Gly Ala 1155 1160 1165 Pro Leu Ser Gly Asn Met Met His Ile Ala Ile Val Gly Ile Asn Asn 1170 1175 1180 Gln Met Ser Leu Leu Gln Asp Ser Gly Asp Glu Asp Gln Ala Gln Glu 1185 1190 1195 1200 Arg Val Asn Lys Leu Ala Lys Ile Leu Lys Glu Glu Glu Val Ser Ser 1205 1210 1215 Ser Leu Cys Ser Ala Gly Val Gly Val Ile Ser Cys Ile Ile Gln Arg 1220 1225 1230 Asp Glu Gly Arg Thr Pro Met Arg His Ser Phe His Trp Ser Leu Glu 1235 1240 1245 Lys Gln Tyr Tyr Val Glu Glu Pro Leu Leu Arg His Leu Glu Pro Pro 1250 1255 1260 Leu Ser Ile Tyr Leu Glu Leu Asp Lys Leu Lys Gly Tyr Ser Asn Ile 1265 1270 1275 1280 Gln Tyr Thr Pro Ser Arg Asp Arg Gln Trp His Leu Tyr Thr Val Thr 1285 1290 1295 Asp Lys Pro Val Pro Ile Lys Arg Met Phe Leu Arg Ser Leu Val Arg 1300 1305 1310 Gln Ala Thr Met Asn Asp Gly Phe Ile Leu Gln Gln Gly Gln Asp Lys 1315 1320 1325 Gln Leu Ser Gln Thr Leu Ile Ser Met Ala Phe Thr Ser Lys Cys Val 1330 1335 1340 Leu Arg Ser Leu Met Asp Ala Met Glu Glu Leu Glu Leu Asn Ala His 1345 1350 1355 1360 Asn Ala Ala Met Lys Pro Asp His Ala His Met Phe Leu Cys Ile Leu 1365 1370 1375 Arg Glu Gln Gln Ile Asp Asp Leu Val Pro Phe Pro Arg Arg Val Glu 1380 1385 1390 Val Asn Ala Glu Asp Glu Glu Thr Thr Val Glu Met Ile Leu Glu Glu 1395 1400 1405 Ala Ala Arg Glu Il e His Arg Ser Val Gly Val Arg Met His Arg Leu 1410 1415 1420 Gly Val Cys Glu Trp Glu Val Arg Leu Trp Leu Val Ser Ser Gly Leu 1425 1430 1435 1440 Ala Cys Gly Ala Trp Arg Val Val Val Ala Asn Val Thr Gly Arg Thr 1445 1450 1455 Cys Thr Val His Ile Tyr Arg Glu Val Glu Thr Pro Gly Arg Asn Ser 1460 1465 1470 Leu Ile Tyr His Ser Ile Thr Lys Lys Gly Pro Leu His Glu Thr Pro 1475 1480 1485 Ile Ser Asp Gln Tyr Lys Pro Leu Gly Tyr Leu Asp Arg Gln Arg Leu 1490 1495 1500 Ala Ala Arg Arg Ser Asn Thr Thr Tyr Cys Tyr Asp Phe Pro Leu Ala 1505 1510 1515 1520 Phe Gly Thr Ala Leu Glu Leu Leu Trp Ala Ser Gln His Pro Gly Val 1525 1530 1535 Lys Lys Pro Tyr Lys Asp Thr Leu Ile Asn Val Lys Glu Leu Val Phe 1540 1545 1550 Ser Lys Pro Glu Gly Ser Ser Gly Thr Ser Leu Asp Leu Val Glu Arg 1555 1560 1565 Pro Pro Gly Leu Asn Asp Phe Gly Met Val Ala Trp Cys Leu Asp Met 1570 1575 1580 Ser Thr Pro Glu Phe Pro Met Gly Arg Lys Leu Leu Val Ile Ala Asn 1585 1590 1595 1600 Asp Val Thr Phe Lys Ala Gly Ser Phe Gly Pro Arg Glu Asp Ala Phe 1605 1610 1615 Phe Leu Ala Val Thr Glu Leu Ala Cys Ala Lys Lys Leu Pro Leu Ile 1620 1625 1630 Tyr Leu Ala Ala Asn Ser Gly Ala Arg Leu Gly Val Ala Glu Glu Val 1635 1640 1645 Lys Ala Cys Phe Lys Val Gly Trp Ser Asp Glu Ile Ser Pro Glu Asn 1650 1655 1660 Gly Phe Gln Tyr Ile Tyr Leu Ser Pro Glu Asp His Glu Arg Ile Gly 1665 1670 1675 1680 Ser Ser Val Ile Ala His Glu Val Lys Leu Ser Ser Gly Glu Thr Arg 1685 1690 1695 Trp Val Ile Asp Thr Ile Val Gly Lys Glu Asp Gly Ile Gly Val Glu 1700 1705 1710 Asn Leu Thr Gly Ser Gly Ala Ile Ala Gly Ala Tyr Ser Lys Ala Tyr 1715 1720 1725 Asn Glu Thr Phe Thr Leu Thr Phe Val Ser Gly Arg Thr Val Gly Ile 1730 1735 1740 Gly Ala Tyr Leu Ala Arg Leu Gly Met Arg Cys Ile Gln Arg Leu Asp 1745 1750 1755 1760 Gln Pro Ile Ile Leu Thr Gly Phe Ser Thr Leu Asn Lys Leu Leu Gly 1765 1770 1775 Arg Glu Val Tyr Ser Ser His Met Gln Leu Gly Gly Pro Lys Ile Met 1780 1785 1790 Gly Thr Asn Gly Val Val His Leu Thr Val Ser Asp Asp Leu Glu Gly 1795 1800 1805 Val Ser Ala Ile Le u Asn Trp Leu Ser Tyr Ile Pro Ala Tyr Val Gly 1810 1815 1820 Gly Pro Leu Pro Val Leu Ala Pro Leu Asp Pro Pro Glu Arg Ile Val 1825 1830 1835 1840 Glu Tyr Val Pro Glu Asn Ser Cys Asp Pro Arg Ala Ala Ile Ala Gly 1845 1850 1855 Val Lys Asp Asn Thr Gly Lys Trp Leu Gly Gly Ile Phe Asp Lys Asn 1860 1865 1870 Ser Phe Ile Glu Thr Leu Glu Gly Trp Ala Arg Thr Val Val Thr Gly 1875 1880 1885 Arg Ala Lys Leu Gly Gly Ile Pro Val Gly Val Val Ala Val Glu Thr 1890 1895 1900 Gln Thr Val Met Gln Ile Ile Pro Ala Asp Pro Gly Gln Leu Asp Ser 1905 1910 1915 1920 His Glu Arg Val Val Pro Gln Ala Gly Gln Val Trp Phe Pro Asp Ser 1925 1930 1935 Ala Ala Lys Thr Ala Gln Ala Leu Met Asp Phe Asn Arg Glu Glu Leu 1940 1945 1950 Pro Leu Phe Ile Leu Ala Asn Trp Arg Gly Phe Ser Gly Gly Gln Arg 1955 1960 1965 Asp Leu Phe Glu Gly Ile Leu Gln Ala Gly Ser Thr Ile Val Glu Asn 1970 1975 1980 Leu Arg Thr Tyr Arg Gln Pro Val Phe Val Tyr Ile Pro Met Met Gly 1985 1990 1995 2000 Glu Leu Arg Gly Gly Ala Trp Val Val Val Asp Ser Gln Ile Asn Ser 2005 2010 2015 Asp Tyr Val Glu Met Tyr Ala Asp Glu Thr Ala Arg Gly Asn Val Leu 2020 2025 2030 Glu Pro Glu Gly Thr Ile Glu Ile Lys Phe Arg Thr Lys Glu Leu Leu 2035 2040 2045 Glu Cys Met Gly Arg Leu Asp Gln Lys Leu Ile Ser Leu Lys Ala Lys 2050 2055 2060 Leu Gln Asp Ala Lys Gln Ser Glu Ala Tyr Ala Asn Ile Glu Leu Leu 2065 2070 2075 2080 Gln Gln Gln Ile Lys Ala Arg Glu Lys Gln Leu Leu Pro Val Tyr Ile 2085 2090 2095 Gln Ile Ala Thr Lys Phe Ala Glu Leu His Asp Thr Ser Met Arg Met 2100 2105 2110 Ala Ala Lys Gly Val Ile Lys Ser Val Val Glu Trp Ser Gly Ser Arg 2115 2120 2125 Ser Phe Phe Tyr Lys Lys Leu Asn Arg Arg Ile Ala Glu Ser Ser Leu 2130 2135 2140 Val Lys Asn Val Arg Glu Ala Ser Gly Asp Asn Leu Ala Tyr Lys Ser 2145 2150 2155 2160 Ser Met Arg Leu Ile Gln Asp Trp Phe Cys Asn Ser Asp Ile Ala Lys 2165 2170 2175 Gly Lys Glu Glu Ala Trp Thr Asp Asp Gln Val Phe Phe Thr Trp Lys 2180 2185 2190 Asp Asn Val Ser Asn Tyr Glu Leu Lys Leu Ser Glu Leu Arg Ala Gln 2195 2200 2205 Lys Leu Leu Asn Gl n Leu Ala Glu Ile Gly Asn Ser Ser Asp Leu Gln 2210 2215 2220 Ala Leu Pro Gln Gly Leu Ala Asn Leu Leu Asn Lys Val Glu Pro Ser 2225 2230 2235 2240 Lys Arg Glu Glu Leu Val Ala Ala Ile Arg Lys Val Leu Gly 2245 2250 2254

【0109】[0109]

【図面の簡単な説明】[Brief description of drawings]

【図1】 各種生物由来のACCaseのビオチンカル
ボキシラーゼ・ドメインの間で類似性の認められる領域
のアミノ酸配列の比較を示す。
FIG. 1 shows a comparison of amino acid sequences of regions in which similarities are recognized between biotin carboxylase domains of ACCase derived from various organisms.

【図2】 シロイヌナズナACCase遺伝子(ACC
ase−1,ACCase−2,ACCase−3)の
ゲノムクローンの物理的地図。
FIG. 2 Arabidopsis ACCase gene (ACC
physical map of genomic clones of case-1, ACCase-2, ACCase-3).

【図3】 ACCaseのビオチンカルボキシルキャリ
アープロテイン・ドメインにおけるアミノ酸配列「BC
CP」の生物間での比較を示す。
FIG. 3: Amino acid sequence “BC in the biotin carboxyl carrier protein domain of ACCase”
The comparison between organisms of "CP" is shown.

【図4】 シロイヌナズナのACCase−1遺伝子の
一部に由来する927bpの増幅断片をプローブとする
シロイヌナズナのコロンビア株(C)ならびにランズバ
ーグ株(L)のゲノムDNAとのサザンハイブリダイゼ
ーションの結果を示す図。
FIG. 4 shows the results of Southern hybridization with genomic DNA of Arabidopsis thaliana strain Columbia (C) and Landsberg strain (L) using an amplified fragment of 927 bp derived from a part of the Arabidopsis ACCase-1 gene as a probe. Fig.

【図5】シロイヌナズナの第1染色体のRFLP地図と
ACCase−1遺伝子の座位を示す図。
FIG. 5 shows an RFLP map of chromosome 1 of Arabidopsis thaliana and a locus of the ACCase-1 gene.

【図6】 アブラナのACCase遺伝子を含むゲノム
クローンの物理的地図。
FIG. 6: Physical map of a genomic clone containing the rapeseed ACCase gene.

【図7】 センス・ACCase遺伝子発現ベクターの
構築を示す図。
FIG. 7 shows the construction of a sense / ACCase gene expression vector.

【図8】 アンチセンス・ACCase遺伝子発現ベク
ターの構築を示す図。
FIG. 8 shows the construction of an antisense / ACCase gene expression vector.

【図9】 シロイヌナズナACCaseのcDNAク
ローンの物理的地図。
FIG. 9: Physical map of a cDNA clone of Arabidopsis ACCase.

【図10】 センス・ACCase遺伝子発現ベクター
の構築を示す図。
FIG. 10 shows the construction of a sense / ACCase gene expression vector.

【符号の説明】[Explanation of symbols]

図4において、図中の「M」は、DNA分子量マーカー
を示している。
In FIG. 4, “M” in the figure indicates a DNA molecular weight marker.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 9/00 9359−4B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C12N 9/00 9359-4B

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 植物のゲノムDNAあるいはcDNAを
鋳型とするポリメラーゼ連鎖反応で増幅されるDNA断
片において、 前記ポリメラーゼ連鎖反応に、配列表の配列番号1〜6
に示すオリゴヌクレオチドから選ばれる1種と、配列表
の配列番号11〜14に示すオリゴヌクレオチドから選
ばれる1種とをプライマーに用いることにより得られる
ことを特徴とするアセチルCoAカルボキシラーゼの一
部をコードする遺伝子断片。
1. A DNA fragment amplified by the polymerase chain reaction using plant genomic DNA or cDNA as a template, wherein the polymerase chain reaction is followed by SEQ ID NOs: 1 to 6 in the sequence listing.
Which encodes a part of acetyl-CoA carboxylase, which is obtained by using as a primer one selected from the oligonucleotides shown in 1) and one selected from the oligonucleotides shown in SEQ ID NOS: 11 to 14 of the sequence listing. Gene fragment to do.
【請求項2】 前記植物がアブラナ科植物であることを
特徴とする請求項1記載の遺伝子断片。
2. The gene fragment according to claim 1, wherein the plant is a cruciferous plant.
【請求項3】 配列表の配列番号15に示すヌクレオチ
ド配列を有することを特徴とする請求項2記載の遺伝子
断片。
3. The gene fragment according to claim 2, which has the nucleotide sequence represented by SEQ ID NO: 15 in the sequence listing.
【請求項4】 請求項1〜3のいずれか一項に記載の遺
伝子断片をプローブに用いるハイブリダイゼーションに
より植物遺伝子ライブラリーから選択されるアセチルC
oAカルボキシラーゼ全アミノ酸配列をコードする遺伝
子。
4. Acetyl C selected from a plant gene library by hybridization using the gene fragment according to any one of claims 1 to 3 as a probe.
oA carboxylase A gene encoding the entire amino acid sequence.
【請求項5】 前記植物がアブラナ科植物であることを
特徴とする請求項4に記載の遺伝子。
5. The gene according to claim 4, wherein the plant is a cruciferous plant.
【請求項6】 大腸菌FERM P−13792株、大
腸菌FERM P−13793株及び大腸菌FERM P
−13794株に各々保持されるシロイヌナズナのゲノ
ムクローンpATgACC−1a、pATgACC−1
b及びpATgACC−1cに含まれる配列を有するこ
とを特徴とする請求項5記載の遺伝子。
6. An Escherichia coli FERM P-13792 strain, an Escherichia coli FERM P-13793 strain and an Escherichia coli FERM P strain.
Arabidopsis genomic clones pATgACC-1a and pATgACC-1 which are respectively retained by strain 13794
The gene according to claim 5, which has a sequence contained in b and pATgACC-1c.
【請求項7】 前記アブラナ科植物がシロイヌナズナで
あり、図2(b)に示す物理的地図を有することを特徴
とする請求項5記載の遺伝子。
7. The gene according to claim 5, wherein the plant of the family Cruciferae is Arabidopsis thaliana and has the physical map shown in FIG. 2 (b).
【請求項8】 前記アブラナ科植物がシロイヌナズナで
あり、図2(c)に示す物理的地図を有することを特徴
とする請求項5記載の遺伝子。
8. The gene according to claim 5, wherein the plant of the family Cruciferae is Arabidopsis thaliana and has the physical map shown in FIG. 2 (c).
【請求項9】 請求項4記載の遺伝子の全部又は1部を
プローブに用いるハイブリダイゼーションにより植物遺
伝子ライブラリーから選択されるアセチルCoAカルボ
キシラーゼ全アミノ酸配列をコードする遺伝子。
9. A gene encoding the entire amino acid sequence of acetyl CoA carboxylase selected from a plant gene library by hybridization using all or part of the gene of claim 4 as a probe.
【請求項10】 前記植物がアブラナであり、図6
(a)又は(b)に示す物理的地図を有することを特徴
とする請求項9記載の遺伝子。
10. The plant is oilseed rape, FIG.
The gene according to claim 9, which has the physical map shown in (a) or (b).
【請求項11】 配列表の配列番号22に示すアミノ酸
配列を有するアセチルCoAカルボキシラーゼをコード
するDNA断片。
11. A DNA fragment encoding acetyl-CoA carboxylase having the amino acid sequence set forth in SEQ ID NO: 22 in the Sequence Listing.
【請求項12】 配列表の配列番号21において、ヌク
レオチド番号408〜7169で表される配列を有する
請求項11記載のDNA断片。
12. The DNA fragment according to claim 11, which has a sequence represented by nucleotide numbers 408 to 7169 in SEQ ID NO: 21 of the sequence listing.
【請求項13】 請求項1〜3に記載の遺伝子断片、請
求項4〜10に記載の遺伝子及び請求項11または12
記載のDNA断片のいずれかの少なくとも一部を植物に
導入することによって、アセチルCoAカルボキシラー
ゼの発現量に変化がもたらされた形質転換植物体。
13. The gene fragment according to claim 1 to 3, the gene according to claim 4 to 10 and claim 11 or 12.
A transformed plant body in which the expression level of acetyl-CoA carboxylase is changed by introducing at least a part of any of the described DNA fragments into a plant.
JP6146827A 1993-08-17 1994-06-28 Acetyl coa carboxylase gene of plant Pending JPH07143887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6146827A JPH07143887A (en) 1993-08-17 1994-06-28 Acetyl coa carboxylase gene of plant

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20347793 1993-08-17
JP5-203477 1993-08-17
JP6146827A JPH07143887A (en) 1993-08-17 1994-06-28 Acetyl coa carboxylase gene of plant

Publications (1)

Publication Number Publication Date
JPH07143887A true JPH07143887A (en) 1995-06-06

Family

ID=26477540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6146827A Pending JPH07143887A (en) 1993-08-17 1994-06-28 Acetyl coa carboxylase gene of plant

Country Status (1)

Country Link
JP (1) JPH07143887A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1283891A1 (en) * 2000-04-20 2003-02-19 Cargill Incorporated Plants containing a cytosolic acetyl coa-carboxylase nucleic acid
US7176350B2 (en) 1999-11-09 2007-02-13 Zhejiang Academy Of Agricultural Science Method for controlling ratio of proteins/lipids in crop seeds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176350B2 (en) 1999-11-09 2007-02-13 Zhejiang Academy Of Agricultural Science Method for controlling ratio of proteins/lipids in crop seeds
EP1283891A1 (en) * 2000-04-20 2003-02-19 Cargill Incorporated Plants containing a cytosolic acetyl coa-carboxylase nucleic acid
EP1283891A4 (en) * 2000-04-20 2005-01-12 Cargill Inc Plants containing a cytosolic acetyl coa-carboxylase nucleic acid

Similar Documents

Publication Publication Date Title
CN107164347B (en) Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application
JPH06506584A (en) Plant promoters involved in controlling lipid biosynthesis in seeds
JPS6322191A (en) Development of gene
JPH0662870A (en) Promoter region of soybean phosphoenolpyruvate carboxylase gene and 5&#39;-nontranslating region
CA2274580A1 (en) Stress-protected transgenic plants
CN109082416B (en) ACCase mutant gene and protein with herbicide resistance and application thereof
CA2136828A1 (en) Dna sequences and plasmids for the preparation of plants with changed sucrose concentration
AU749114C (en) Fatty acid elongases
CN112010955B (en) Wheat scab-resistant related protein TaRBL and coding gene and application thereof
JPH08509116A (en) Acetyl CoA carboxylase gene
KR20110079779A (en) Unsaturated fatty acid synthase gene originating in marchantiales plant and utilization of the same
CN110129358B (en) Application of rice Os01g32730 gene
JPH07503850A (en) Recombinant gibberellin DNA and its uses
AU671272B2 (en) Regulation of plant genes
US7232940B2 (en) Polynucleotide sequences from rice
WO1998000436A9 (en) Plant plastid division genes
CN100451117C (en) Dehiscence gene and methods for regulating dehiscence
EP0912596A1 (en) Plant plastid division genes
JPH07143887A (en) Acetyl coa carboxylase gene of plant
CN112142853B (en) Cabbage type rape BnTLK1 gene related to fungal disease and application thereof
US6437218B1 (en) DNA fragment encoding a protein involved in fatty aldehyde decarbonylase activity, recombinant molecules comprising said fragment and a method for obtaining transformed bacterial cells and plants
US20030148489A1 (en) Farnesyl pyrophoshate synthase protein, nucleic acid and promoter region thereof
KR20040022361A (en) A Method for Producing a Plant with a High-Growth Rate
US20040049806A1 (en) Nucleic acid encoding a plant very long chain fatty acid biosynthetic enzyme
CN113337482B (en) Soybean oil brassinolide synthetase genes GmDET2-1 and GmDET2-2 as well as coding protein and application thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301