JPH0714336B2 - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH0714336B2
JPH0714336B2 JP1072770A JP7277089A JPH0714336B2 JP H0714336 B2 JPH0714336 B2 JP H0714336B2 JP 1072770 A JP1072770 A JP 1072770A JP 7277089 A JP7277089 A JP 7277089A JP H0714336 B2 JPH0714336 B2 JP H0714336B2
Authority
JP
Japan
Prior art keywords
tubular body
light
concentration
optical fiber
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1072770A
Other languages
Japanese (ja)
Other versions
JPH02249480A (en
Inventor
汀 安藤
隆史 加藤
康之 水嶋
常利 大蔵
淳一 徳本
秀保 青木
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP1072770A priority Critical patent/JPH0714336B2/en
Publication of JPH02249480A publication Critical patent/JPH02249480A/en
Publication of JPH0714336B2 publication Critical patent/JPH0714336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検液中の基質(被測定物質)の濃度を測定
するバイオセンサに関する。本発明は、医薬品、食品工
業、化学工業等の工程管理、環境計測又は医療診断、計
測等に利用される。
The present invention relates to a biosensor for measuring the concentration of a substrate (substance to be measured) in a test liquid. INDUSTRIAL APPLICABILITY The present invention is used for process control of pharmaceuticals, food industry, chemical industry, etc., environmental measurement or medical diagnosis, measurement, etc.

〔従来の技術〕[Conventional technology]

従来の濃度測定装置としては、酸素電極及び過酸化水素
電極等に用いられる電極法並びにサーミスタ法による電
気的方法(装置)、更には発色又は発光する物質を用い
る吸光度法及び蛍光法による光学的方法(装置)が知ら
れている。
As a conventional concentration measuring apparatus, an electrical method (apparatus) based on an electrode method and a thermistor method used for oxygen electrodes and hydrogen peroxide electrodes, and an optical method based on an absorbance method and a fluorescence method using a substance that emits color or emits light. (Device) is known.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記電極法による装置では、微小の電流、電位を測定す
るため電磁気的ノイズの影響を受け易い。上記サーミス
タ法による装置では、精密で繊細なブリッジ回路を用い
るため、携行性、耐ノイズ性に難点がある。また、上記
光学的方法による装置は、特別な発色剤が必要になりか
つ装置構成が複雑であり実用法に難点がある。
The device using the electrode method is susceptible to electromagnetic noise because it measures minute currents and electric potentials. Since the device using the thermistor method uses a precise and delicate bridge circuit, it has a problem in portability and noise resistance. In addition, the device using the above optical method requires a special color former and has a complicated device structure, which is a problem in the practical method.

本発明は、上記難点に鑑みてなされたものであり、内壁
における触媒反応により管状体内部の被検液の半径方向
に屈折率分布が生じることにより、光の伝播特性が変化
することを見出して完成されたものである。
The present invention has been made in view of the above problems, and it has been found that the propagation characteristics of light are changed by the refractive index distribution in the radial direction of the test liquid inside the tubular body due to the catalytic reaction on the inner wall. It has been completed.

本発明は、連続測定に好適で、電気ノイズを受けにく
く、簡便で安価で、多くの反応系を適用でき、更に必要
に応じて工程の遠隔管理ができるバイオセンサを提供す
ることを目的とする。
An object of the present invention is to provide a biosensor suitable for continuous measurement, less susceptible to electric noise, simple and inexpensive, applicable to many reaction systems, and capable of remotely controlling the process as needed. .

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明のバイオセンサは、内壁のみに被検液中に含まれ
る基質の反応を促進する触媒を有する管状体と、該管状
体の一端側及び他端側に各々取り付けられる被検液の導
入手段と導出手段と、上記管状体の一端側及び他端側の
各々に配置される発光素子と受光素子と、を具備するこ
とを特徴とする。
The biosensor of the present invention comprises a tubular body having a catalyst for promoting the reaction of a substrate contained in the test solution only on the inner wall, and a test solution introducing means attached to one end side and the other end side of the tubular body, respectively. And a light emitting element and a light receiving element which are respectively disposed on one end side and the other end side of the tubular body.

ここで、「内壁のみに触媒を有する」とは、管状体の内
周面上に触媒層を被覆形成させてもよいし、その表面部
に触媒物質を担持(固定も含む)させてもよい意味に用
いる。この触媒層は、通常、多孔質担持層を形成しこの
層に所定の触媒物質を担持させる。尚、必要に応じて種
々の助剤、分散剤等を用いることができる。この触媒層
は内壁面の一部に形成させてもよい。この被覆層の膜
厚、気孔率、その形成方法等は問わない。
Here, "having a catalyst only on the inner wall" may be formed by coating a catalyst layer on the inner peripheral surface of the tubular body, or may be supporting (including fixing) a catalyst substance on the surface portion. Used for meaning. This catalyst layer usually forms a porous support layer, and a predetermined catalyst substance is supported on this layer. If necessary, various auxiliaries, dispersants and the like can be used. This catalyst layer may be formed on a part of the inner wall surface. The film thickness of the coating layer, the porosity, the method of forming the same, and the like do not matter.

この触媒は、被検液中の基質の反応を促進する生体触媒
であり、種々の酵素、酵母、微生物及び抗体等を用いる
ことができ、被測定物質の種類により適宜選択される。
This catalyst is a biocatalyst that promotes the reaction of the substrate in the test liquid, various enzymes, yeasts, microorganisms, antibodies, etc. can be used, and it is appropriately selected depending on the type of the substance to be measured.

〔作用〕[Action]

基質を含む被検液が管状体に導入されると、この内壁面
で基質は酵素等による触媒反応をうけ、基質の分解と共
に新しい物質が生じる。この反応に伴い、それぞれの反
応、生成物質は、例えば第2図(a)〜(c)に示すよ
うに、管状体の中心軸に対称な濃度分布を生じる。これ
らの物質は、その分子量、分子形成、溶媒親和性等の性
質の相違から、濃度拡散の速度が異なってくる。従っ
て、全体として中心軸に対称な屈折率の分布を生じるこ
ととなる。この屈折率分布の型としては、第4図及び第
2図(d)に示すように、中心側で最大になる場合
(イ)と最少になる場合(ロ)がある。第3図に示すよ
うに、この前者の場合には、被検液Aと入射した光は内
側に曲げられ壁面での反射、吸収、散乱が少なくなると
ともに反射の回数も減少して、内壁で透過、吸収される
量が減り、受光量が増大する。後者の場合には、外側へ
曲げられ、上記と逆の関係となる。尚、比較のために、
屈折率分布を有しない場合の従来例を点線の(ハ)に示
す。
When the test liquid containing the substrate is introduced into the tubular body, the substrate undergoes a catalytic reaction by an enzyme or the like on the inner wall surface thereof, and a new substance is generated along with the decomposition of the substrate. Along with this reaction, the respective reaction and product substances produce a concentration distribution symmetrical to the central axis of the tubular body, as shown in, for example, FIGS. These substances have different rates of concentration diffusion due to differences in properties such as molecular weight, molecule formation, and solvent affinity. Therefore, a refractive index distribution symmetrical with respect to the central axis is produced as a whole. As for the type of this refractive index distribution, as shown in FIG. 4 and FIG. 2 (d), there are cases of maximum (a) and minimum (b) on the center side. As shown in FIG. 3, in the former case, the light incident on the test liquid A is bent inward, and the reflection, absorption, and scattering on the wall surface are reduced, and the number of reflections is also reduced. The amount of light transmitted and absorbed decreases, and the amount of light received increases. In the latter case, it is bent outward, which is the reverse of the above. For comparison,
A conventional example having no refractive index distribution is shown by a dotted line (C).

以上より、本発明の場合には、管状体の半径方向に屈折
率の分布をもつので、光の透過量が、触媒の有無又は基
質濃度により増減して、両者は比例の関係を示すことと
なる。尚、この傾向は反応物の濃度が高くなる程、大き
くなる。
From the above, in the case of the present invention, since the refractive index distribution in the radial direction of the tubular body, the amount of light transmission increases or decreases depending on the presence or absence of the catalyst or the substrate concentration, and both show a proportional relationship. Become. Incidentally, this tendency becomes larger as the concentration of the reactant becomes higher.

〔発明の効果〕〔The invention's effect〕

上記作用に示すように、本バイオセンサにおいては、簡
単な光学系部分と管状体との組合せにより基質の広い濃
度範囲まで良好な比例関係特に直線性に示すので、その
広い濃度範囲でかつ信頼性の高い測定ができる。また、
光学的方法と異なり連続測定ができ、pHに影響されず、
電気的方法と比べて電磁気的ノイズを受けにくいので安
定して測定することができる。更に、触媒反応も自由に
選択でき大変多くの反応系を用いることができるので、
その応用範囲が広い。
As shown in the above action, in the present biosensor, the combination of the simple optical system portion and the tubular body shows a good proportional relationship up to a wide concentration range of the substrate, in particular, linearity, so that the biosensor has a high reliability in the wide concentration range. High measurement can be performed. Also,
Unlike optical methods, continuous measurement is possible and is not affected by pH,
Electromagnetic noise is less likely to occur as compared with the electrical method, so stable measurement can be performed. Furthermore, since the catalytic reaction can be freely selected and a large number of reaction systems can be used,
Its application range is wide.

更に、光ファイバを用いる場合には、この光ファイバを
延長することにより工程の遠隔管理ができ、大変有用で
ある。
Further, when an optical fiber is used, the process can be remotely controlled by extending the optical fiber, which is very useful.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.

実施例1 本バイオセンサは、スクロース濃度を測定するものであ
り、第1図に示すように、管状体1と触媒層2と被検液
導入手段としての導入部3と導出手段としての導出部4
とHe−Neレーザ5とオプチカルメータ61と恒温層8とか
らなる。
Example 1 The present biosensor measures the sucrose concentration, and as shown in FIG. 1, the tubular body 1, the catalyst layer 2, the introducing section 3 as the test solution introducing means, and the deriving section as the deriving means. Four
And a He-Ne laser 5, an optical meter 61 and a constant temperature layer 8.

この管状体1は内径が2mmφ、外形3mmφ、長さ100mmの
両端開口のアルミナ管(純度99.9%)である。この管状
体1の内壁にはアルミナ多孔質膜に酵素(インベルター
ゼ)が固定化された触媒層2が形成されている。この管
状体1の両端側には、内側に配置される鍔部31、41と端
部に配置されるガラス窓33、43とその間に配置される筒
部32、42とこの筒部32、42の側部に取りつけられる導入
口34又は導出口44とからなる媒体導入部3又は媒体導出
部4が、取外しができるように取付けられている。被検
液Aはこの導入口34に入り、導出口44から出る構成とな
っている。尚、媒体の導入、導出は上記と逆にしてもよ
い。この管状体1と導入部3又は導出部4の触媒部には
シー材が配置され、シール性を確保した。
The tubular body 1 is an alumina tube (purity 99.9%) having an inner diameter of 2 mmφ, an outer diameter of 3 mmφ and a length of 100 mm. On the inner wall of the tubular body 1, a catalyst layer 2 in which an enzyme (invertase) is immobilized on a porous alumina membrane is formed. On both end sides of the tubular body 1, the flange portions 31 and 41 arranged inside, the glass windows 33 and 43 arranged at the end portions, the cylindrical portions 32 and 42 arranged between them, and the cylindrical portions 32 and 42. The medium introducing section 3 or the medium ejecting section 4 including the introduction port 34 or the ejection port 44 attached to the side portion of is attached so as to be removable. The test liquid A enters the inlet 34 and exits the outlet 44. The introduction and the derivation of the medium may be reversed. A sealing material was arranged in the tubular body 1 and the catalyst portion of the introduction portion 3 or the extraction portion 4 to ensure the sealing property.

そして、導入口側のガラス窓33に所定のレーザ装置6を
対置し、その他方のガラス窓43にプラスチック光ファイ
バ(1mmφ)7を貫挿し管状体の他端面と対置させ、更
にこれをオプチカルメータ61に接続した。尚、この光フ
ァイバ7をガラス窓43に貫通させずにこれと対置させる
構成としてもよい。He−Neレーザ6は発光源となり、こ
のレーザ光がガラス窓33を介して管状体1内部に送光さ
れ、他端側に配置された光ファイバ7を介してオプチカ
ルメータ61により受光量を検出する。
Then, a predetermined laser device 6 is placed in opposition to the glass window 33 on the inlet side, a plastic optical fiber (1 mmφ) 7 is inserted in the other glass window 43 to be placed in opposition to the other end surface of the tubular body, and this is further attached to the optical meter. Connected to 61. The optical fiber 7 may be arranged opposite to the glass window 43 without penetrating the glass window 43. The He-Ne laser 6 serves as a light emission source, and the laser light is transmitted to the inside of the tubular body 1 through the glass window 33, and the amount of light received is detected by the optical meter 61 through the optical fiber 7 arranged on the other end side. To do.

本装置は以下のようにして製作された。即ち、まず、上
記アルミナ管を用意し、この内壁に以下のようにしてア
ルミナ多孔質膜を焼付けた。即ち、アルミナ(純度99.9
%、平均粒径0.6μmの市販品)100g、脱イオン水80g及
びポリカルボン酸アンモニウム(分散剤)1gを純度99.9
%のアルミナ球石(10mmφ)300gとともに、内容積500m
lのポリエチレン容器へ入れ、120RPMで48時間混合分散
する。こうして得られた泥漿を200メッシュの篩に通し
た後、メスシリンダへ移し、上記アルミナ管を浸漬した
あと、引き上げ内面を塗布する。次に、これを15時間自
然乾燥した後、1150℃で6時間電気炉で焼成し、多孔質
アルミナ膜を形成した。このアルミナ膜は、膜厚35μ
m、気孔率45%、気孔径0.3μm(平均)であった。
This device was manufactured as follows. That is, first, the alumina tube was prepared, and an alumina porous film was baked on the inner wall of the alumina tube as follows. That is, alumina (purity 99.9
%, A commercially available product having an average particle size of 0.6 μm) 100 g, deionized water 80 g and ammonium polycarboxylate (dispersant) 1 g and a purity of 99.9.
% Of alumina ball stone (10mmφ) 300g, internal volume 500m
Place in a polyethylene container (1) and mix and disperse at 120 RPM for 48 hours. The sludge thus obtained is passed through a 200-mesh screen, then transferred to a graduated cylinder, the alumina tube is dipped therein, and then the inner surface is pulled up and applied. Next, this was naturally dried for 15 hours and then baked in an electric furnace at 1150 ° C. for 6 hours to form a porous alumina film. This alumina film has a thickness of 35μ
m, the porosity was 45%, and the pore diameter was 0.3 μm (average).

更に、上記管状体を濃塩酸で1時間処理する。その後、
これを10%のγ−アミノプロピルトリエトキシシランの
アセトン溶液中へ15時間浸漬し、シラン化処理をした。
そして1時間自然乾燥し、その後、これを5%グルタル
アルデヒドの0.05Mリン酸緩衝液(pH7.0)中で4時間浸
漬した。次に、これを上記酵素1gを含む0.05Mリン酸緩
衝液(pH7.0)60ml中に浸し、酵素を固定化した。尚、
これを保存したい場合は、4℃の0.05Mリン酸緩衝液(p
H7.0)中に浸漬しておく。
Further, the tubular body is treated with concentrated hydrochloric acid for 1 hour. afterwards,
This was immersed in an acetone solution of 10% γ-aminopropyltriethoxysilane for 15 hours for silanization treatment.
Then, it was naturally dried for 1 hour, and then immersed in 5% glutaraldehyde 0.05M phosphate buffer (pH 7.0) for 4 hours. Next, this was immersed in 60 ml of 0.05 M phosphate buffer (pH 7.0) containing 1 g of the above enzyme to immobilize the enzyme. still,
If you want to store this, please add 0.05M phosphate buffer (p
H7.0).

この管状体に上記導入部3、導出部4及び恒温槽8を取
付け、次いでレーザ装置5、光ファイバ7及びオプチカ
ルメータ61を配置して本バイオセンサを製作した。
The introduction part 3, the extraction part 4 and the constant temperature bath 8 were attached to the tubular body, and then the laser device 5, the optical fiber 7 and the optical meter 61 were arranged to manufacture the present biosensor.

また、リン酸緩衝液に種々の濃度でスクロースを溶解さ
せ、所定の被検液を調製した。そして恒温槽8の温度を
35℃に設定し、被検液を0.38ml/分の流量でポンプ9を
用いて送入し、導入口34に連続的に供給して管状体内部
の被検液を層流状態を保つようにするとともに、波長54
3nm、出力1mWのレーザ光線を管状体1のほぼ中心に入射
させ、受光量を測定した。尚、被検液供給手段はポンプ
以外の公知の種々の手段を用いることもできる。
Also, sucrose was dissolved in phosphate buffer at various concentrations to prepare a predetermined test solution. And the temperature of the constant temperature bath 8
The test liquid is set at 35 ° C., the test liquid is fed at a flow rate of 0.38 ml / min using the pump 9, and continuously supplied to the inlet 34 so that the test liquid inside the tubular body is kept in a laminar flow state. And wavelength 54
A laser beam having a wavelength of 3 nm and an output of 1 mW was incident on the tubular body 1 substantially at the center, and the amount of received light was measured. Note that various known means other than a pump can be used as the test liquid supply means.

本実施例では、以下の式の反応が行われ各々の反応、生
成物質の濃度分布等を概念的に第2図(a)〜(c)に
示す。
In this example, the reactions of the following formulas are carried out, and each reaction, the concentration distribution of the produced substance, etc. are conceptually shown in FIGS. 2 (a) to (c).

スクロース(a)+水→ α‐D-グルコース(b)+フルクトース(c) α−D−グルコール、フルクトースは分子量がスクロー
スの約半分のため拡散速度が大きい。従って、この濃度
分布を勾配(b)、(c)はスクロース(a)に比べて
緩やかとなるので全体の屈折率分布(d)は中心軸で最
大の凸形を示す。
Sucrose (a) + water → α-D-glucose (b) + fructose (c) α-D-glucose and fructose have a large diffusion rate because their molecular weight is about half that of sucrose. Therefore, since the gradients (b) and (c) of this concentration distribution are gentler than those of sucrose (a), the entire refractive index distribution (d) shows the maximum convex shape on the central axis.

以上より、スクロース濃度と受光量の関係の結果を第6
図に示した。次いで、比較例として、触媒を有しないこ
とを除いて上記実施例と同様にして試験を実施し、この
結果も同図に併記した。
From the above, the result of the relationship between the sucrose concentration and the amount of received light is
As shown in the figure. Next, as a comparative example, a test was conducted in the same manner as the above example except that the catalyst was not included, and the results are also shown in the same figure.

この図に示すように、比較例は、基質濃度を高くして受
光量と濃度との関係における勾配(変化)も極めて小さ
いので、その濃度に対する十分な感度が得られずその検
出には適さない。一方、本実施例では、管状体の中心側
が内壁側よりも屈折率が大きくなり、第3図(イ)に示
すように光は内側へ曲げられるので、管壁での透過、吸
収量が減り、受光量が増大した。そして、広い濃度範囲
において傾きの大きな良好な直線関係を示した。
As shown in this figure, in the comparative example, the substrate concentration is increased and the gradient (change) in the relationship between the amount of received light and the concentration is extremely small. Therefore, sufficient sensitivity to that concentration cannot be obtained and it is not suitable for detection. . On the other hand, in the present embodiment, the refractive index of the center side of the tubular body is larger than that of the inner wall side, and the light is bent inward as shown in FIG. 3 (a), so that the amount of transmission and absorption at the tube wall is reduced. , The amount of received light has increased. Then, a good linear relationship with a large inclination was shown in a wide concentration range.

従って本バイオセンサを用いれば、広い濃度範囲におい
てスクロース濃度を良好にしかも感度よく測定すること
ができ、更に電気的ノイズを受けずに高速度で、連続測
定をすることもできる。
Therefore, by using the present biosensor, it is possible to measure the sucrose concentration satisfactorily and with high sensitivity in a wide concentration range, and it is also possible to perform continuous measurement at high speed without receiving electrical noise.

実施例2 本実施例は、第5図に示すように被検液導入手段及び導
出手段として直接管状体1に取付けられた各導入口3a及
び導出口4aを、発光素子としてLEDランプ51を用い、し
かも導入口3a側にも光ファイバ7を用い、両光ファイバ
7、71の先端部はゴムシール13、14を介して直接に管状
体内部に配置されている。尚、導入手段又は導出手段
は、実施例1のような媒体導入部又は媒体導出部とする
こともできる。
Example 2 In this example, as shown in FIG. 5, the inlet 3a and outlet 4a directly attached to the tubular body 1 were used as the test liquid introducing means and the discharging means, and the LED lamp 51 was used as the light emitting element. Moreover, the optical fiber 7 is also used on the side of the introduction port 3a, and the tips of both optical fibers 7 and 71 are directly disposed inside the tubular body via the rubber seals 13 and 14. The introducing unit or the deriving unit may be the medium introducing unit or the medium deriving unit as in the first embodiment.

この場合は、全体構造が簡便でかつ小型とすることがで
き、連続測定に好都合である。
In this case, the entire structure can be simple and small, which is convenient for continuous measurement.

尚、本発明においては、上記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。即ち、上記管状体と
は、被検液を通過させるものであればよく、その大き
さ、長さ、全体形状、断面形状、材質等は、目的、用途
により種々のものを選択することができる。例えば、そ
の全体形状も直管状でなく曲管状であってもよいし、そ
の横断面形状も通常は真円であるが四角、六角、楕円等
とすることもでき、更にはハニカム状又は蓮根状のよう
に複数の流路孔を有してもよい。この材料はセラミック
スに限定されることなく、ガラス、金属等とすることも
できる。
The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is, the tubular body only needs to pass the test liquid, and various sizes, lengths, overall shapes, cross-sectional shapes, materials, etc. can be selected depending on the purpose and application. . For example, the entire shape may be a curved tube instead of a straight tube, and the cross-sectional shape thereof is usually a perfect circle, but it may be a square, a hexagon, an ellipse, etc., and a honeycomb shape or a lotus root shape. You may have several flow-path holes like this. This material is not limited to ceramics, but may be glass, metal, or the like.

また多孔質膜もガラス、樹脂、金属等とすることができ
る。血液中のグルコース測定等の際には、血液の凝固を
防止する材料、例えばヒドロキシアパタイト、シリコン
樹脂、キチン、キトサン等を多孔質膜に用いることがで
きる。生体触媒としては、インベルターゼに限定される
ことなく、ウレアーゼ、シュウ酸デカルボキシラーセ、
アルコールオキシダーゼ、マルターゼ、グルコースオキ
シダーゼ等を用いることができる。
The porous film can also be made of glass, resin, metal or the like. When measuring glucose in blood or the like, a material that prevents blood coagulation, such as hydroxyapatite, silicon resin, chitin, chitosan, etc., can be used for the porous membrane. The biocatalyst is not limited to invertase, urease, oxalate decarboxylase,
Alcohol oxidase, maltase, glucose oxidase, etc. can be used.

被検液の媒体としては、液体でなく、気体とすることが
できる。発光素子及び受孔素子としても、他の公知のも
のを用いることができる。これらの素子は直接管状体に
取りつけた構成としてもよい。光ファイバの長さ、太
さ、材質、形態、取付け位置等も種々選択でき、例えば
材質は樹脂に限らずガラスでもよい。更に、発光素子に
よる光の照射方法は、管状体端面全体をほぼ均等に照射
してもよいし、レーザの場合には、通常、実施例1のよ
うにほぼ中心に照射するがこれに限らず、管壁に近い
所、中心に近い所等に照射することもできる。この管壁
に近い所の場合には、感度を向上させる効果がある。ま
た光束径も目的等により種々選択する。
The medium of the test liquid may be gas instead of liquid. As the light emitting element and the hole receiving element, other known ones can be used. These elements may be directly attached to the tubular body. The length, thickness, material, form, attachment position, etc. of the optical fiber can be variously selected, and the material is not limited to resin and may be glass. Further, the method of irradiating light by the light emitting element may irradiate the entire end surface of the tubular body substantially evenly, and in the case of a laser, it is normally irradiating the light beam substantially at the center as in Example 1, but not limited to this. It is also possible to irradiate a place near the tube wall, a place near the center, or the like. When it is near the tube wall, it has the effect of improving the sensitivity. Also, the diameter of the light beam is variously selected according to the purpose.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例1に係わるバイオセンサの説明断面図、
第2図は実施例1において反応物の濃度分布及び全体の
屈折率分布を示し、(a)はスクロース、(b)はα−
D−グルコース、(c)はフルクトースの各濃度分布、
(d)は全体の屈折率分布を示す概念的説明図、第3図
は管状体を通過する光の軌跡を示す説明図、第4図は管
状体の半径方向に屈折率の分布が生じることを示す説明
図で、(イ)は中心側が大きく(ロ)は内壁側が大きい
状態を示す説明図、第5図は実施例2に係わるバイオセ
ンサの説明断面図、第6図は実施例1においてスクロー
ス濃度と受光量との関係を示すグラフである。 1;管状体、2;触媒層、3;導入部(手段)、4;導出部(手
段)、5;レーザ装置、51;LEDランプ、6;受光素子、61;
オプチカルメータ、7;光ファイバ、8;恒温槽。
FIG. 1 is an explanatory sectional view of a biosensor according to Example 1,
FIG. 2 shows the concentration distribution of the reactant and the entire refractive index distribution in Example 1, where (a) is sucrose and (b) is α-.
D-glucose, (c) each fructose concentration distribution,
(D) is a conceptual explanatory diagram showing the entire refractive index distribution, FIG. 3 is an explanatory diagram showing the trajectory of light passing through the tubular body, and FIG. 4 is that the refractive index distribution occurs in the radial direction of the tubular body. FIG. 5A is an explanatory view showing a state where the center side is large and (B) a large inner wall side, FIG. 5 is an explanatory sectional view of the biosensor according to Example 2, and FIG. It is a graph which shows the relationship between a sucrose concentration and the amount of light received. 1; tubular body, 2; catalyst layer, 3; introduction part (means), 4; derivation part (means), 5; laser device, 51; LED lamp, 6; light receiving element, 61;
Optical meter, 7; optical fiber, 8; constant temperature bath.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大蔵 常利 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 徳本 淳一 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 (72)発明者 青木 秀保 愛知県名古屋市瑞穂区高辻町14番18号 日 本特殊陶業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Otoshi Tsuneto 14-18 Takatsuji-cho, Mizuho-ku, Nagoya-shi, Aichi Nihon Special Ceramics Co., Ltd. (72) Inventor Junichi Tokumoto 14 Takatsuji-cho, Mizuho-ku, Aichi No. 18 Nihon Special Ceramics Co., Ltd. (72) Inventor Hideho Aoki 14-18 Takatsuji-cho, Mizuho-ku, Aichi Prefecture Nagoya, Japan Nihon Special Ceramics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内壁のみに被検液中に含まれる基質の反応
を促進する生体接触を有する管状体と、 該管状体の一端側に取り付けられ該管状体の内部に被検
液を導入する導入手段と、 該管状体の他端側に取り付けられ該管状体から上記被検
液を導出する導出手段と、 上記管状体の一端側に、直接に又は送光用光ファイバを
介して、配置される発光素子と、 上記管状体の他端側に、直接に又は受光用光ファイバを
介して、配置される受光素子と、を具備することを特徴
とするバイオセンサ。
1. A tubular body having biological contact for promoting reaction of a substrate contained in a test solution only on an inner wall, and a test solution introduced into one end of the tubular body to introduce the test solution into the tubular body. Introducing means, lead-out means attached to the other end side of the tubular body and leading out the test liquid from the tubular body, and arranged at one end side of the tubular body directly or through an optical fiber for light transmission. And a light receiving element which is arranged on the other end side of the tubular body directly or through an optical fiber for receiving light.
JP1072770A 1989-03-24 1989-03-24 Biosensor Expired - Fee Related JPH0714336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072770A JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072770A JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Publications (2)

Publication Number Publication Date
JPH02249480A JPH02249480A (en) 1990-10-05
JPH0714336B2 true JPH0714336B2 (en) 1995-02-22

Family

ID=13498943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072770A Expired - Fee Related JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Country Status (1)

Country Link
JP (1) JPH0714336B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106162A1 (en) * 2022-11-14 2024-05-23 松田産業株式会社 Metal detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0887645A1 (en) * 1997-06-23 1998-12-30 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Procedure and instrumentation for the ultrasensitive detection of prions, prion binding biomolecules and other biomolecules
EP0886141A1 (en) * 1997-06-23 1998-12-23 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical sensor unit and procedure for the ultrasensitive detection of chemical or biochemical analytes
JP5104526B2 (en) * 2008-05-02 2012-12-19 住友電気工業株式会社 Biosensor measuring instrument and sensor system
JP5104527B2 (en) * 2008-05-02 2012-12-19 住友電気工業株式会社 Biosensor measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106162A1 (en) * 2022-11-14 2024-05-23 松田産業株式会社 Metal detection device
JP2024071280A (en) * 2022-11-14 2024-05-24 松田産業株式会社 Metal collection system

Also Published As

Publication number Publication date
JPH02249480A (en) 1990-10-05

Similar Documents

Publication Publication Date Title
JP2622430B2 (en) Analysis method
US4399099A (en) Optical fiber apparatus for quantitative analysis
Davies et al. Polymer membranes in clinical sensor applications: I. An overview of membrane function
US5640470A (en) Fiber-optic detectors with terpolymeric analyte-permeable matrix coating
Kulp et al. Polymer immobilized enzyme optrodes for the detection of penicillin
EP0190111B1 (en) Method for non-segmented continuous flow analysis based on the interaction of radiation with a solid material situated in a flow-through cell
Dıaz et al. Sol–gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence
US5057431A (en) Device for optical measuring of physical dimensions and material concentrations
US4737343A (en) Gas-sensing optrode
JP2958353B2 (en) Reference material for optical system adjustment and method for producing the same
Walters et al. Fiber-optic biosensor for ethanol, based on an internal enzyme concept
Kaur et al. Enzyme-based biosensors
JPH0714336B2 (en) Biosensor
JPH0669363B2 (en) Biosensor device
JP2517388B2 (en) Concentration measuring device and concentration measuring method
Höbel et al. Penicillinase optodes: substrate determinations using batch, continuous flow and flow injection analysis operation conditions
JP2747933B2 (en) Concentration measuring method and concentration measuring device
Kawabata et al. Micro-optorde for urea using an ammonium ion-sensitive membrane covered with a urease-immobilized membrane
ES2251776T3 (en) METHOD FOR DETERMINING THE CONCENTRATION OF AN ANALYTE USING A BIOELEMENT AND A TRANSDUCER, AND A SMALL VOLUME DEVICE FOR USE IN THE METHOD.
Owen et al. Biosensors: a revolution in clinical analysis?
Healey et al. Development of a penicillin biosensor using a single optical imaging fiber
WO1999039629A1 (en) Chemical sensors having microflow systems
Ovchinnikov et al. Enzymatic flow-injection analysis of metabolites using new type of oxygen sensor membranes and phosphorescence phase measurements
JPH0714337B2 (en) Concentration measuring device
EP0232939B1 (en) Method and device for determining the quantity of dispersed solid material in a liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees