JPH02249480A - Bio-sensor - Google Patents

Bio-sensor

Info

Publication number
JPH02249480A
JPH02249480A JP1072770A JP7277089A JPH02249480A JP H02249480 A JPH02249480 A JP H02249480A JP 1072770 A JP1072770 A JP 1072770A JP 7277089 A JP7277089 A JP 7277089A JP H02249480 A JPH02249480 A JP H02249480A
Authority
JP
Japan
Prior art keywords
tubular body
light
tube
optical fiber
test solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1072770A
Other languages
Japanese (ja)
Other versions
JPH0714336B2 (en
Inventor
Migiwa Ando
安藤 汀
Takashi Kato
隆史 加藤
Yasuyuki Mizushima
康之 水嶋
Tsunetoshi Okura
常利 大蔵
Junichi Tokumoto
徳本 淳一
Hideyasu Aoki
青木 秀保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1072770A priority Critical patent/JPH0714336B2/en
Publication of JPH02249480A publication Critical patent/JPH02249480A/en
Publication of JPH0714336B2 publication Critical patent/JPH0714336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PURPOSE:To accurately, continuously and readily measure the concentration of a substrate in a test solution by passing the test solution through a tube having a biological catalyst adhered to the inner wall thereof and transmitting light through the inner portion of the tube to detect the light transmittance of the test solution. CONSTITUTION:A test solution-charging device 3 and a test solution-discharging device 4 are disposed at one end of a tube 1 having a biological catalyst adhered to the inner wall thereof and at the other end thereof, respectively. A means 5 for radiating a light beam directly or through an optical fiber and a means 7 for receiving the light beam passed through the tube directly or through an optical fiber are disposed at one end of the tube 1 and at the other end thereof, respectively.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被検液中の基質(被測定物質)の濃度を測定
するバイオセンサに関する。本発明は、医薬品、食品工
業、化学工業等の工程管理、環境計測又は医療診断、計
測等に利用される。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a biosensor that measures the concentration of a substrate (analyte) in a test liquid. INDUSTRIAL APPLICATION This invention is utilized for process control, environmental measurement, medical diagnosis, measurement, etc. of pharmaceuticals, food industry, chemical industry, etc.

〔従来の技術〕[Conventional technology]

従来のa庫測定装置としては、酸素雪掻及び過酸化水素
電極等に用いられる電極法並びにサーミスタ法による電
気的方法(装置)、更には発色又は発光する物質を用い
る吸光度法及び蛍光法による光学的方法(装置)が知ら
れている。
Conventional a storage measurement devices include electrode methods (devices) used for oxygen snow scraping and hydrogen peroxide electrodes, electrical methods (devices) using thermistor methods, and optical methods (devices) using absorbance methods and fluorescence methods that use colored or luminescent substances. A method (apparatus) is known.

〔発明が解決しようとする課届〕[Department notification that the invention attempts to solve]

上記電極法による装置では、微小の電流、電位を測定す
るため電磁気的ノイズの影響を受は易い。上記サーミス
タ法による装置では、精密で繊細なブリッジ回路を用い
るため、携行性、耐ノイズ性に難点がある。また、上記
光学的方法による装置は、特別な発色剤が必要になりか
つ装置構成が複雑であり実用性に難点がある。
Devices based on the electrode method described above are susceptible to electromagnetic noise because they measure minute currents and potentials. The device based on the thermistor method uses a precise and delicate bridge circuit, so it has drawbacks in portability and noise resistance. Furthermore, the apparatus based on the optical method requires a special coloring agent and has a complicated apparatus configuration, making it difficult to put it to practical use.

本発明は、上記観点に鑑みてなされたものであり、内壁
における触媒反応により管状体内部の被検液の半径方向
に屈折率分布が生じることにより、光の伝播特性が変化
することを見出して完成されたものである。
The present invention has been made in view of the above-mentioned viewpoints, and it has been discovered that the propagation characteristics of light change due to the generation of a refractive index distribution in the radial direction of the test liquid inside the tubular body due to the catalytic reaction on the inner wall. It is complete.

本発明は、連続測定に好適で、電気ノイズを受けに<<
、簡便で安価で、多くの反応系を適用でき、更に必要に
応じて工程の遠隔管理ができるバイオセンサを提供する
ことを目的とする。
The present invention is suitable for continuous measurement and is suitable for receiving electrical noise.
The present invention aims to provide a biosensor that is simple and inexpensive, can be applied to many reaction systems, and can be remotely controlled as necessary.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のバイオセンサは、少なくとも内壁に被検液中に
含まれる基質の反応を促進する触媒を有する管状体と、
該管状体の一端側及び他端側に各々取り付けられる被検
液の導入手段と導出手段と、上記管状体の一端側及び他
端側の各々に配置される発光素子と受光素子と、を具備
することを特徴とする。
The biosensor of the present invention includes a tubular body having at least a catalyst on the inner wall that promotes the reaction of a substrate contained in a test liquid;
A test liquid introducing means and a deriving means are attached to one end and the other end of the tubular body, respectively, and a light emitting element and a light receiving element are arranged at the one end and the other end of the tubular body, respectively. It is characterized by

ここで、「少なくとも内壁に触媒を有する」とは、管状
体の内周面上に触媒層を被覆形成させてもよいし、管状
体自身の内部全体又はその表面部に触媒物質を担持(固
定も含む)させてもよい意味に用いる。この触媒層は、
通常、多孔質担持層を形成しこの層に所定の触媒物質を
担持させる。
Here, "having a catalyst on at least the inner wall" means that a catalyst layer may be formed on the inner peripheral surface of the tubular body, or a catalyst material may be supported (fixed) on the entire interior of the tubular body itself or on its surface. It is used in the sense that it may be permitted to This catalyst layer is
Usually, a porous support layer is formed and a predetermined catalyst substance is supported on this layer.

尚、必要に応じて種々の助剤、分散剤等を用いることが
できる。この触媒層は内壁面の一部に形成させでもよい
。この被覆層の膜厚、気孔率、その形成方法等は問わな
い。
Incidentally, various auxiliary agents, dispersants, etc. can be used as necessary. This catalyst layer may be formed on a part of the inner wall surface. The thickness, porosity, method of forming the coating layer, etc. are not limited.

この触媒は、被検液中の基質の反応を促進する生体触媒
であり、種々の酵素、酵母、微生物及び抗体等を用いる
ことができ、被測定物質の種類により適宜選択される。
This catalyst is a biocatalyst that promotes the reaction of the substrate in the test liquid, and various enzymes, yeasts, microorganisms, antibodies, etc. can be used, and it is appropriately selected depending on the type of the substance to be measured.

〔作用〕[Effect]

基質を含む被検液が管状体に導入されると、この内壁面
で基質は酵素等による触媒反応をうけ、基質の分解と共
に新しい物質が生じる。この反応に伴い、それぞれの反
応、生成物質は、例えば第2図(a)〜(C)に示すよ
うに、管状体の中心軸に対称な濃度分布を生じる。これ
らの物質は、その分子量、分子形状、溶媒親和性等の性
質の相違から、濃度拡散の速度が異なってくる。従って
、全体として中心軸に対称な屈折率の分布を生じること
となる。この屈折率分布の型としては、第4図及び第2
図(d)に示すように、中心側で最大になる場合(イ)
と最少になる場合(ロ)がある。第3図に示すように、
この前者の場合には、被検液入へ入射した光は内側に曲
げられ壁面での反射、吸収、散乱が少なくなるとともに
反射の回数も減少して、内壁で透過、吸収される量が減
り、受光量が増大する。後者の場合には、外側へ曲げら
れ、上記と逆の関係となる。尚、比較のために、屈折、
率分布を有しない場合の従来例を点線の(ハ)に示す。
When a test liquid containing a substrate is introduced into the tubular body, the substrate undergoes a catalytic reaction by an enzyme or the like on the inner wall surface, and new substances are generated as the substrate is decomposed. Along with this reaction, each reaction and product substance generates a concentration distribution that is symmetrical to the central axis of the tubular body, as shown, for example, in FIGS. 2(a) to (C). These substances have different concentration diffusion rates due to differences in their properties such as molecular weight, molecular shape, and solvent affinity. Therefore, a refractive index distribution that is symmetrical about the central axis is produced as a whole. The type of this refractive index distribution is shown in Figures 4 and 2.
As shown in figure (d), when the maximum is on the center side (a)
There is a case (b) where it becomes the minimum. As shown in Figure 3,
In the former case, the light incident on the sample liquid is bent inward, reducing reflection, absorption, and scattering on the wall surface, and the number of reflections also decreases, reducing the amount transmitted and absorbed by the inner wall. , the amount of light received increases. In the latter case, it is bent outward and the relationship is opposite to that described above. For comparison, refraction,
A conventional example without a rate distribution is shown in dotted line (c).

以上より、本発明の場合には、管状体の半径方向に屈折
率の分布をもつので、光の透過量が、触媒の有無又は基
質濃度により増減して、両者は比例の関係を示すことと
なる。尚、この傾向は反応物の濃度が高くなる程、大き
くなる。
From the above, in the case of the present invention, since the tubular body has a refractive index distribution in the radial direction, the amount of light transmitted increases or decreases depending on the presence or absence of a catalyst or the substrate concentration, and the two show a proportional relationship. Become. Note that this tendency becomes greater as the concentration of the reactant becomes higher.

〔発明の効果〕〔Effect of the invention〕

上記作用に示すように、本バイオセンサにおいては、簡
単な光学系部分と管状体との組合せにより基質の広い濃
度範囲まで良好な比例関係特に直線性を示すので、その
広い濃度範囲でかつ借頼性の高い測定ができる。また、
光学的方法と異なり連続測定ができ、pHに影響されず
、電気的方法と比べて電磁気的ノイズを受けにくいので
安定して測定することができる。更に、触媒反応も自由
に選択でき大変多くの反応系を用いることができるので
、その応用範囲が広い。
As shown in the above action, this biosensor shows good proportionality, especially linearity, over a wide concentration range of substrates due to the combination of a simple optical system part and a tubular body. Can perform highly accurate measurements. Also,
Unlike optical methods, it allows continuous measurement, is not affected by pH, and is less susceptible to electromagnetic noise than electrical methods, allowing stable measurements. Furthermore, since the catalytic reaction can be freely selected and a large number of reaction systems can be used, the range of applications is wide.

更に、光ファイバを用いる場合には、この光ファイバを
延長することにより工程の遠禍管理ができ、大変有用で
ある。
Furthermore, when an optical fiber is used, by extending the optical fiber, the process can be managed remotely, which is very useful.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。 Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 本バイオセンサは、スクロース濃度を測定するものであ
り、第1図に示すように、管状体1と触媒層2と被検液
導入手段としての導入部3と導出手段としての導出部4
とHe−N eレーザ5とオプチカルメータ61と恒温
層8とからなる。
Example 1 This biosensor measures sucrose concentration, and as shown in FIG. 1, it consists of a tubular body 1, a catalyst layer 2, an introduction section 3 as a means for introducing a test liquid, and an output section as an extraction means. 4
, a He-Ne laser 5 , an optical meter 61 , and a constant temperature layer 8 .

この管状体1は内径が2 ff1mφ、外径3 ff1
mφ、長さ100m+aの両端開口のアルミナ管(純度
99゜9%)である。この管状体1の内壁にはアルミナ
多孔質膜に酵素(インベルターゼ)が固定化された触媒
槽2が形成されている。この管状体1の両端側には、内
側に配置される鍔部31.41と端部に配置されるガラ
ス窓33.43とその間に配置される筒部32.42と
この筒部32.42の側部に取りつけられる導入口34
又は導出口44とからなる媒体導入部3又は媒体導出部
4が、取外しができるように取付けられている。被検液
Aはこの導入口34に入り、導出口44から出る構成と
なっている。尚、媒体の導入、導出は上記と逆にしても
よい。この管状体1と導入部3又は導出部4の接触部に
はシール材が配置され、シール性を確保した。
This tubular body 1 has an inner diameter of 2 ff1 mφ and an outer diameter of 3 ff1
It is an alumina tube (purity 99°9%) with mφ and length 100m+a with both ends open. A catalyst tank 2 in which an enzyme (invertase) is immobilized on an alumina porous membrane is formed on the inner wall of the tubular body 1. On both end sides of this tubular body 1, a flange 31.41 disposed on the inside, a glass window 33.43 disposed at the end, a cylindrical portion 32.42 disposed therebetween, and a cylindrical portion 32.42 disposed therebetween. An inlet 34 attached to the side of the
Alternatively, the medium introduction section 3 or the medium outlet section 4 consisting of the outlet port 44 is attached so as to be removable. The test liquid A enters the inlet 34 and exits from the outlet 44. Note that the introduction and extraction of the medium may be reversed to the above. A sealing material was disposed at the contact portion between the tubular body 1 and the inlet portion 3 or the outlet portion 4 to ensure sealing performance.

そして、導入口側のガラス窓33に所定のレーザ装置6
を対置し、その他方のガラス窓43にプラスチック光フ
ァイバ(1mmφ)7を貫挿し管状体の他端面と対置さ
せ、更にこれをオプチカルメータ61に接続した。尚、
この光ファイバ7をガラス窓43に貫通させずにこれと
対置させる構成としてもよい。He−Neレーザ6は発
光源となり、このレーザ光がガラス窓33を介して管状
体l内部に送光され、他端側に配置された光ファイバ7
を介してオプチカルメータ61により受光量を検出する
Then, a predetermined laser device 6 is installed on the glass window 33 on the inlet side.
were placed opposite to each other, and a plastic optical fiber (1 mmφ) 7 was inserted through the other glass window 43 to be placed opposite to the other end surface of the tubular body, which was further connected to an optical meter 61. still,
The optical fiber 7 may be arranged opposite to the glass window 43 without passing through it. The He-Ne laser 6 serves as a light emitting source, and this laser light is transmitted into the tubular body l through the glass window 33, and is transmitted to the optical fiber 7 disposed at the other end.
The amount of light received is detected by an optical meter 61 via the optical meter 61.

本装置は以下のようにして製作された。即ち、まず、上
記アルミナ管を用意し、この内壁に以下のようにしてア
ルミナ多孔質膜を焼付けた。即ち、アルミナ(純度99
.9%、平均粒径0.6μmの市販品)100g、脱イ
オン水80g及びポリカルボン酸アンモニウム(分散剤
)1gを純度99.9%のアルミナ原石(10mmφ)
300gとともに、内容積500mj!のポリエチレン
容器へ入れ、12ORPMで48時間混合分散する。こ
うして得られた泥漿を200メツシ二の篩に通した後、
メスシリンダへ移し、上記アルミナ管を浸漬したあと、
引き上げ内面を塗布する。次に、これを15時間自然乾
燥した後、1150℃で6時間電気炉で焼成し、多孔質
アルミナ膜を形成した。このアルミナ膜は、膜厚35μ
m1気孔率45%、気孔径0.3μm(平均)であった
This device was manufactured as follows. That is, first, the above-mentioned alumina tube was prepared, and an alumina porous membrane was baked on the inner wall of the tube in the following manner. That is, alumina (purity 99
.. 9%, commercially available product with an average particle size of 0.6 μm), 80 g of deionized water, and 1 g of ammonium polycarboxylate (dispersant) were mixed with alumina raw stone (10 mmφ) with a purity of 99.9%.
Along with 300g, the internal volume is 500mj! The mixture was placed in a polyethylene container and mixed and dispersed at 12 ORPM for 48 hours. After passing the slurry thus obtained through a 200 mesh sieve,
After transferring to a graduated cylinder and immersing the alumina tube,
Pull it up and apply the inner surface. Next, this was naturally dried for 15 hours and then fired in an electric furnace at 1150° C. for 6 hours to form a porous alumina membrane. This alumina film has a thickness of 35μ
The m1 porosity was 45% and the pore diameter was 0.3 μm (average).

更に、上記管状体を濃塩酸で1時間処理する。Further, the tubular body is treated with concentrated hydrochloric acid for 1 hour.

その後、これを10%のT−アミノプロピルトリエトキ
シシランのア七トン溶液中へ15時間浸漬し、シラン化
処理をした。そして1時間自然乾燥し、その後、これを
5%グルタルアルデヒドの005Mリン酸緩衝液(pH
7,0)中で4時間浸漬した。次に、これを上記酵素1
gを含む0゜05Mリン酸緩衝液(pH7,0)60m
f中に浸し、酵素を固定化した。尚、これを保存したい
場合は、4℃の0.05Mリン酸緩衝液(pH70)中
に浸漬しておく。
Thereafter, this was immersed for 15 hours in a 10% T-aminopropyltriethoxysilane a7tone solution for silanization treatment. It was air-dried for 1 hour, and then mixed with 5% glutaraldehyde in 005M phosphate buffer (pH
7,0) for 4 hours. Next, add this to the above enzyme 1
60m of 0.05M phosphate buffer (pH 7.0) containing g
to immobilize the enzyme. If you wish to preserve it, immerse it in 0.05M phosphate buffer (pH 70) at 4°C.

この管状体に上記導入部3、導出部4及び恒温槽8を取
付け、次いでレーザ装W5、光ファイバ7及びオプチカ
ルメータ61を配置して本バイオセンサを製作した。
The introduction section 3, outlet section 4, and constant temperature bath 8 were attached to this tubular body, and then the laser device W5, the optical fiber 7, and the optical meter 61 were arranged to produce the present biosensor.

また、リン酸緩衝液に種々の濃度でスクロースを溶解さ
せ、所定の被検液を調製した。そして恒温槽8の温度を
35℃に設定し、被検液を0.33m1/分の流量でポ
ンプ9を用いて送入し、導入口34に連続的に供給して
管状体内部の被検液を層流状態を保つようにするととも
に、波長543nms出力1mWのレーザ光線を管状体
1のほぼ中心に入射させ、受光量を測定した。尚、被検
液供給手段はポンプ以外の公知の種々の手段を用いるこ
ともできる。
In addition, sucrose was dissolved in a phosphate buffer solution at various concentrations to prepare predetermined test solutions. Then, the temperature of the constant temperature bath 8 is set to 35°C, and the test liquid is introduced using the pump 9 at a flow rate of 0.33 m1/min, and is continuously supplied to the inlet 34 to test the inside of the tubular body. While maintaining the liquid in a laminar flow state, a laser beam with a wavelength of 543 nm and an output of 1 mW was made to enter approximately the center of the tubular body 1, and the amount of light received was measured. Note that various known means other than the pump may be used as the test liquid supply means.

本実施例では、以下の式の反応が行われ各々の反応、生
成物質の濃度分布等を概念的に第2図(a)〜(c)に
示す。
In this example, reactions according to the following formulas were carried out, and the respective reactions, concentration distributions of produced substances, etc. are conceptually shown in FIGS. 2(a) to 2(c).

スクロース(a)千木 → α−ローグルコース(b)+フルクトース(c)α−D
−グルコース、フルクトースは分子量がスクロースの約
半分のため拡散速度が大きい。従って、この濃度分布の
勾配(b)、(c)はスクロース(a)に比べて緩や、
かとなるので全体の屈折率分布(d)は中心軸で最大の
凸形を示す。
Sucrose (a) Chiki → α-low glucose (b) + fructose (c) α-D
- Glucose and fructose have a high diffusion rate because their molecular weight is about half that of sucrose. Therefore, the gradients (b) and (c) of this concentration distribution are gentler than that of sucrose (a).
Therefore, the entire refractive index distribution (d) exhibits a maximum convex shape at the central axis.

以上より、スクロース濃度と受光量の関係の結果を第6
図に示した。次いで、比較例として、触媒を有しないこ
とを除いて上記実施例と同様にして試験を実施し、この
結果も同図に併記した。
From the above, the results of the relationship between sucrose concentration and the amount of light received can be summarized as
Shown in the figure. Next, as a comparative example, a test was conducted in the same manner as in the above example except that no catalyst was used, and the results are also shown in the same figure.

この図に示すように、比較例は、基質濃度を高くしても
受光量と濃度との関係における勾配(変化)も極めて小
さいので、その濃度に対する十分な感度が得られずその
検出には適さない。一方、本実施例では、管状体の中心
側が内壁側よりも屈折率が小さくなり、第3図(イ)に
示すように光は内側へ曲げられるので、管壁での透過、
吸ワ量が減り、受光量が増大した。そして、広い濃度範
囲において傾きの大きな良好な直線関係を示した。
As shown in this figure, in the comparative example, even if the substrate concentration is increased, the gradient (change) in the relationship between the amount of received light and the concentration is extremely small, so sufficient sensitivity for that concentration cannot be obtained and it is not suitable for detection. do not have. On the other hand, in this embodiment, the refractive index on the center side of the tubular body is smaller than that on the inner wall side, and the light is bent inward as shown in FIG.
The amount of absorbed energy decreased and the amount of light received increased. A good linear relationship with a large slope was observed over a wide concentration range.

従って本バイオセンサを用いれば、広い濃度範囲におい
てスクロース濃度を良好にしかも感度よく測定すること
ができ、更に電気的ノイズを受けずに高速度で、連続測
定をすることもできる。
Therefore, by using this biosensor, the sucrose concentration can be measured satisfactorily and with high sensitivity over a wide concentration range, and furthermore, it is possible to perform continuous measurement at high speed without being affected by electrical noise.

実施例2 本実施例は、第5図に示すように被検液導入手段及び導
出手段として直接管状体1に取付けられた各導入口3a
及び導出口4aを、発光素子としてLEDランプ51を
用い、しかも導入口3a側にも光ファイバ7を用い、両
光ファイバ7.71の先端部はゴムシール13.14を
介して直接に管状体内部に配置されている。尚、導入手
段又は導出手段は、実施例1のような媒体導入部又は媒
体導出部とすることもできる。
Embodiment 2 In this embodiment, as shown in FIG.
An LED lamp 51 is used as a light emitting element for the outlet port 4a, and an optical fiber 7 is also used for the inlet port 3a, and the tips of both optical fibers 7.71 are directly connected to the inside of the tubular body via the rubber seal 13.14. It is located in Note that the introducing means or the deriving means may also be a medium introducing part or a medium deriving part as in the first embodiment.

この場合は、全体構造が簡便でかつ小型とすることがで
き、連続測定に好都合である。
In this case, the overall structure can be made simple and compact, which is convenient for continuous measurement.

尚、本発明においては、上記具体的実施例に示すものに
限られず、目的、用途に応じて本発明の範囲内で種々変
更した実施例とすることができる。即ち、上記管状体と
は、被検液を通過させるものであればよく、その大きさ
、長さ、全体形状、断面形状、材質等は、目的、用途に
より種々のものを選択することができる。例えば、その
全体形状も直管状でなく曲管状であってもよいし、その
横断面形状も通常は真円であるが四角、六角、楕円等と
することもでき、更にはハニカム状又は蓮根状のように
複数の流路孔を有してもよい。この材料はセラミックス
に限定されることなく、ガラス、金属等とすることもで
きる。
It should be noted that the present invention is not limited to what is shown in the above-mentioned specific examples, but can be variously modified within the scope of the present invention depending on the purpose and use. That is, the above-mentioned tubular body may be one that allows the test liquid to pass through, and its size, length, overall shape, cross-sectional shape, material, etc. can be selected from various types depending on the purpose and use. . For example, its overall shape may be curved rather than straight, and its cross-sectional shape is usually a perfect circle, but it can also be square, hexagonal, elliptical, etc., and even honeycomb-shaped or lotus root-shaped. It may have a plurality of flow passage holes as shown in FIG. This material is not limited to ceramics, but may also be glass, metal, etc.

また多孔質膜もガラス、樹脂、金属等とすることができ
る。血液中のグルコース測定等の際には、血液の凝固を
防止する材料、例えばヒドロキシアパタイト、シリコン
樹脂、キチン、キトサン等を多孔質膜に用いることがで
きる。生体触媒としては、インベルターゼに限定される
ことなく、ウレアーゼ、シコウ酸デカルボキシラーゼ、
アルコールオキシダーゼ、マルターゼ、グルコースオキ
シダーゼ等を用いることができる。
Further, the porous membrane can also be made of glass, resin, metal, or the like. When measuring glucose in blood, a material that prevents blood coagulation, such as hydroxyapatite, silicone resin, chitin, chitosan, etc., can be used for the porous membrane. Biocatalysts include, but are not limited to invertase, urease, sikolate decarboxylase,
Alcohol oxidase, maltase, glucose oxidase, etc. can be used.

被検液の媒体としては、液体でなく、気体とすることが
できる。発光素子及び受光素子としても、他の公知のも
のを用いることができる。これらの素子は直接管状体に
取りつけた構成としてもよい。光ファイバの長さ、太さ
、材質、形態、取付は位置等も種々選択でき、例えば材
質は樹脂に限らずガラスでもよい。更に、発光素子によ
る光の照射方法は、管状体端面全体をほぼ均等に照射し
てもよいし、レーザの場合には、通常、実施例1のよう
にほぼ中心に照射するがこれに限らず、管壁に近い所、
中心に近い所等に照射することもできる。この管壁に近
い所の場合には、感度を向上させる効果がある。また光
束径も目的等により種々選択する。
The medium for the test liquid may be gas instead of liquid. Other known elements can also be used as the light emitting element and the light receiving element. These elements may be directly attached to the tubular body. Various lengths, thicknesses, materials, shapes, mounting positions, etc. of the optical fibers can be selected; for example, the material is not limited to resin, but may also be glass. Furthermore, the method of irradiating light by the light emitting element may be such that the entire end surface of the tubular body is irradiated almost uniformly, and in the case of a laser, irradiation is usually performed almost at the center as in Example 1, but the method is not limited to this. , near the pipe wall,
It is also possible to irradiate areas close to the center. A location close to the tube wall has the effect of improving sensitivity. Further, the diameter of the light beam is also selected depending on the purpose and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1に係わるバイオセンサの説明断面図、
第2図は実施例1において反応物等の濃度分布及び全体
の屈折率分布を示し、(a)はスクロース、(b)はα
−D−グルコース、(c)はフルクトースの各濃度分布
、(d)は全体の屈折率分布を示す概念的説明図、第3
図は管状体を通過する光の軌跡を示す説明図、第4図は
管状体の半径方向に屈折率の分布が生じることを示す説
明図で、(イ)は中心側が大きく (ロ)は内壁側が大
きい状態を示す説明図、第5図は実施例2に係わるバイ
オセンサの説明断面図、第6図は実施例1においてスク
ロース濃度と受光量との関係を示すグラフである。 l:管状体、2:触媒層、3;導入部(手段)4;導出
部(手段)、5;レーザ装置、51;LEDランプ、6
;受光素子、61;オプチカルメータ、7;光ファイバ
、8;恒温槽。 特許出願人  日本特殊陶業株式会社 代 理 人  弁理士  小島清路 第3図 第5図 第6図 スクロース;1度(ミリ−1:、1しl)手続補正書 (自発) l。 2゜ 3゜ 事件の表示 平成1年特許願第72770号 発明の名称 バイオセンサ 補正をする者 事件との関係 特許出願人 名古屋市瑞穂区高辻町14番18号 (454)日本特殊陶業株式会社 代表者 鈴木亭− 4゜
FIG. 1 is an explanatory cross-sectional view of a biosensor according to Example 1,
Figure 2 shows the concentration distribution of reactants and the overall refractive index distribution in Example 1, (a) is sucrose, (b) is α
-D-glucose, (c) is a conceptual explanatory diagram showing each concentration distribution of fructose, (d) is the entire refractive index distribution, 3rd
The figure is an explanatory diagram showing the trajectory of light passing through the tubular body, and Figure 4 is an explanatory diagram showing the distribution of refractive index occurring in the radial direction of the tubular body. FIG. 5 is an explanatory cross-sectional view of the biosensor according to Example 2, and FIG. 6 is a graph showing the relationship between the sucrose concentration and the amount of light received in Example 1. l: tubular body, 2: catalyst layer, 3; introduction part (means) 4; outlet part (means), 5; laser device, 51; LED lamp, 6
; Light receiving element, 61; Optical meter, 7; Optical fiber, 8; Constant temperature chamber. Patent applicant: NGK Spark Plug Co., Ltd. Agent: Kiyoji Kojima, Figure 3, Figure 5, Figure 6 Sucrose; 1 degree (mm-1:, 1) Procedural amendment (voluntary) l. 2゜3゜Indication of the case 1999 Patent Application No. 72770 Name of the invention Person who makes biosensor correction Relationship to the case Patent applicant 14-18 (454) Takatsuji-cho, Mizuho-ku, Nagoya City Representative of NGK Spark Plug Co., Ltd. Person Suzukitei - 4゜

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも内壁に被検液中に含まれる基質の反応
を促進する生体触媒を有する管状体と、該管状体の一端
側に取り付けられ該管状体の内部に被検液を導入する導
入手段と、 該管状体の他端側に取り付けられ該管状体から上記被検
液を導出する導出手段と、 上記管状体の一端側に、直接に又は送光用光ファイバを
介して、配置される発光素子と、 上記管状体の他端側に、直接に又は受光用光ファイバを
介して、配置される受光素子と、を具備することを特徴
とするバイオセンサ。
(1) A tubular body having at least a biocatalyst on its inner wall that promotes the reaction of a substrate contained in the test liquid, and an introduction means attached to one end of the tubular body for introducing the test liquid into the inside of the tubular body. and a derivation means attached to the other end of the tubular body to derive the test liquid from the tubular body, and a derivation means disposed at the one end of the tubular body, either directly or via a light transmission optical fiber. A biosensor comprising: a light-emitting element; and a light-receiving element disposed on the other end side of the tubular body directly or via a light-receiving optical fiber.
JP1072770A 1989-03-24 1989-03-24 Biosensor Expired - Fee Related JPH0714336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1072770A JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1072770A JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Publications (2)

Publication Number Publication Date
JPH02249480A true JPH02249480A (en) 1990-10-05
JPH0714336B2 JPH0714336B2 (en) 1995-02-22

Family

ID=13498943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1072770A Expired - Fee Related JPH0714336B2 (en) 1989-03-24 1989-03-24 Biosensor

Country Status (1)

Country Link
JP (1) JPH0714336B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886141A1 (en) * 1997-06-23 1998-12-23 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical sensor unit and procedure for the ultrasensitive detection of chemical or biochemical analytes
EP0887645A1 (en) * 1997-06-23 1998-12-30 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Procedure and instrumentation for the ultrasensitive detection of prions, prion binding biomolecules and other biomolecules
JP2009270898A (en) * 2008-05-02 2009-11-19 Sumitomo Electric Ind Ltd Biosensor measuring instrument and sensor system
JP2009270899A (en) * 2008-05-02 2009-11-19 Sumitomo Electric Ind Ltd Biosensor measuring instrument and sensor system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7290783B1 (en) * 2022-11-14 2023-06-13 松田産業株式会社 metal recovery system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0886141A1 (en) * 1997-06-23 1998-12-23 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Optical sensor unit and procedure for the ultrasensitive detection of chemical or biochemical analytes
EP0887645A1 (en) * 1997-06-23 1998-12-30 C.S.E.M. Centre Suisse D'electronique Et De Microtechnique Sa Procedure and instrumentation for the ultrasensitive detection of prions, prion binding biomolecules and other biomolecules
JP2009270898A (en) * 2008-05-02 2009-11-19 Sumitomo Electric Ind Ltd Biosensor measuring instrument and sensor system
JP2009270899A (en) * 2008-05-02 2009-11-19 Sumitomo Electric Ind Ltd Biosensor measuring instrument and sensor system

Also Published As

Publication number Publication date
JPH0714336B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
Yuan et al. Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs
US5640470A (en) Fiber-optic detectors with terpolymeric analyte-permeable matrix coating
Davies et al. Polymer membranes in clinical sensor applications: I. An overview of membrane function
US5034189A (en) Fluorescent probe for rapid measurement of analyte concentration
JP2622430B2 (en) Analysis method
Dıaz et al. Sol–gel horseradish peroxidase biosensor for hydrogen peroxide detection by chemiluminescence
Kulp et al. Polymer immobilized enzyme optrodes for the detection of penicillin
US4517291A (en) Biological detection process using polymer-coated electrodes
Nylander Chemical and biological sensors
Dybko et al. Efficient reagent immobilization procedure for ion-sensitive optomembranes
US3926734A (en) Urea analysis
JP2002174597A (en) Method for detecting sensor material, sensor and organic substance and method for detecting transmitted light
Dybko et al. Fiber optic probe for monitoring of drinking water
Baliyan et al. Surface plasmon resonance based fiber optic sensor for the detection of triacylglycerides using gel entrapment technique
US20030133639A1 (en) Optical fiber sensor having a sol-gel fiber core and a method of making
Vaghela et al. LED-based portable optical biosensor for measurement of serum urea levels using urease immobilized agarose-guar gum composite film
JPH02249480A (en) Bio-sensor
US4604182A (en) Perfluorosulfonic acid polymer-coated indicator electrodes
Gao et al. A refractometric uric acid biosensor based on immobilized uricase and PVA+ PEG composite hydrogels
JPH02247561A (en) Concentration measuring instrument
JPS63247646A (en) Optical fiber sensor
JP2747933B2 (en) Concentration measuring method and concentration measuring device
Kawabata et al. Micro-optorde for urea using an ammonium ion-sensitive membrane covered with a urease-immobilized membrane
Abdel-Latif et al. Fiber optic-based biosensors utilizing immobilized enzyme systems
JP3016640B2 (en) Optical waveguide type biosensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees