JPH07142076A - Fuel cell power generation device - Google Patents

Fuel cell power generation device

Info

Publication number
JPH07142076A
JPH07142076A JP5287150A JP28715093A JPH07142076A JP H07142076 A JPH07142076 A JP H07142076A JP 5287150 A JP5287150 A JP 5287150A JP 28715093 A JP28715093 A JP 28715093A JP H07142076 A JPH07142076 A JP H07142076A
Authority
JP
Japan
Prior art keywords
cooling water
heat exchanger
heat
steam
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5287150A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Gocho
義次 牛膓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5287150A priority Critical patent/JPH07142076A/en
Publication of JPH07142076A publication Critical patent/JPH07142076A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To supply stable high temperature steam to a high temperature exhaust heat utilizing equipment regardless of a plant operating condition. CONSTITUTION:A heat exchanger 15 exchanges heat between battery cooling water to be supplied to the cooling water inlet piping side and secondary side cooling water, and cools the battery cooling water to a necessary temperature. In a heat exchanger 21, a secondary side heat exchanger tube is arranged in a steam separator 2, and cooling water after heat is exchanged on the secondary side of the heat exchanger 15 is supplied to the secondary side heat exchanger tube of the heat exchanger 21, and high temperature steam generated by exchanging heat with steam in the steam separator 2 is supplied to a high temperature exhaust heat utilizing equipment 24, and utilized water is circulated and returned to the secondary side of the heat exchanger 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱利用装置を備える燃
料電池発電装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator equipped with a heat utilization device.

【0002】[0002]

【従来の技術】燃料電池発電装置は、都市ガス、プロパ
ンガスなどの燃料が有している化学エネルギーを電気エ
ネルギーに変換する装置で、燃料電池本体および都市ガ
ス、プロパンガスなどの燃料から水素を生成する改質
器、直流電流を交流に変換する交直変換装置、燃料電池
本体の動作や水素生成に適した温度に作動ガスの温度を
保つための熱交換器などにより構成されている。
2. Description of the Related Art A fuel cell power generator is a device for converting the chemical energy of a fuel such as city gas or propane gas into electric energy, and produces hydrogen from the fuel cell body and fuel such as city gas or propane gas. It is composed of a reformer for generation, an AC / DC converter for converting DC current into AC, a heat exchanger for maintaining the temperature of the working gas at a temperature suitable for the operation of the fuel cell main body and hydrogen generation.

【0003】燃料電池本体は、改質器により生成された
水素ガスと、空気中の酸素の結合エネルギーを直接電気
に変換するが、その際に熱も発生する。また、燃料電池
発電装置は、化学反応による発電のため発電効率が高
く、また、大気汚染物質の排出が少なく騒音も小さくク
リーンな発電装置として広く商品化されつつある。
The fuel cell main body directly converts the binding energy of hydrogen gas produced by the reformer and oxygen in the air into electricity, but heat is also generated at that time. Further, the fuel cell power generator is being widely commercialized as a clean power generator having high power generation efficiency due to the power generation by a chemical reaction, a small amount of emission of air pollutants and a small noise.

【0004】燃料電池本体の電気化学反応を効率よく行
わせるためには、燃料電池本体の温度を一定の温度レベ
ルに保つ必要があり、冷却水などで適切な温度に冷却保
持される。この燃料電池冷却水系は、気水分離器、ポン
プ、熱交換器などで構成され、熱交換器から取り出され
る排熱は様々な用途の熱利用がなされている。
In order to efficiently carry out the electrochemical reaction of the fuel cell body, it is necessary to keep the temperature of the fuel cell body at a constant temperature level, and the fuel cell body is cooled and maintained at an appropriate temperature by cooling water or the like. This fuel cell cooling water system is composed of a steam separator, a pump, a heat exchanger, and the like, and exhaust heat extracted from the heat exchanger is used for various purposes.

【0005】従来、この排熱は、温水として取り出され
ているに過ぎなかったが、近年、排熱利用の用途の範囲
拡大に伴って、蒸気として取り出す要求が強くなってい
る。
In the past, this exhaust heat was only taken out as hot water, but in recent years, with the expansion of the range of uses of the exhaust heat, there has been a strong demand for taking it out as steam.

【0006】発電負荷に対する発電熱効率は、図2に示
すように、約40%程度であるが、温水レベルの低温排
熱回収と蒸気レベルの高温排熱回収をすべて利用した場
合、総合効率が20%以上向上する。このように燃料電
池発電装置は、発電のみならず、排熱を系外で有効利用
することができ、排熱のうち、蒸気レベルの高温排熱
は、吸収式冷凍機の蒸気タービン駆動源等に用いられ
る。
As shown in FIG. 2, the thermal efficiency of power generation against the power generation load is about 40%. However, when all of the low temperature exhaust heat recovery at the hot water level and the high temperature exhaust heat recovery at the steam level are used, the total efficiency is 20%. % Or more. In this way, the fuel cell power generator can effectively use not only power generation but also exhaust heat outside the system. Of the exhaust heat, the high-temperature exhaust heat at the vapor level is used as the steam turbine drive source of the absorption refrigerator. Used for.

【0007】この蒸気取出し方法には、蒸気となった電
池冷却水を直接取出す直接蒸気取出し方法および電池冷
却水系と一旦熱交換を行い、電池冷却水とは異なる系の
水を蒸気に変えて取り出す間接蒸気取出し方法とがあ
る。
In this steam extraction method, a direct steam extraction method for directly extracting vaporized battery cooling water and heat exchange with the battery cooling water system are performed once, and water of a system different from the battery cooling water is converted into steam and then extracted. There is an indirect steam extraction method.

【0008】図3は、直接蒸気を取出すタイプの概念図
で、燃料電池1の燃料極1aへ燃料ガス、空気極1bへ
空気の供給がされる。ここで発生した熱は冷却板1cで
電池冷却水によって冷却され、電池冷却水が導入された
気水分離器2では、蒸気と水とに分離され、ポンプ3で
加圧され、熱交換器4で所定の温度に冷却され、燃料電
池1の冷却板1cに戻るようになっている。なお、5は
燃料電池1の起動時の予熱ヒータを示している。
FIG. 3 is a conceptual diagram of a type that directly takes out steam, and fuel gas is supplied to the fuel electrode 1a of the fuel cell 1 and air is supplied to the air electrode 1b. The heat generated here is cooled by the battery cooling water in the cooling plate 1c, and in the steam separator 2 into which the battery cooling water is introduced, it is separated into steam and water, pressurized by the pump 3, and the heat exchanger 4 Is cooled to a predetermined temperature, and returns to the cooling plate 1c of the fuel cell 1. In addition, 5 has shown the preheater at the time of starting the fuel cell 1.

【0009】一方、気水分離器2で発生した蒸気の一部
が蒸気配管6から排熱利用装置7へ供給され、循環ポン
プ8によって電池冷却水系統へ戻すための戻し配管10
があり、また、排熱利用装置7で利用された水は水処理
装置9で処理され電池冷却水系統へ合流するようにして
いる。
On the other hand, a part of the steam generated in the steam separator 2 is supplied from the steam pipe 6 to the exhaust heat utilization device 7 and is returned by the circulation pump 8 to the battery cooling water system.
In addition, the water used in the exhaust heat utilization device 7 is treated in the water treatment device 9 so as to join the battery cooling water system.

【0010】また、図4は、間接蒸気取出しタイプの概
念図である。
FIG. 4 is a conceptual diagram of the indirect steam extraction type.

【0011】まず、燃料電池1の燃料極1aへ改質器1
2から燃料ガスが供給され、空気極1bへブロア13か
ら空気が供給され、この燃料電池1で発生した熱は、冷
却板1cで電池冷却水によって冷却され、気水分離器2
へ流入するようになっている。
First, the reformer 1 is connected to the fuel electrode 1a of the fuel cell 1.
The fuel gas is supplied from 2 and the air is supplied from the blower 13 to the air electrode 1b. The heat generated in the fuel cell 1 is cooled by the cell cooling water in the cooling plate 1c, and the steam separator 2
It is designed to flow into.

【0012】気水分離器2では、水と蒸気に分離され、
蒸気が改質器12の入口側へ供給されると共に、水がポ
ンプ3によって熱交換器15の一次側へ供給され電池冷
却水系統へ戻る。熱交換器15の二次側へは、ポンプ1
6によって水が供給され、電池冷却水と熱交換された熱
水が排熱利用装置7へ供給され利用される。排熱利用装
置7で利用された水は、熱交換器17を介してポンプ1
6によって熱交換器15へ戻り、熱交換器17の二次側
では冷却水がポンプ18によってDHC冷却塔設備19
へ循環供給される。
In the steam separator 2, it is separated into water and steam,
The steam is supplied to the inlet side of the reformer 12, and the water is supplied to the primary side of the heat exchanger 15 by the pump 3 and returns to the battery cooling water system. The pump 1 is connected to the secondary side of the heat exchanger 15.
Water is supplied by 6 and hot water that has exchanged heat with the battery cooling water is supplied to the exhaust heat utilization device 7 and used. The water used in the waste heat utilization device 7 is pumped through the heat exchanger 17 to the pump 1
6 returns to the heat exchanger 15, and on the secondary side of the heat exchanger 17, the cooling water is pumped by the pump 18 to the DHC cooling tower facility 19
It is circulated and supplied to.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記し
た従来の燃料電池発電装置では、排熱利用に関して次の
ような種々の問題がある。
However, the above-mentioned conventional fuel cell power generator has the following various problems regarding utilization of exhaust heat.

【0014】まず、第一に、図3で説明した蒸気を直接
取り出す装置では、気水分離器2で発生する蒸気が都市
ガス、プロパンガスなどの燃料を水素に生成する改質器
に利用されており、蒸気取り出し量が変動すると、改質
器に供給される蒸気量がその変動の影響をうけ発生水素
量がその影響をうけ、燃料電池本体の発電量もその影響
を受け、さらに、取り出し蒸気量が変動する場合、安定
した運転が難しい一面があった。
First, in the apparatus for directly taking out steam described with reference to FIG. 3, the steam generated in the steam-water separator 2 is used for a reformer for producing fuel such as city gas and propane gas into hydrogen. If the amount of steam taken out fluctuates, the amount of steam supplied to the reformer will be affected by the fluctuation, and the amount of hydrogen produced will be affected as well, and the amount of power generated by the fuel cell itself will also be affected. When the amount of steam fluctuates, stable operation is difficult.

【0015】さらに、電池冷却水系と排熱利用系と同一
配管系であるため、排熱利用装置7に電池と同一の信頼
性を必要とし、漏洩防止対策、水質汚染防止対策を備
え、材料の高級化、水処理装置9の容量アップ等を伴っ
てプラント全体として大型化しコスト高になってしまう
という問題がある。
Further, since the battery cooling water system and the exhaust heat utilization system have the same piping system, the exhaust heat utilization device 7 needs to have the same reliability as that of the battery, and must be equipped with a leakage prevention measure and a water pollution prevention measure. There is a problem that the plant as a whole becomes large and the cost becomes high due to the upsizing and the capacity increase of the water treatment device 9.

【0016】また、第2に、図4で説明した熱交換器1
5により排熱を間接的に取り出す方式では、特開昭64
ー14876号公報、燃料電池本体冷却系(米国IFC
出願)にあるように燃料電池内でリン酸を回収するため
に、熱交換器15の出口部の温度をリン酸凝縮温度まで
下げる必要がある。その場合、図5に示す如く、燃料電
池入口温度を165℃まで下げる必要があるために電池
冷却水温度に対する蒸気温度との差、つまり、ピンチ温
度差ΔTが小さく、市場の要求する圧力と温度を満足す
る蒸気とすることができず、効果的な排熱利用ができな
い。
Secondly, the heat exchanger 1 described with reference to FIG.
In the method of indirectly taking out the exhaust heat by the method of 5,
-14876 Publication, Fuel cell body cooling system (US IFC
In order to recover phosphoric acid in a fuel cell as described in (Application), it is necessary to lower the temperature at the outlet of the heat exchanger 15 to the phosphoric acid condensation temperature. In that case, as shown in FIG. 5, since it is necessary to lower the fuel cell inlet temperature to 165 ° C., the difference between the cell cooling water temperature and the steam temperature, that is, the pinch temperature difference ΔT is small, and the pressure and temperature required by the market are small. It is not possible to use steam that satisfies the above conditions, and effective exhaust heat cannot be used.

【0017】この対策として、熱交換器15の後に、さ
らに、熱交換器を追加(図示省略)して燃料電池入口冷
却温度を制御する方法も採れるが、コストやスペースの
面から不利となる。
As a countermeasure against this, a method of controlling the fuel cell inlet cooling temperature by adding a heat exchanger (not shown) after the heat exchanger 15 is also available, but this is disadvantageous in terms of cost and space.

【0018】一方、図6は、気水分離器2の上流側に排
熱回収用熱交換器20を設置し、これより、高温排熱を
間接的に取り出すシステムである。
On the other hand, FIG. 6 shows a system in which a heat exchanger 20 for recovering exhaust heat is installed on the upstream side of the steam separator 2 to indirectly take out high temperature exhaust heat from the heat exchanger 20.

【0019】この方法では、高温蒸気取り出しは可能で
あるが、燃料電池1の冷却板1cを出た電池冷却水は気
液2相流となっており、発電負荷の変動等により電池発
熱量が変化すると、電池冷却水の気液混合比が変わり高
温排熱回収量が不安定に変動するため、高温排熱の安定
取り出しが難しいという問題がある。
According to this method, high-temperature steam can be taken out, but the battery cooling water discharged from the cooling plate 1c of the fuel cell 1 is in a gas-liquid two-phase flow, and the amount of heat generated by the battery is reduced by fluctuations in the power generation load. When it changes, the gas-liquid mixing ratio of the battery cooling water changes, and the amount of high-temperature exhaust heat recovery fluctuates in an unstable manner, so there is a problem that stable extraction of high-temperature exhaust heat is difficult.

【0020】このように、直接蒸気取り出し方式では、
取り出し蒸気量変動に基づく安定した運転の困難性や大
型化やコストアップによるデメリット等があり、また、
気水分離器の上流に熱交換器を設置して間接的に蒸気を
取り出す方式では、負荷変動のときの運転の不安定性お
よびリン酸回収のための熱交換器によって電池冷却水を
低下させるため取り出し蒸気温度が低下して利用が十分
にできないという課題がある。
Thus, in the direct vapor extraction system,
There are difficulties such as stable operation due to fluctuations in the amount of steam taken out, disadvantages such as large size and cost increase.
In the method where a heat exchanger is installed upstream of the steam separator to indirectly take out steam, the instability of operation during load changes and the heat exchanger for phosphoric acid recovery reduce the battery cooling water. There is a problem that the temperature of the taken-out steam is lowered and the steam cannot be used sufficiently.

【0021】そこで、本発明は安定した発電運転ができ
ると共に、安定した高温・高圧蒸気を熱利用装置へ供給
可能とする燃料電池発電装置を提供することを目的とす
る。
Therefore, an object of the present invention is to provide a fuel cell power generator capable of performing stable power generation operation and capable of supplying stable high temperature and high pressure steam to a heat utilization device.

【0022】[0022]

【課題を解決するための手段】本発明は、燃料電池本体
内の冷却器に接続する冷却水入口配管側へ電池冷却水を
供給して冷却水出口配管から取り出した前記電池冷却水
を蒸気と水とに分離する気水分離器へ供給し、この気水
分離器から分離した水を前記冷却水入口配管側へ戻す電
池冷却水循環系統と、この電池冷却水循環系統の余剰エ
ネルギーを利用する熱利用設備へ供給する熱利用系統と
を備える燃料電池発電装置において、前記冷却水入口配
管側へ供給される電池冷却水と二次側の冷却水と熱交換
して前記電池冷却水を所要の温度に冷却する第1熱交換
器と、前記気水分離器内に二次側の伝熱管を配設する第
2熱交換器とを有して、前記第1熱交換器の前記二次側
で熱交換した後の冷却水が前記第2熱交換器の前記二次
側の伝熱管へ供給されて前記気水分離器内の蒸気と熱交
換して高温蒸気となって前記熱利用設備へ供給され、利
用された水が前記第1熱交換器の前記二次側へ循環して
戻るように前記熱利用系統を形成するようにしたもので
ある。
According to the present invention, cell cooling water is supplied to a cooling water inlet pipe side connected to a cooler in a fuel cell main body and the cell cooling water taken out from a cooling water outlet pipe is used as steam. A battery cooling water circulation system that supplies water to a water / water separator that separates into water and returns the water separated from this water / water separator to the cooling water inlet piping side, and heat utilization that uses surplus energy of this battery cooling water circulation system In a fuel cell power generator including a heat utilization system for supplying to equipment, heat exchange between the cell cooling water supplied to the cooling water inlet pipe side and the cooling water on the secondary side to bring the cell cooling water to a required temperature. A first heat exchanger for cooling and a second heat exchanger for arranging a heat transfer pipe on the secondary side in the steam separator are provided, and heat is generated on the secondary side of the first heat exchanger. Cooling water after replacement is supplied to the heat transfer tube on the secondary side of the second heat exchanger. And heat exchanged with the steam in the steam separator to form high temperature steam, which is supplied to the heat utilization facility, so that the used water circulates back to the secondary side of the first heat exchanger. In addition, the heat utilization system is formed.

【0023】[0023]

【作用】上記構成により、冷却水入口配管側へ供給され
る電池冷却水と二次側の冷却水とが第1熱交換器で熱交
換されて電池冷却水が所要の温度に冷却される。そし
て、第1熱交換器の二次側で熱交換した後の冷却水が第
2熱交換器の二次側の伝熱管へ供給されて気水分離器内
の蒸気と熱交換がされて、発生した高温蒸気が熱利用設
備へ供給され、利用された水が第1熱交換器の二次側へ
循環して戻る。従って、燃料電池が必要とする電池冷却
水を第1熱交換器によって所要の温度に冷却して供給で
きるためプラントを安定して運転できる一方、プラント
の運転状況にかかわらず第1熱交換器の二次側で熱交換
した後の冷却水が第2熱交換器で気水分離器内の蒸気と
熱交換がされて、高温蒸気が熱利用設備へ供給できる。
With the above structure, the battery cooling water supplied to the cooling water inlet pipe side and the cooling water on the secondary side are heat-exchanged by the first heat exchanger to cool the battery cooling water to a required temperature. Then, the cooling water that has undergone heat exchange on the secondary side of the first heat exchanger is supplied to the heat transfer tube on the secondary side of the second heat exchanger to exchange heat with the steam in the steam separator. The generated high temperature steam is supplied to the heat utilization equipment, and the used water circulates back to the secondary side of the first heat exchanger. Therefore, since the cell cooling water required by the fuel cell can be cooled to the required temperature by the first heat exchanger and supplied, the plant can be stably operated, while the first heat exchanger can be operated regardless of the operating condition of the plant. The cooling water after heat exchange on the secondary side is heat-exchanged with the steam in the steam separator in the second heat exchanger, and the high-temperature steam can be supplied to the heat utilization facility.

【0024】[0024]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0025】図1は、本発明の一実施例を示す燃料電池
発電装置の構成図で、従来例を示す図4と同一符号は同
一部分または相当部分を示している。
FIG. 1 is a block diagram of a fuel cell power generator showing an embodiment of the present invention, and the same reference numerals as those in FIG. 4 showing a conventional example indicate the same or corresponding portions.

【0026】図中、21は気水分離器2内に配置した熱
交換器で、この熱交換器21は切替弁22を介して熱交
換器15の二次側からポンプ25によって供給される冷
却水と気水分離器2内の蒸気と熱交換され、高温高圧蒸
気が切替弁23を介して高温排熱利用設備24へ供給す
るようになっている。
In the figure, 21 is a heat exchanger arranged in the steam separator 2, and this heat exchanger 21 is cooled by a pump 25 from the secondary side of the heat exchanger 15 via a switching valve 22. The water and the steam in the steam separator 2 are heat-exchanged with each other, and the high-temperature high-pressure steam is supplied to the high-temperature exhaust heat utilization equipment 24 via the switching valve 23.

【0027】26は、高温排熱利用設備24が蒸気を必
要としないとき切替弁22と切替弁23を介して熱交換
器15の二次側の冷却水を流入させて冷却するクーリン
グタワーである。27は、切替弁22と切替弁23とを
切替える運転操作盤、28は逆止弁である。
Reference numeral 26 is a cooling tower for cooling the secondary side cooling water of the heat exchanger 15 through the switching valves 22 and 23 when the high temperature exhaust heat utilization equipment 24 does not require steam. Reference numeral 27 is an operation control panel that switches between the switching valve 22 and the switching valve 23, and 28 is a check valve.

【0028】まず、燃料電池1の燃料極1aには、改質
器12から燃料ガスが供給され、空気極1bにはブロア
13から空気が供給され、燃料電池1で発生する熱が冷
却板1cへ供給される電池冷却水によって冷却される。
冷却板1cの出口で電池冷却水が180℃程度となり、
蒸気と水の2相流の状態で気水分離器2に流れる。
First, the fuel electrode 1a of the fuel cell 1 is supplied with fuel gas from the reformer 12 and the air electrode 1b is supplied with air from the blower 13, so that the heat generated in the fuel cell 1 is cooled by the cooling plate 1c. It is cooled by the battery cooling water supplied to.
At the outlet of the cooling plate 1c, the battery cooling water reaches about 180 ° C,
It flows into the steam separator 2 in a two-phase flow of steam and water.

【0029】気水分離器2では、水と蒸気に分離され、
蒸気は改質器12で水素の生成に用いられ、水はポンプ
3で加圧され熱交換器15を介して冷却板1cの冷却に
用いられる。このとき、熱交換器15は冷却水温度を燃
料電池1内のリン酸回収のためにリン酸凝縮温度まで下
げるよう2次冷却水が調整されている。
In the steam separator 2, water and steam are separated,
The steam is used to generate hydrogen in the reformer 12, and the water is pressurized by the pump 3 and used to cool the cooling plate 1c via the heat exchanger 15. At this time, in the heat exchanger 15, the secondary cooling water is adjusted so as to lower the cooling water temperature to the phosphoric acid condensing temperature in order to recover the phosphoric acid in the fuel cell 1.

【0030】一方、熱交換器15の2次冷却水は、熱交
換器15を出た後、切替弁22を介して気水分離器2内
の熱交換器21に導かれ、切替弁23を介して高温排熱
利用設備24に流入する。このとき、運転操作盤27の
信号によって切替弁22はaからbへ流路が形成される
ように切替えられ、切替弁23はbからcへ流路が形成
されるように切替えられる。この高温排熱利用設備24
では、冷暖房や蒸気タービンの駆動源として蒸気が利用
される。高温排熱利用設備24より出た蒸気は、逆止弁
28を介してポンプ25により加圧され、2次冷却水と
して循環される。
On the other hand, the secondary cooling water of the heat exchanger 15 leaves the heat exchanger 15 and is guided to the heat exchanger 21 in the steam separator 2 via the switching valve 22 and the switching valve 23. Through the high temperature exhaust heat utilization equipment 24. At this time, the switching valve 22 is switched to form a flow path from a to b and the switching valve 23 is switched to form a flow path from b to c by a signal from the operation panel 27. This high temperature exhaust heat utilization equipment 24
In, steam is used as a driving source for air conditioning and steam turbines. The steam discharged from the high-temperature waste heat utilization equipment 24 is pressurized by the pump 25 via the check valve 28 and circulated as secondary cooling water.

【0031】また、排熱回収の必要がなくなり、高温排
熱利用設備24が停止する場合は、運転操作盤27の信
号によって切替弁22は、aからcへ流路が形成される
ように切替えられ、切替弁23は、aからdへ流路が形
成されるように切替えられる。これによって、熱交換器
15より排出した2次冷却水が、クーリングタワー26
に入り冷却され、ポンプ25に戻る。この切替弁22と
切替弁23の切替えとクーリングタワー26のON・O
FFは高温排熱利用設備24の運転操作盤27により自
動的にコントロールされる。
When the exhaust heat recovery is not required and the high temperature exhaust heat utilization equipment 24 is stopped, the switching valve 22 is switched by the signal from the operation panel 27 so that the flow path is formed from a to c. Then, the switching valve 23 is switched so that a flow path is formed from a to d. As a result, the secondary cooling water discharged from the heat exchanger 15 becomes the cooling tower 26.
Then, it is cooled and returned to the pump 25. Switching of the switching valve 22 and the switching valve 23 and ON / O of the cooling tower 26
The FF is automatically controlled by the operation panel 27 of the high temperature exhaust heat utilization equipment 24.

【0032】このように、リン酸回収機能を有する燃料
電池では、高温高圧蒸気の取り出しが困難であったが、
気水分離器内に熱交換器を設けて二次冷却水を再加熱す
ることにより、その要求を十分満足させることができ
る。また、気水分離器より直接蒸気を取り出すことがな
いため燃料電池本体の発電量による影響や改質器への蒸
気量の変動による影響を受けることによるプラント運転
の変動を回避し、安定した運転ができ、かつ、信頼性を
向上することができる。
As described above, in the fuel cell having the phosphoric acid recovery function, it was difficult to take out the high temperature and high pressure steam.
By providing a heat exchanger in the steam separator to reheat the secondary cooling water, the requirement can be sufficiently satisfied. In addition, since steam is not directly taken out from the steam separator, fluctuations in plant operation due to the effects of power generation of the fuel cell body and fluctuations in the amount of steam to the reformer are avoided, and stable operation is avoided. And the reliability can be improved.

【0033】なお、本実施例では切替弁22は三方弁を
用い、切替弁23は四方弁を用いているが、これに限ら
ず二方弁等を組合せることによって本実施例と同様の切
替弁とすることができる。また、気水分離器の熱エネル
ギーに頼るのみならず同様な考えで改質器による再加熱
が可能である。
In this embodiment, the switching valve 22 uses a three-way valve and the switching valve 23 uses a four-way valve. However, the present invention is not limited to this, and a two-way valve or the like can be combined to perform the same switching as in the present embodiment. It can be a valve. Further, reheating by the reformer is possible not only by relying on the thermal energy of the steam separator but by the same idea.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、第
1熱交換器の二次側で熱交換した後の冷却水を第2熱交
換器の二次側へ供給して気水分離器内の蒸気と再熱交換
するようにしたためプラント運転状況にかかわらず発生
した高温蒸気を熱利用設備へ確実に安定供給することが
できる。
As described above, according to the present invention, cooling water after heat exchange on the secondary side of the first heat exchanger is supplied to the secondary side of the second heat exchanger to separate water from water. Since the heat in the reactor is reheat-exchanged, the generated high temperature steam can be reliably and stably supplied to the heat utilization equipment regardless of the plant operating conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す燃料電池発電装置の系
統図である。
FIG. 1 is a system diagram of a fuel cell power generator showing an embodiment of the present invention.

【図2】発電負荷と効率の関係を示す説明図である。FIG. 2 is an explanatory diagram showing a relationship between a power generation load and efficiency.

【図3】従来の蒸気直接取り出し型の燃料電池発電装置
の系統図である。
FIG. 3 is a system diagram of a conventional fuel cell power generation device of a direct steam extraction type.

【図4】従来の蒸気間接取り出し型の燃料電池発電装置
の系統図である。
FIG. 4 is a system diagram of a conventional fuel cell power generation device of indirect vapor extraction type.

【図5】伝熱管長と冷却水温度との関係を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a relationship between a heat transfer tube length and a cooling water temperature.

【図6】従来の高温排熱取り出し型の燃料電池発電装置
の系統図である。
FIG. 6 is a system diagram of a conventional high temperature exhaust heat extraction type fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料電池 1a 燃料極 1b 空気極 1c 冷却板 2 気水分離器 3,25 ポンプ 12 改質器 13 ブロア 15,21 熱交換器 22,23 切替弁 24 高温排熱利用設備 26 クーリングタワー 27 運転操作盤 28 逆止弁 1 Fuel Cell 1a Fuel Electrode 1b Air Electrode 1c Cooling Plate 2 Steam Separator 3,25 Pump 12 Reformer 13 Blower 15,21 Heat Exchanger 22,23 Switching Valve 24 High Temperature Exhaust Heat Utilization Facility 26 Cooling Tower 27 Operation Panel 28 Check valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 燃料電池本体内の冷却器に接続する冷却
水入口配管側へ電池冷却水を供給して冷却水出口配管か
ら取り出した前記電池冷却水を蒸気と水とに分離する気
水分離器へ供給し、この気水分離器から分離した水を前
記冷却水入口配管側へ戻す電池冷却水循環系統と、この
電池冷却水循環系統の余剰エネルギーを利用する熱利用
設備へ供給する熱利用系統とを備える燃料電池発電装置
において、 前記冷却水入口配管側へ供給される電池冷却水と二次側
の冷却水と熱交換して前記電池冷却水を所要の温度に冷
却する第1熱交換器と、前記気水分離器内に二次側の伝
熱管を配設する第2熱交換器とを有して、前記第1熱交
換器の前記二次側で熱交換した後の冷却水が前記第2熱
交換器の前記二次側の伝熱管へ供給されて前記気水分離
器内の蒸気と熱交換して発生した高温蒸気が前記熱利用
設備へ供給され、利用された水が前記第1熱交換器の前
記二次側へ循環して戻るように前記熱利用系統を形成す
ることを特徴とする燃料電池発電装置。
1. A gas-water separation for supplying battery cooling water to a cooling water inlet pipe side connected to a cooler in a fuel cell main body and separating the battery cooling water taken out from the cooling water outlet pipe into steam and water. Cooling water circulation system for supplying water to the reactor and returning the water separated from this steam / water separator to the side of the cooling water inlet pipe, and a heat utilization system for supplying heat utilization equipment using surplus energy of this battery cooling water circulation system. A fuel cell power generator comprising: a first heat exchanger for exchanging heat between the cell cooling water supplied to the cooling water inlet pipe side and the cooling water on the secondary side to cool the cell cooling water to a required temperature; A second heat exchanger having a secondary side heat transfer tube arranged in the steam separator, wherein the cooling water after heat exchange on the secondary side of the first heat exchanger is In the steam separator, which is supplied to the heat transfer pipe on the secondary side of the second heat exchanger, Forming the heat utilization system so that high temperature steam generated by heat exchange with air is supplied to the heat utilization equipment, and the used water circulates back to the secondary side of the first heat exchanger. A fuel cell power generator characterized by:
【請求項2】 前記第2熱交換器の前記二次側の入口側
と出口側とをバイパスするバイパス系統と、前記熱利用
設備の利用時に前記第2熱交換器の前記二次側の入口側
と出口側とを接続する二次側の系統へ切替えると共に、
前記熱利用設備の非利用時に前記バイパス系統へ切替え
る切替弁とを付加したことを特徴とする請求項1記載の
燃料電池発電装置。
2. A bypass system that bypasses an inlet side and an outlet side of the secondary side of the second heat exchanger, and an inlet of the secondary side of the second heat exchanger when the heat utilization facility is used. Switch to the secondary system that connects the outlet side with the outlet side,
The fuel cell power generator according to claim 1, further comprising a switching valve that switches to the bypass system when the heat utilization facility is not in use.
【請求項3】 前記切替弁によって前記バイパス系統へ
切替えられたとき、前記バイパス系統を介して供給され
る前記第1熱交換器の二次側で熱交換した後の冷却水を
冷却するクーリングタワーを付加することを特徴とする
請求項2記載の燃料電池発電装置。
3. A cooling tower for cooling the cooling water after heat exchange on the secondary side of the first heat exchanger supplied through the bypass system when switched to the bypass system by the switching valve. The fuel cell power generator according to claim 2, wherein the fuel cell power generator is added.
JP5287150A 1993-11-17 1993-11-17 Fuel cell power generation device Pending JPH07142076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287150A JPH07142076A (en) 1993-11-17 1993-11-17 Fuel cell power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287150A JPH07142076A (en) 1993-11-17 1993-11-17 Fuel cell power generation device

Publications (1)

Publication Number Publication Date
JPH07142076A true JPH07142076A (en) 1995-06-02

Family

ID=17713726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287150A Pending JPH07142076A (en) 1993-11-17 1993-11-17 Fuel cell power generation device

Country Status (1)

Country Link
JP (1) JPH07142076A (en)

Similar Documents

Publication Publication Date Title
CN105576269A (en) Thermal control system of fixed mini-type fuel cell cogeneration device
JP2942999B2 (en) Molten carbonate fuel cell power generator
JP4358338B2 (en) Fuel cell combined power plant system
JPS6257072B2 (en)
CN117293349A (en) Hydrogen-heat integrated power generation system and method based on PEMFC and organic Rankine cycle
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP4209015B2 (en) Solid electrolyte fuel cell combined power plant system
GB2458112A (en) Heat and Process Water Recovery System
JPH07142076A (en) Fuel cell power generation device
JPS5828177A (en) Fuel-cell generation plant
JP2001076750A (en) High temperature fuel cell facility
JP3426620B2 (en) Fuel cell waste heat utilization system
KR102599151B1 (en) Liquid hydrogen vaporization device using heat pump with internal heat exchanger
JP3287502B2 (en) Power generation method using fuel cell
JP2002056879A (en) Water electrolysis device and phosphoric acid type fuel cell generating system
JPH0629036A (en) Heat collection system of fuel cell power-generation device
CN114586205B (en) Hybrid power generation system
JP4440676B2 (en) Fuel cell power generation hot water supply system
JP3202292B2 (en) Fuel cell power generation system
JP3350164B2 (en) Fuel cell cogeneration system and cooling water waste heat recovery method
JPH05159792A (en) Fuel cell generating system
JPS62119872A (en) Waste heat recovery device for combined power generation plant
JP3936310B2 (en) Fuel cell surplus steam condensing type steam separator
JPH10334932A (en) Fuel cell power generating system and exhaust heat recovery method therein