JPH0714200A - Objective lens driving device - Google Patents
Objective lens driving deviceInfo
- Publication number
- JPH0714200A JPH0714200A JP15854793A JP15854793A JPH0714200A JP H0714200 A JPH0714200 A JP H0714200A JP 15854793 A JP15854793 A JP 15854793A JP 15854793 A JP15854793 A JP 15854793A JP H0714200 A JPH0714200 A JP H0714200A
- Authority
- JP
- Japan
- Prior art keywords
- objective lens
- permanent magnet
- driving device
- magnetic material
- support shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Moving Of The Head For Recording And Reproducing By Optical Means (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、回転する情報記録媒体
に集光したレ−ザ光を照射し、情報の再生、記録を行な
う光ディスク装置に搭載される対物レンズ駆動装置に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens driving device mounted on an optical disk device for reproducing and recording information by irradiating a rotating information recording medium with condensed laser light.
【0002】[0002]
【従来の技術】光ディスク装置の高性能化を実現させる
ためには、レ−ザ光を集光して微小スポットを形成し、
ディスク状情報記録媒体面に照射するとともに、回転す
るディスク状情報記録媒体の動きに対してレ−ザ光を高
精度に追従させる機能を持つ対物レンズ駆動装置が必要
である。◆以下、図15に示す対物レンズ駆動装置の説
明を行う。図15において、対物レンズ1の上には、図
示はされていないが、ディスク状情報記録媒体が装着さ
れている。支軸10に沿ったZ方向の運動によって対物
レンズ1をその焦点方向に駆動させ、ディスク状情報記
録媒体面15での焦点追従を行う。また、支軸10を中
心とした回転運動によって対物レンズ1を回転駆動さ
せ、ディスク状情報記録媒体面15でのトラック追従を
行なう。◆基本的に、図15に示した対物レンズ駆動装
置では、支軸10に対して前後左右に質量のバランスを
とることにより支軸10に負荷がかからないように設
計、製作されている。そのため、図15の対物レンズ駆
動装置を搭載した光ディスク装置を水平に設置、すなわ
ち図15のZ方向と対物レンズ1の焦点駆動方向が一致
する場合、支軸10と軸受11はほとんど接触しない。2. Description of the Related Art In order to realize high performance of an optical disk device, laser light is condensed to form a minute spot,
There is a need for an objective lens driving device that has a function of irradiating the surface of a disc-shaped information recording medium and causing the laser light to follow the movement of the rotating disc-shaped information recording medium with high accuracy. ◆ Hereinafter, the objective lens driving device shown in FIG. 15 will be described. In FIG. 15, although not shown, a disc-shaped information recording medium is mounted on the objective lens 1. The objective lens 1 is driven in its focal direction by the movement in the Z direction along the support shaft 10 to follow the focal point on the disk-shaped information recording medium surface 15. Further, the objective lens 1 is rotationally driven by the rotational movement around the support shaft 10 to follow the track on the disk-shaped information recording medium surface 15. Basically, the objective lens driving device shown in FIG. 15 is designed and manufactured so that a load is not applied to the support shaft 10 by balancing the mass of the support shaft 10 in the front-rear direction and the left-right direction. Therefore, when the optical disk device equipped with the objective lens driving device of FIG. 15 is installed horizontally, that is, when the Z direction of FIG. 15 and the focus driving direction of the objective lens 1 coincide with each other, the spindle 10 and the bearing 11 hardly contact each other.
【0003】しかし、前記光ディスク装置を垂直に設
置、すなわち図15のX方向と重力方向が一致する場
合、常に支軸10にはレンズホルダ2の自重が負荷とな
って作用するので、対物レンズ1の駆動時に支軸10と
軸受11の間で摩擦力が発生し、さらに摩耗が発生す
る。この摩擦力は、特に対物レンズ1を焦点方向に駆動
させてディスク状情報記録媒体面15での焦点追従を行
なうとき、その追従精度に悪影響を与える。また、摩耗
によって支軸10と軸受11のクリアランスが増加する
と、対物レンズ1の光軸の傾きが増加する。この傾きは
収差を発生させ、再生信号に歪が生じる原因となる。特
開平4−184723号公報には、図15と同様に支軸
と軸受を有する対物レンズ駆動装置が記載されている。However, when the optical disk device is installed vertically, that is, when the X direction in FIG. 15 and the gravity direction coincide with each other, the weight of the lens holder 2 always acts as a load on the support shaft 10, so that the objective lens 1 At the time of driving, frictional force is generated between the support shaft 10 and the bearing 11, and wear is further generated. This frictional force adversely affects the tracking accuracy, especially when the objective lens 1 is driven in the focal direction to follow the focus on the disk-shaped information recording medium surface 15. Further, when the clearance between the support shaft 10 and the bearing 11 increases due to wear, the inclination of the optical axis of the objective lens 1 increases. This inclination causes aberration and causes distortion in the reproduced signal. Japanese Patent Application Laid-Open No. 4-184723 discloses an objective lens driving device having a support shaft and a bearing as in FIG.
【0004】[0004]
【発明が解決しようとする課題】従来の技術における課
題を以下に詳しく記述する。図15に示した対物レンズ
駆動装置を垂直に設置、すなわち、図15のX方向と重
力方向が一致する場合、常に支軸10にはレンズホルダ
2の自重が負荷となって作用するため、支軸10と軸受
11の摩擦力が大きくなり、対物レンズ1の位置決め追
従誤差の増加を引き起こす。支軸10と軸受11の摩擦
による対物レンズ駆動装置の耐久性低下を防ぐことが第
1の課題である。Problems in the prior art will be described in detail below. When the objective lens driving device shown in FIG. 15 is installed vertically, that is, when the X direction and the gravitational direction in FIG. The frictional force between the shaft 10 and the bearing 11 increases, causing an increase in positioning tracking error of the objective lens 1. The first problem is to prevent deterioration of the durability of the objective lens driving device due to friction between the support shaft 10 and the bearing 11.
【0005】また、対物レンズ1の駆動時に支軸10と
軸受11が接触すると、支軸10が振動するため、その
振動が対物レンズ1に伝わり、対物レンズ1の動特性を
低下させる。支軸10と軸受11の接触による対物レン
ズ駆動装置の耐振性低下を防ぐことが第2の課題であ
る。Further, when the support shaft 10 and the bearing 11 come into contact with each other when the objective lens 1 is driven, the support shaft 10 vibrates, and the vibration is transmitted to the objective lens 1 to deteriorate the dynamic characteristics of the objective lens 1. A second problem is to prevent deterioration of vibration resistance of the objective lens driving device due to contact between the support shaft 10 and the bearing 11.
【0006】第1、第2の課題を解決するためレンズホ
ルダ2の外側固定部から設けた永久磁石による吸引機構
からはレンズホルダ2に磁気吸引力が作用しているが、
対物レンズ駆動装置を水平に設置、すなわち図15のZ
方向が対物レンズ1の焦点駆動方向と一致する場合、支
軸10に余分な負荷が作用する。そのため、対物レンズ
1の駆動時に発生する支軸10と軸受11の摩擦力が大
きくなり、支軸10の振動が対物レンズ駆動装置に伝わ
り、対物レンズ1の動特性を低下させることがある。前
記吸引機構を設けた対物レンズ駆動装置を水平に設置し
た場合にも、対物レンズ1の駆動を安定させ、同装置の
耐振性低下を防ぐことが第3の課題である。In order to solve the first and second problems, a magnetic attraction force acts on the lens holder 2 from the attraction mechanism by the permanent magnet provided from the outer fixed portion of the lens holder 2.
The objective lens driving device is installed horizontally, that is, Z in FIG.
When the direction matches the focus driving direction of the objective lens 1, an extra load acts on the support shaft 10. Therefore, the frictional force between the support shaft 10 and the bearing 11 generated when the objective lens 1 is driven increases, and the vibration of the support shaft 10 is transmitted to the objective lens driving device, which may deteriorate the dynamic characteristics of the objective lens 1. The third problem is to stabilize the driving of the objective lens 1 and prevent the vibration resistance of the device from being lowered even when the objective lens driving device provided with the suction mechanism is installed horizontally.
【0007】本発明の目的は、支軸と軸受の摩擦による
耐久性低下を防止した対物レンズ駆動装置を提供するも
のである。又、本発明の他の目的は、支軸と軸受の摩擦
による耐振性低下を防止した対物レンズ駆動装置を提供
するものである。又、本発明の他の目的は、吸引機構を
設けた対物レンズ駆動装置を水平に設置した場合にも、
対物レンズ1の駆動を安定させ、同装置の耐振性低下を
防止した対物レンズ駆動装置を提供するものである。An object of the present invention is to provide an objective lens driving device which prevents deterioration of durability due to friction between a support shaft and a bearing. Another object of the present invention is to provide an objective lens driving device which prevents deterioration of vibration resistance due to friction between a support shaft and a bearing. Another object of the present invention is also to provide an objective lens driving device provided with a suction mechanism in a horizontal position.
(EN) An objective lens driving device which stabilizes driving of the objective lens 1 and prevents deterioration of vibration resistance of the device.
【0008】[0008]
【課題を解決するための手段】前述した対物レンズ駆動
装置の第1の課題を解決するため、本発明では支軸に対
して対物レンズと反対側に位置するレンズホルダ上面の
垂直面に、支軸と平行に磁性材を設け、レンズホルダの
外側の固定部には前記磁性材と対向して永久磁石を取り
付けた構成とした磁気的吸引機構(以下、重力補償機構
と称する)を対物レンズ駆動装置の外部から設けた。In order to solve the above-mentioned first problem of the objective lens driving device, in the present invention, the support is provided on the vertical surface of the upper surface of the lens holder located on the side opposite to the objective lens with respect to the support shaft. A magnetic attraction mechanism (hereinafter referred to as a gravity compensating mechanism) in which a magnetic material is provided parallel to the axis and a permanent magnet is attached to the fixed portion outside the lens holder facing the magnetic material to drive the objective lens Provided from outside the device.
【0009】第2の課題を解決するため、永久磁石の極
とレンズホルダに取り付けた磁性材との距離を調整する
機構を前記重力補償機構に設けた。In order to solve the second problem, the gravity compensation mechanism is provided with a mechanism for adjusting the distance between the pole of the permanent magnet and the magnetic material attached to the lens holder.
【0010】第3の課題を解決するため、レンズホルダ
上面の垂直面に設けた磁性材に対して永久磁石の極を垂
直に向けた状態から水平に向けた状態に回転させる機構
を前記重力補償機構に設けた。In order to solve the third problem, the gravity compensating mechanism for rotating the permanent magnet pole from a vertical state to a horizontal state with respect to the magnetic material provided on the vertical surface of the upper surface of the lens holder. It was installed in the mechanism.
【0011】[0011]
【作用】本発明では、対物レンズ駆動装置にその外部か
ら磁性材と永久磁石で構成される重力補償機構を設けた
ので、対物レンズ駆動装置を垂直に設置した場合、磁性
材を設けたレンズホルダは磁気吸引力によって自重分だ
け持ち上げられ、支軸にはレンズホルダの自重が負荷と
して作用しない。In the present invention, since the objective lens driving device is provided with the gravity compensation mechanism composed of the magnetic material and the permanent magnet from the outside thereof, when the objective lens driving device is installed vertically, the lens holder provided with the magnetic material is provided. Is lifted by its own weight due to the magnetic attraction force, and the own weight of the lens holder does not act as a load on the support shaft.
【0012】また、前記重力補償機構に、永久磁石の極
とレンズホルダに取り付けた磁性材との距離を調整する
機構を設けると、レンズホルダに作用する磁気吸引力を
調整することができ、支軸と軸受は接触しない。If the gravity compensation mechanism is provided with a mechanism for adjusting the distance between the pole of the permanent magnet and the magnetic material attached to the lens holder, the magnetic attraction force acting on the lens holder can be adjusted. The shaft and bearing do not contact.
【0013】さらに、前記重力補償機構に永久磁石の回
転機構を設けると、重力補償機構を設けた対物レンズ駆
動装置を水平に設置した場合に、重力補償機構からレン
ズホルダに作用する余分な磁気吸引力を抑制することが
でき、支軸に作用する余分な負荷が減少する。Further, when the rotating mechanism of the permanent magnet is provided in the gravity compensating mechanism, when the objective lens driving device provided with the gravity compensating mechanism is installed horizontally, the extra magnetic attraction that acts on the lens holder from the gravity compensating mechanism. The force can be suppressed and the extra load acting on the support shaft is reduced.
【0014】[0014]
【実施例】図1は本発明の一実施例における対物レンズ
駆動装置の斜視図、図2は同対物レンズ駆動装置の磁気
回路斜視図である。◆初めに、この対物レンズ駆動装置
の構成を図1により説明する。1はレ−ザ光を集光する
対物レンズで、レンズホルダ2に保持されている。レン
ズホルダ2はその外側にある固定部材14a、14b、
14c、14dに取り付けられた弾性支持部材3a,3
b,3c,3dによって支持され、その駆動中心に設け
られた軸受11を介して支軸10に接している。◆レン
ズ可動部は対物レンズ1、レンズホルダ2、弾性支持部
材3a,3b,3c,3dから構成されている。◆対物
レンズ1は支軸10に対して左右対称にレンズホルダ2
の上面に取り付けられたフォ−カスコイル4a,4b、
支軸10に対して左右対称にレンズホルダ2の上面と垂
直な面に取り付けられたトラッキングコイル5a,5
b、およびその真下に設けられた図2の磁気回路によっ
て、焦点方向(Z方向)および回転方向(XY平面)の
動作が可能である。◆フォ−カスコイル4a(4b)は
内ヨ−ク8a(8b)を取り囲むように挿入され、トラ
ッキングコイル5a(5b)は内ヨ−ク8a(8b)と
外ヨ−ク7a(7b)の間に配置されている。1 is a perspective view of an objective lens driving device according to an embodiment of the present invention, and FIG. 2 is a magnetic circuit perspective view of the objective lens driving device. First, the structure of the objective lens driving device will be described with reference to FIG. Reference numeral 1 denotes an objective lens that collects laser light and is held by a lens holder 2. The lens holder 2 has fixing members 14a, 14b,
Elastic support members 3a, 3 attached to 14c, 14d
It is supported by b, 3c and 3d, and is in contact with the support shaft 10 via a bearing 11 provided at the drive center thereof. The lens moving part is composed of an objective lens 1, a lens holder 2, and elastic supporting members 3a, 3b, 3c and 3d. The objective lens 1 is a lens holder 2 which is symmetrical with respect to the spindle 10.
Focus coils 4a, 4b mounted on the upper surface of the
Tracking coils 5a, 5 mounted on the surface perpendicular to the upper surface of the lens holder 2 symmetrically with respect to the spindle 10.
b and the magnetic circuit of FIG. 2 provided thereunder, it is possible to operate in the focal direction (Z direction) and the rotational direction (XY plane). ◆ Focus coil 4a (4b) is inserted so as to surround inner yoke 8a (8b), and tracking coil 5a (5b) is placed between inner yoke 8a (8b) and outer yoke 7a (7b). It is located in.
【0015】図2に示すように、永久磁石6a(6b)
は外ヨ−ク7a(7b)に取り付けられ、その極を内ヨ
−ク8a(8b)側に向けてある。重力補償機構は、支
軸10に対して対物レンズ1と反対側に位置するレンズ
ホルダ2の上面の垂直面にわたって設けた磁性材12、
およびレンズホルダ2の外側のキャリッジケ−ス16か
ら磁性材12に対向するように取り付けられた永久磁石
13から構成されている。As shown in FIG. 2, the permanent magnet 6a (6b)
Is attached to the outer yoke 7a (7b) and its pole is directed to the inner yoke 8a (8b) side. The gravity compensation mechanism includes a magnetic material 12 provided over a vertical surface of the upper surface of the lens holder 2 located on the opposite side of the support shaft 10 from the objective lens 1.
And a permanent magnet 13 mounted so as to face the magnetic material 12 from a carriage case 16 outside the lens holder 2.
【0016】次に、この対物レンズ駆動装置の動作を説
明する。第2図の磁気回路において、外ヨ−ク7a(7
b)と内ヨ−ク8a(8b)のギャップ間で磁束がY方
向に流れ、このギャップ間に位置するフォ−カスコイル
4a,4bの部分にX方向の電流が流れるとフレミング
の法則によりZ方向に電磁力が発生し、対物レンズ1は
焦点方向(Z方向)に駆動する。一方、ギャップ間に位
置するトラッキングコイル5a,5bの部分にZ方向の
電流が流れると,5aの部分にはX方向の、5bの部分
には−X方向の電磁力が発生するので、対物レンズ1は
支軸10を中心として回転し、XY平面内を駆動する。Next, the operation of this objective lens driving device will be described. In the magnetic circuit of FIG. 2, the outer yoke 7a (7
b) and the inner yoke 8a (8b), a magnetic flux flows in the Y direction, and a current in the X direction flows in the portion of the focus coils 4a, 4b located between the gaps, according to Fleming's law. An electromagnetic force is generated in the objective lens 1, and the objective lens 1 is driven in the focal direction (Z direction). On the other hand, when a current in the Z direction flows through the portions of the tracking coils 5a and 5b located between the gaps, electromagnetic force is generated in the X direction in the portion 5a and in the −X direction in the portion 5b. 1 rotates about a spindle 10 and drives in the XY plane.
【0017】図3は同実施例における光磁気ディスク装
置の機構部斜視図、第4図は前記光磁気ディスク装置に
おけるレ−ザの光路を示した図である。同装置では、キ
ャリッジケ−ス17内に対物レンズ駆動装置とバイアス
磁石装置18を収める構成をとることによって装置の薄
型化を図っている。◆図3において、15はスピンドル
モ−タ16に固定され、高速で回転するディスク状情報
記録媒体である。キャリッジケ−ス駆動用コイル19
a、19bはベ−ス20に固定されたヨ−ク21a、2
1b、21c、21dおよび永久磁石22a、22bか
ら構成される磁気回路中に配置されている。FIG. 3 is a perspective view of a mechanism portion of the magneto-optical disk device in the embodiment, and FIG. 4 is a view showing an optical path of a laser in the magneto-optical disk device. In this apparatus, the objective lens driving device and the bias magnet device 18 are housed in the carriage case 17 to reduce the thickness of the device. In FIG. 3, reference numeral 15 is a disk-shaped information recording medium which is fixed to a spindle motor 16 and rotates at high speed. Carriage case drive coil 19
a and 19b are yokes 21a and 2 fixed to the base 20.
1b, 21c, 21d and permanent magnets 22a, 22b are arranged in a magnetic circuit.
【0018】以下、この装置の機能を説明する。ディス
ク状情報記録媒体15面に情報の記録または消去を行う
には、集光したレ−ザ光を前記ディスク状情報記録媒体
15面に照射するとともに、円筒状のバイアス磁石装置
18を回転駆動させることによって前記ディスク状情報
記録媒体15面上に磁界を与える。その際、対物レンズ
1をディスク状情報記録媒体15面上の目標位置まで移
動させるには、キャリッジケ−ス17をキャリッジケ−
ス駆動用コイル19a、19bによりガイドベアリング
23a、23b、23c、23dを介してガイドレ−ル
24a、24b上で走行させ、対物レンズ1をディスク
状情報記録媒体15の半径方向(Y方向)に粗動させ
る。さらにキャリッジケ−ス17内に設けられた前述の
対物レンズ駆動装置を駆動させて、対物レンズ1をディ
スク状情報記録媒体15の焦点方向(Z方向)に、支軸
10を中心として半径方向(Y方向)へ微動させる。The function of this device will be described below. In order to record or erase information on the surface of the disk-shaped information recording medium 15, the condensed laser light is applied to the surface of the disk-shaped information recording medium 15 and the cylindrical bias magnet device 18 is driven to rotate. As a result, a magnetic field is applied to the surface of the disc-shaped information recording medium 15. At that time, in order to move the objective lens 1 to the target position on the surface of the disc-shaped information recording medium 15, the carriage case 17 is moved to the carriage case.
Of the objective lens 1 in the radial direction (Y direction) of the disc-shaped information recording medium 15 by causing the objective lens 1 to travel on the guide rails 24a and 24b through the guide bearings 23a, 23b, 23c and 23d by the drive coils 19a and 19b. To move. Further, by driving the above-mentioned objective lens driving device provided in the carriage case 17, the objective lens 1 is moved in the focal direction (Z direction) of the disc-shaped information recording medium 15 in the radial direction (Y direction) about the support shaft 10. Direction).
【0019】次に、ディスク状情報記録媒体15面にレ
−ザ光が照射される経路を説明する。図4に示すよう
に、半導体レ−ザ26から出射したレ−ザ光は固定光学
系27、キャリッジケ−ス17側面に設けられたレ−ザ
通過孔25を通過した後、対物レンズ1の真下に位置
し、かつキャリッジケ−ス17底面に固定された立上げ
プリズム28に入射し、ディスク状情報記録媒体15面
と垂直な方向に曲げられ、対物レンズ1によって集光さ
れ、ディスク状情報記録媒体15上に照射される。Next, the path through which the surface of the disc-shaped information recording medium 15 is irradiated with laser light will be described. As shown in FIG. 4, the laser light emitted from the semiconductor laser 26 passes through the fixed optical system 27 and the laser passage hole 25 provided on the side surface of the carriage case 17 and then directly below the objective lens 1. Is incident on a rising prism 28 fixed to the bottom of the carriage case 17, is bent in a direction perpendicular to the surface of the disc-shaped information recording medium 15, is condensed by the objective lens 1, and is disc-shaped information recording medium. Irradiated on 15.
【0020】以上の光ヘッドの構成の中に本発明の対物
レンズ駆動装置を具備することになるが、以下に詳しく
その構造を記述する。本発明の第1の例は図1に示して
ある。レンズホルダ2の後方に支軸10と平行になるよ
うに配置した直径dmmの鉄の丸棒12を接着する。その
高さはレンズホルダ2の高さと一致させている。この中
心軸は対物レンズ1と支軸10の中心を結んだ線の延長
線上に位置しており、その中心付近でキャリッジケ−ス
16の固定側から永久磁石13の極を向けている。永久
磁石13と鉄の丸棒12の間に作用する磁気吸引力はレ
ンズホルダ2の自重をキャンセルする大きさである。The objective lens driving device of the present invention is provided in the above optical head configuration, and the structure thereof will be described in detail below. A first example of the invention is shown in FIG. An iron round bar 12 having a diameter of dmm is arranged behind the lens holder 2 so as to be parallel to the support shaft 10. The height is made to match the height of the lens holder 2. This central axis is located on the extension of the line connecting the centers of the objective lens 1 and the support shaft 10, and the pole of the permanent magnet 13 is directed from the fixed side of the carriage case 16 near the center. The magnetic attraction force acting between the permanent magnet 13 and the iron round bar 12 is of a magnitude that cancels the weight of the lens holder 2 itself.
【0021】図5及び図6は、図3に示した光磁気ディ
スク装置を垂直に設置,すなわち、同図のX方向を重力
方向に一致させ、かつ対物レンズ1が支軸10の真下に
位置するように設置し、対物レンズ1を焦点方向に駆動
させた場合の対物レンズ1の焦点方向の周波数応答特性
である。◆図5及び図6において、曲線(a)は振幅比
(dB)、曲線(b)は位相(deg)を表す。重力補
償機構を対物レンズ駆動装置外部から設けない場合は、
図5に示すように1次共振が発生する周波数f0(Hz)と
2次共振が発生する周波数f2(Hz)の間の周波数f1
(Hz)において大幅な位相遅れが生じている。この位
相遅れは、対物レンズ1の駆動にともない支軸10と軸
受11の間で摩擦力が大きくなり、支軸10を支持して
構造体の共振を励振し、その共振により対物レンズ1を
励振することが原因である。◆一方、重力補償機構を対
物レンズ駆動装置の外部から設けた場合は、図6に示す
ように周波数f1(Hz)で位相遅れが生じない。これ
は、支軸10と軸受11の間で摩擦力がほとんど発生し
なくなったためである。以上の結果から、重力補償機構
を対物レンズ駆動装置の外部から設けることにより、支
軸10と軸受11の間で発生する摩擦力が低減され、対
物レンズ1の焦点方向の周波数応答特性が大幅に改善さ
れることがわかる。5 and 6, the magneto-optical disk device shown in FIG. 3 is installed vertically, that is, the X direction in FIG. 3 is aligned with the direction of gravity, and the objective lens 1 is located directly below the support shaft 10. Is a frequency response characteristic in the focal direction of the objective lens 1 when the objective lens 1 is driven in the focal direction. 5 and 6, the curve (a) represents the amplitude ratio (dB) and the curve (b) represents the phase (deg). If the gravity compensation mechanism is not installed from outside the objective lens drive,
As shown in FIG. 5, the frequency f1 between the frequency f0 (Hz) at which the primary resonance occurs and the frequency f2 (Hz) at which the secondary resonance occurs.
(Hz) has a large phase delay. This phase delay causes a large frictional force between the support shaft 10 and the bearing 11 as the objective lens 1 is driven, and the support shaft 10 is supported to excite the resonance of the structure, and the resonance causes the objective lens 1 to be excited. Is the cause. On the other hand, when the gravity compensation mechanism is provided from the outside of the objective lens driving device, no phase delay occurs at the frequency f1 (Hz) as shown in FIG. This is because almost no frictional force is generated between the support shaft 10 and the bearing 11. From the above results, by providing the gravity compensation mechanism from the outside of the objective lens driving device, the frictional force generated between the support shaft 10 and the bearing 11 is reduced, and the frequency response characteristic of the objective lens 1 in the focal direction is significantly increased. It can be seen that it will be improved.
【0022】次に、重力補償機構のその他の実施例に関
して説明する。図3で示した光磁気ディスク装置を垂直
に設置にした場合、対物レンズ1の周波数応答特性をさ
らに向上させるためには、支軸10と軸受11が常に接
触しないように調整することが必要である。Next, another embodiment of the gravity compensation mechanism will be described. When the magneto-optical disk device shown in FIG. 3 is installed vertically, in order to further improve the frequency response characteristic of the objective lens 1, it is necessary to make adjustment so that the support shaft 10 and the bearing 11 do not always come into contact with each other. is there.
【0023】7図及び8図は、永久磁石13の極からレ
ンズホルダ2に設けた磁性材12までの距離距離lxの
微調整機構図で、図7は上面図を、図8は断面図を示し
ている。同図において、13は永久磁石、29はキャリ
ッジケ−ス16の壁に設けられた孔である。30はキャ
リッジケ−ス17内に設けた案内機構であり、この案内
機構30には永久磁石13が収まる深さの溝31が設け
られている。12はレンズホルダ2の上面の垂直面に取
り付けた磁性材であり、例えば鉄を使った丸棒を使用す
る。◆永久磁石13は、その極を磁性材12のZ方向の
中心に一致させ、磁性材12に垂直に取り付けてある。
距離lxの調整用部材32には斜線で示すねじが切って
あり、距離lxを調整するには、調整用部材32をキャ
リッジケ−ス17の外から案内機構30にそって回転操
作することによって、図の矢印で示した方向に移動させ
る。7 and 8 are fine adjustment mechanism diagrams of the distance lx from the pole of the permanent magnet 13 to the magnetic material 12 provided on the lens holder 2, FIG. 7 being a top view and FIG. 8 being a sectional view. Shows. In the figure, 13 is a permanent magnet, and 29 is a hole provided in the wall of the carriage case 16. Reference numeral 30 denotes a guide mechanism provided in the carriage case 17, and the guide mechanism 30 is provided with a groove 31 having a depth in which the permanent magnet 13 is accommodated. Reference numeral 12 is a magnetic material attached to the vertical surface of the upper surface of the lens holder 2, and for example, a round bar made of iron is used. The permanent magnet 13 has its pole aligned with the center of the magnetic material 12 in the Z direction, and is attached perpendicularly to the magnetic material 12.
The adjusting member 32 at the distance lx is threaded with diagonal lines, and the adjusting member 32 is rotated from the outside of the carriage case 17 along the guide mechanism 30 to adjust the distance lx. Move in the direction indicated by the arrow in the figure.
【0024】組立手順を以下に示す。例えばレ−ザドッ
プラ計あるいはレ−ザ変位計とFFTからなる測定系で
対物レンズ1の周波数特性をリアルタイムで観測しなが
ら、周波数応答特性が最もよくなるように距離lxを調
整する。そのあと、永久磁石13の上面に取り付けた非
磁性材のプラスチック板33を案内機構30に接着する
ことによって永久磁石13を固定する。The assembly procedure is shown below. For example, while observing the frequency characteristic of the objective lens 1 in real time with a measurement system including a laser Doppler meter or a laser displacement meter and an FFT, the distance lx is adjusted so that the frequency response characteristic becomes the best. Then, the permanent magnet 13 is fixed by adhering the nonmagnetic plastic plate 33 attached to the upper surface of the permanent magnet 13 to the guide mechanism 30.
【0025】図9は図8の点線で囲まれた部分を拡大し
た図であるが、磁性材12を上面から見てコの字型にす
れば、永久磁石13から出る磁束はほとんど磁性材12
に吸収されるため、図7の場合に比べて、永久磁石13
から前記磁気回路へ漏れ出る磁束がより少なくなり、対
物レンズ1の周波数応答特性をさらに向上させることが
できる。FIG. 9 is an enlarged view of the portion surrounded by the dotted line in FIG. 8. However, if the magnetic material 12 is formed into a U-shape when viewed from above, most of the magnetic flux emitted from the permanent magnet 13 is the magnetic material 12.
Is absorbed by the permanent magnet 13 compared to the case of FIG.
The magnetic flux leaking from the magnetic field to the magnetic circuit is further reduced, and the frequency response characteristic of the objective lens 1 can be further improved.
【0026】次に、第3の課題に対する実施例を説明す
る。図3に示した光磁気ディスク装置を水平に設置した
場合には、支軸10にはレンズホルダ2の自重による負
荷は作用しないが、重力補償機構は永久磁石から成り立
っており、それから漏れ出る磁界はレンズホルダ2に作
用するため、支軸10には−X方向に余分な負荷が作用
する。したがって、支軸10と軸受11の間で摩擦力が
発生し、支軸10は振動する。その振動が対物レンズ1
に伝わり、対物レンズ1は共振を起こしたりする。Next, an embodiment for the third problem will be described. When the magneto-optical disk device shown in FIG. 3 is installed horizontally, the load due to the own weight of the lens holder 2 does not act on the support shaft 10, but the gravity compensation mechanism is composed of a permanent magnet, and the magnetic field leaking from it is present. Acts on the lens holder 2, so that an extra load acts on the support shaft 10 in the −X direction. Therefore, a frictional force is generated between the support shaft 10 and the bearing 11, and the support shaft 10 vibrates. The vibration is the objective lens 1
And the objective lens 1 resonates.
【0027】図10は、重力補償機構からレンズホルダ
2に作用する磁気吸引力を抑制する機構を示す側面図で
ある。34は永久磁石13の回転停止位置決め用ホルダ
であり、35は、回転した永久磁石13を状態(B)に
保持するための磁性材である。36は永久磁石13の回
転中心であり、永久磁石13の外側に設ける。図3に示
した光磁気ディスク装置を垂直に設置した場合には、永
久磁石13の極が、レンズホルダ2に取り付けた磁性材
12に対して垂直に向く(状態(A))ように、同装置
を水平に設置した場合には、永久磁石13の極がレンズ
ホルダ2に取り付けた磁性材12に対して水平に向く
(状態(B))ように永久磁石13を90度回転させ
る。◆永久磁石13を状態(A)から状態(B)、ある
いは状態(B)から状態(A)へ切り換えるには、例え
ば回転停止位置決め用ホルダ34の外部から永久磁石1
3に磁界を加える。ここでは、永久磁石13の回転中心
36を永久磁石13の外側に設けたことにより、状態
(B)において磁性材12と永久磁石13の極を離すこ
とができ、レンズホルダ2に作用する磁気吸引力を大幅
に小さくすることができる。この回転機構を設けると、
図3に示した光磁気ディスク装置を水平に設置した場合
でも、対物レンズ1の周波数応答特性は乱れない。FIG. 10 is a side view showing a mechanism for suppressing the magnetic attraction force acting on the lens holder 2 from the gravity compensation mechanism. Reference numeral 34 is a holder for positioning the rotation stop of the permanent magnet 13, and reference numeral 35 is a magnetic material for holding the rotated permanent magnet 13 in the state (B). 36 is the center of rotation of the permanent magnet 13 and is provided outside the permanent magnet 13. When the magneto-optical disk device shown in FIG. 3 is installed vertically, the poles of the permanent magnets 13 are oriented vertically with respect to the magnetic material 12 attached to the lens holder 2 (state (A)). When the apparatus is installed horizontally, the permanent magnet 13 is rotated 90 degrees so that the poles of the permanent magnet 13 are oriented horizontally with respect to the magnetic material 12 attached to the lens holder 2 (state (B)). In order to switch the permanent magnet 13 from the state (A) to the state (B) or from the state (B) to the state (A), for example, the permanent magnet 1 is provided from the outside of the rotation stop positioning holder 34.
Apply magnetic field to 3. Here, since the rotation center 36 of the permanent magnet 13 is provided outside the permanent magnet 13, the poles of the magnetic material 12 and the permanent magnet 13 can be separated in the state (B), and the magnetic attraction acting on the lens holder 2 can be obtained. The force can be greatly reduced. With this rotation mechanism,
Even when the magneto-optical disk device shown in FIG. 3 is installed horizontally, the frequency response characteristic of the objective lens 1 is not disturbed.
【0028】なお、図10では、永久磁石13を状態
(A)から状態(B)へ切り替えるため、永久磁石13
を上方に90度回転させたが、永久磁石13を下方に9
0度回転させてもよい。さらに、図11に示すように永
久磁石13の後側全面に磁性材37を配置すると、永久
磁石13が状態(B)にあるとき、永久磁石13から出
る磁束は磁性材37に吸収されるので、第10図の場合
に比べて、レンズホルダ2に作用する磁気吸引力がより
少なくなる。したがって、支軸10に作用する負荷がよ
り少なくなり、対物レンズ1の周波数応答特性をさらに
向上させることができる。In FIG. 10, since the permanent magnet 13 is switched from the state (A) to the state (B), the permanent magnet 13
Was rotated 90 degrees upward, but the permanent magnet 13 was moved downwards by 9 degrees.
You may rotate 0 degree. Further, when the magnetic material 37 is arranged on the entire rear surface of the permanent magnet 13 as shown in FIG. 11, when the permanent magnet 13 is in the state (B), the magnetic flux emitted from the permanent magnet 13 is absorbed by the magnetic material 37. As compared with the case of FIG. 10, the magnetic attraction force acting on the lens holder 2 becomes smaller. Therefore, the load acting on the support shaft 10 is further reduced, and the frequency response characteristic of the objective lens 1 can be further improved.
【0029】図12に別の重力補償機構の実施例を示
す。ここでは鉄心38、コイル39、交流電源43で電
磁石を構成する。鉄心38の中心はレンズホルダ2に取
り付けた磁性材12の中心に一致させる。40a、40
bは電気接点、42a、42bは導電性プレ−トであ
り、40aと42a、40bと42bでマイクロスイッ
チを構成する。41a、41bはそれぞれ導電性プレ−
ト42a、42bを支持し、かつキャリッジケ−ス17
底で+X、−X方向へ導電性プレ−ト42a、42bの
位置決めを行なうための位置決め用部材である。FIG. 12 shows another embodiment of the gravity compensation mechanism. Here, the iron core 38, the coil 39, and the AC power supply 43 form an electromagnet. The center of the iron core 38 is aligned with the center of the magnetic material 12 attached to the lens holder 2. 40a, 40
b is an electrical contact, 42a and 42b are conductive plates, and 40a and 42a, 40b and 42b constitute a microswitch. 41a and 41b are conductive plates, respectively.
Carriage cases 17 for supporting the carriages 42a and 42b.
It is a positioning member for positioning the conductive plates 42a, 42b in the + X and -X directions at the bottom.
【0030】図12において、支軸10と軸受11の位
置関係を調整する手順を以下に説明する。まず、装置を
水平に設置した状態で接点40aと導電性プレ−ト42
aを接触させた後、装置を垂直に、すなわち図のX方向
と重力方向が一致するように設置する。このとき、導電
性プレ−ト42aには接点40aを介してレンズホルダ
2の自重が接触力として作用している。◆次に、位置決
め用部材41aをキャリッジケ−ス17上で+X方向に
移動させていくと、導電性プレ−ト42aへの接触力が
減少し、ついには0になり、接点40aと導電性プレ−
ト42aの導通が切れる。このとき、支軸10の上部に
は軸受11を介して、レンズホルダ2の自重が負荷とな
って作用している。以上のようにして、位置決め部材4
1aを位置決めしたあと、これをキャリッジケ−ス17
の底に接着固定する。◆次に、接点40bと導電性プレ
−ト42bを接触させておき、コイル39に通電して、
レンズホルダ2に取付けた磁性材12と電磁石の間に吸
引力を作用させ、レンズホルダ2を−X方向に持ち上げ
る。位置決め用部材41bをキャリッジケ−ス17上で
−X方向に移動させていくと、導電性プレ−ト42bへ
の接触力が減少し、ついには零になり、接点40bと導
電性プレ−ト42bの導通が切れる。このとき、支軸1
0の下部には、軸受11を介して負荷が作用している。
◆以上のようにして、位置決め部材41bを位置決めし
たあと、これをキャリッジケ−ス17の底に接着固定す
る。以上の調整を基にして、接点40aと導電性プレ−
ト42a、接点40bと導電性プレ−ト42bが接触し
ないようにコイル39に流す電流値を調整すると、支軸
10と軸受11が接触しないようにすることができる。In FIG. 12, the procedure for adjusting the positional relationship between the support shaft 10 and the bearing 11 will be described below. First, the contact 40a and the conductive plate 42 are placed in a state where the device is installed horizontally.
After contacting a, the device is installed vertically, that is, so that the X direction in the figure and the gravity direction match. At this time, the weight of the lens holder 2 acts as a contact force on the conductive plate 42a via the contact 40a. Next, when the positioning member 41a is moved in the + X direction on the carriage case 17, the contact force to the conductive plate 42a decreases and finally becomes 0. −
42a is cut off. At this time, the weight of the lens holder 2 acts as a load on the upper portion of the support shaft 10 via the bearing 11. As described above, the positioning member 4
After positioning 1a, attach it to the carriage case 17
Adhesively fixed to the bottom of. ◆ Next, the contact 40b and the conductive plate 42b are kept in contact with each other, and the coil 39 is energized,
An attractive force is applied between the magnetic material 12 attached to the lens holder 2 and the electromagnet to lift the lens holder 2 in the −X direction. When the positioning member 41b is moved in the -X direction on the carriage case 17, the contact force to the conductive plate 42b decreases and finally becomes zero, and the contact 40b and the conductive plate 42b are reached. Is cut off. At this time, spindle 1
A load acts on the lower part of 0 via the bearing 11.
After positioning the positioning member 41b as described above, it is adhesively fixed to the bottom of the carriage case 17. Based on the above adjustment, the contact 40a and the conductive plate
The spindle 10 and the bearing 11 can be prevented from contacting each other by adjusting the value of the current flowing through the coil 39 so that the conductive plate 42b and the contact 42a and the contact 40b do not contact each other.
【0031】以上は組立での調整手順であるが、対物レ
ンズ1の駆動時には接点40aと導電性プレ−ト42
a、接点40bと導電性プレ−ト42bによって、支軸
10と軸受11の接触を検出し、支軸10と軸受11が
接触しないようにコイル39に流す電流を制御する。The above is the adjustment procedure in the assembly. When the objective lens 1 is driven, the contact 40a and the conductive plate 42 are connected.
The contact between the support shaft 10 and the bearing 11 is detected by a, the contact 40b and the conductive plate 42b, and the current flowing through the coil 39 is controlled so that the support shaft 10 and the bearing 11 do not contact each other.
【0032】図13及び図14にはさらに別の重力補償
機構の実施例であり、図13は上面図、図14は側面図
を示している。レンズホルダ2はその外側の固定部材4
4a、44b、44cから3本の弾性支持部材45a、
45b、45cによって支持されている。46は弾性支
持部材40c移動用部材で、これには斜線部で示すネジ
が切ってある。46をキャリッジケ−ス17の外側から
回転操作することによって、弾性支持部材45cをホル
ダ47a、47bに沿って図の矢印の方向に移動させ
る。◆装置を垂直に設置、すなわち図の+X方向と重力
方向を一致させた場合には、弾性支持部材45cを図の
−X方向に、水平に設置した場合には45cを図の+X
方向に移動させる。弾性支持部材45cは、例えばレ−
ザドップラ計あるいはレ−ザ変位計とFFTからなる測
定系で対物レンズ1の周波数特性をリアルタイムで観測
しながら、周波数応答特性が最もよくなるように調整す
る。その後、固定部材44cの上面に取り付けた非磁性
材のプラスチック板48をホルダ44a、44bに固定
する。この弾性支持部材移動機構によって支軸10と軸
受11が接触しない状態に調整することが可能であり、
対物レンズ1の周波数応答特性が向上する。13 and 14 show another embodiment of the gravity compensation mechanism. FIG. 13 is a top view and FIG. 14 is a side view. The lens holder 2 has a fixing member 4 on the outside thereof.
4a, 44b, 44c to three elastic support members 45a,
It is supported by 45b and 45c. Reference numeral 46 denotes a member for moving the elastic support member 40c, which has a thread shown by a hatched portion. By rotating 46 from the outside of the carriage case 17, the elastic support member 45c is moved along the holders 47a and 47b in the direction of the arrow in the figure. ◆ When the device is installed vertically, that is, when the + X direction in the figure and the gravity direction are matched, the elastic support member 45c is in the -X direction in the figure, and when installed horizontally, 45c is + X in the figure.
Move in the direction. The elastic support member 45c is, for example, a rathe.
While observing the frequency characteristic of the objective lens 1 in real time with a measurement system including a Doppler meter or a laser displacement meter and an FFT, the frequency response characteristic is adjusted to be the best. After that, the nonmagnetic plastic plate 48 attached to the upper surface of the fixing member 44c is fixed to the holders 44a and 44b. With this elastic support member moving mechanism, it is possible to adjust the support shaft 10 and the bearing 11 so as not to contact each other.
The frequency response characteristic of the objective lens 1 is improved.
【0033】[0033]
【発明の効果】以上のように本発明によれば、光ディス
ク装置を垂直に設置した場合に、対物レンズ駆動装置の
支軸と軸受の間で発生する摩擦力が減少するため、対物
レンズ駆動装置の耐久性が向上するとともに、耐振性低
下を防ぐことができる。As described above, according to the present invention, when the optical disk device is installed vertically, the frictional force generated between the support shaft of the objective lens driving device and the bearing is reduced. It is possible to prevent the deterioration of the vibration resistance while improving the durability of the.
【0034】[0034]
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例である対物レンズ駆動装置の
斜視図。FIG. 1 is a perspective view of an objective lens driving device that is an embodiment of the present invention.
【図2】図1における磁気回路の斜視図。FIG. 2 is a perspective view of the magnetic circuit in FIG.
【図3】図1に示すにおける対物レンズ駆動装置を備え
た光磁気ディスク装置の機構部の斜視図。FIG. 3 is a perspective view of a mechanism portion of a magneto-optical disk device including the objective lens driving device shown in FIG.
【図4】図3におけるレ−ザ光の光路を示す図。FIG. 4 is a diagram showing an optical path of laser light in FIG.
【図5】図3に示す光磁気ディスク装置を垂直に設置し
重力補償機構を設けない場合における対物レンズの焦点
方向応答特性図。5 is a diagram showing the response characteristic in the focal direction of the objective lens when the magneto-optical disk device shown in FIG. 3 is installed vertically and the gravity compensation mechanism is not provided.
【図6】図3に示す光磁気ディスク装置を垂直に設置し
重力補償機構を設けた場合における対物レンズの焦点方
向応答特性図。6 is a focal direction response characteristic diagram of an objective lens when the magneto-optical disk device shown in FIG. 3 is installed vertically and a gravity compensation mechanism is provided.
【図7】本発明における距離lxの調整機構の一例の構成
を示す上面図。FIG. 7 is a top view showing a configuration of an example of a distance lx adjusting mechanism according to the present invention.
【図8】図7の側面図。FIG. 8 is a side view of FIG. 7.
【図9】図8におけるレンズホルダに取り付ける磁性材
の形状図。9 is a shape diagram of a magnetic material attached to the lens holder in FIG.
【図10】本発明における永久磁石の回転機構の側面
図。FIG. 10 is a side view of a permanent magnet rotating mechanism according to the present invention.
【図11】本発明における永久磁石の回転機構の別の実
施例を示す側面図。FIG. 11 is a side view showing another embodiment of the permanent magnet rotating mechanism according to the present invention.
【図12】本発明における重力補償機構の別の実施例を
示す側面図。FIG. 12 is a side view showing another embodiment of the gravity compensation mechanism in the present invention.
【図13】本発明におけるさらに別の重力補償機構の実
施例を示す上面図。FIG. 13 is a top view showing another embodiment of the gravity compensation mechanism of the present invention.
【図14】本発明におけるさらに別の重力補償機構の実
施例を示す側面図。FIG. 14 is a side view showing an embodiment of still another gravity compensation mechanism in the present invention.
【図15】従来の対物レンズ駆動装置の一例の斜視図。FIG. 15 is a perspective view of an example of a conventional objective lens driving device.
1−対物レンズ、2−レンズホルダ、3−弾性支持部
材、4−フォ−カスコイル、5−トラッキングコイル、
6−永久磁石、7−外ヨ−ク、8−内ヨ−ク、9−磁気
回路固定部材、10−支軸、11−軸受、12−磁性
材、13−永久磁石、14−弾性支持部材固定部、15
−ディスク状情報記録媒体、16−スピンドルモ−タ、
17−キャリッジケ−ス、18−バイアス磁石、19−
キャリッジケ−ス駆動用コイル、20−ベ−ス、21−
ヨ−ク、22−永久磁石、23−ガイドベアリング、2
4−ガイドレ−ル、25−レ−ザ通過孔、26−半導体
レ−ザ、27−固定光学系、28−立上げプリズム、2
9−キャリッジケ−スの壁に設けられた孔、30−永久
磁石の案内機構、31−案内機構に設けられた溝、32
−距離調整用部材、33−非磁性材のプラスチック板、
34−永久磁石の回転停止位置決め用ホルダ、35−永
久磁石を保持する磁性材、36−永久磁石の回転中心、
37−磁性材、38−鉄心、39−コイル、40−電気
接点、41−導電性プレ−ト位置決め用部材、42−導
電性プレ−ト、43−交流電源、44−弾性支持部材4
5の固定部材、45−弾性支持部材、46−弾性支持部
材40c移動用部材、47−固定部材44cを保持する
ホルダ、48−固定部材44をホルダ47に固定する非
磁性材プラスチック板。1-objective lens, 2-lens holder, 3-elastic support member, 4-focus coil, 5-tracking coil,
6-permanent magnet, 7-outer yoke, 8-inner yoke, 9-magnetic circuit fixing member, 10-support shaft, 11-bearing, 12-magnetic material, 13-permanent magnet, 14-elastic support member Fixed part, 15
-Disc-shaped information recording medium, 16-spindle motor,
17-carriage case, 18-bias magnet, 19-
Carriage case drive coil, 20-base, 21-
Yoke, 22-Permanent magnet, 23-Guide bearing, 2
4-guide rail, 25-laser passage hole, 26-semiconductor laser, 27-fixed optical system, 28-rise prism, 2
9-holes provided in the wall of the carriage case, 30-permanent magnet guide mechanism, 31-grooves provided in the guide mechanism, 32
-Distance adjusting member, 33-non-magnetic plastic plate,
34-Holder for positioning rotation stop of permanent magnet, 35-Magnetic material holding permanent magnet, 36-Center of rotation of permanent magnet,
37-magnetic material, 38-iron core, 39-coil, 40-electric contact, 41-conductive plate positioning member, 42-conductive plate, 43-AC power supply, 44-elastic support member 4
5, fixing member 45, elastic support member 46, elastic support member 40c moving member, 47-holder for holding fixing member 44c, 48-nonmagnetic plastic plate for fixing fixing member 44 to holder 47.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 正道 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 市川 厚司 神奈川県小田原市国府津2880番地 株式会 社日立製作所ストレージシステム事業部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masamichi Ito, 502 Jinritsucho, Tsuchiura-shi, Ibaraki, Hiritsu Seisakusho Co., Ltd.Mechanical Research Laboratory (72) Inventor, Atsushi Ichikawa 2880, Kozu, Odawara-shi, Kanagawa Hitachi Storage Co., Ltd. System Division
Claims (5)
下および回転駆動が可能であるように装着され対物レン
ズを保持するレンズホルダ、前記レンズホルダをその外
側の固定部材から弾性的に支持する少なくとも2本以上
の弾性支持部材、前記レンズホルダと前記弾性支持部材
から構成されるレンズ可動部を上下および回転駆動させ
るため前記レンズホルダ上面に前記支軸に対して左右対
称に設けられたフォ−カスコイル、前記レンズホルダ上
面の垂直面に前記支軸に対して左右対称に設けられたト
ラッキングコイル、および永久磁石とヨ−クから構成さ
れ前記レンズ可動部の下に設けられた磁気回路を備えた
対物レンズ駆動装置において、前記対物レンズを重力方
向に一致させ、かつ前記対物レンズが前記支軸の下側に
来るように設置した場合に、前記レンズホルダ側には磁
性材を、前記レンズ可動部の外側固定部には永久磁石も
しくは電磁石を前記磁性材と対向するように取り付けた
構成を特徴とする対物レンズ駆動装置。1. A base provided with a support shaft, a lens holder mounted so as to be vertically and rotationally movable with respect to the support shaft to hold an objective lens, and the lens holder from a fixing member on the outside thereof. At least two elastic supporting members that elastically support the lens holder and the lens movable portion composed of the elastic supporting member are vertically and rotationally driven on the upper surface of the lens holder symmetrically with respect to the support shaft. A focus coil provided, a tracking coil provided symmetrically with respect to the support shaft on a vertical surface of the upper surface of the lens holder, and a permanent magnet and a yoke provided under the lens movable portion. In an objective lens driving device equipped with a magnetic circuit, the objective lens is installed so that it coincides with the direction of gravity and the objective lens is located below the support shaft. When the magnetic material on the lens holder side, an objective lens driving device comprising a structure fitted with a permanent magnet or an electromagnet so as to face the magnetic material to the outer fixed part of the lens movable portion.
調整する機構を備えたことを特徴とする請求項1記載の
対物レンズ駆動装置。2. The objective lens driving device according to claim 1, further comprising a mechanism for adjusting a distance between the pole of the permanent magnet and the magnetic material.
水平かつ垂直に向ける永久磁石の回転機構を備えたこと
を特徴とする請求項1記載の対物レンズ駆動装置。3. The pole of the permanent magnet with respect to the magnetic material,
2. The objective lens driving device according to claim 1, further comprising a permanent magnet rotating mechanism that is oriented horizontally and vertically.
ズ可動部の外側固定部に電磁石を前記磁性材と対向する
ように取り付け、前記支軸と前記軸受との接触を検出で
きるセンサを備えたことを特徴とする請求項1記載の対
物レンズ駆動装置。4. A magnetic material is attached to the lens holder side, and an electromagnet is attached to an outer fixed portion of the lens movable portion so as to face the magnetic material, and a sensor capable of detecting contact between the support shaft and the bearing is provided. The objective lens driving device according to claim 1, wherein
構を備えたことを特徴とする請求項1記載の対物レンズ
駆動装置。5. The objective lens driving device according to claim 1, further comprising a mechanism capable of moving the elastic supporting member in an axial direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15854793A JPH0714200A (en) | 1993-06-29 | 1993-06-29 | Objective lens driving device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15854793A JPH0714200A (en) | 1993-06-29 | 1993-06-29 | Objective lens driving device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0714200A true JPH0714200A (en) | 1995-01-17 |
Family
ID=15674098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15854793A Pending JPH0714200A (en) | 1993-06-29 | 1993-06-29 | Objective lens driving device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0714200A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583547B1 (en) * | 2000-03-07 | 2003-06-24 | Hitachi, Ltd. | Cathode ray tube with UPF type electron gun having particular electrode structure and spacing |
-
1993
- 1993-06-29 JP JP15854793A patent/JPH0714200A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6583547B1 (en) * | 2000-03-07 | 2003-06-24 | Hitachi, Ltd. | Cathode ray tube with UPF type electron gun having particular electrode structure and spacing |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4613962A (en) | Tracking device with linear motor | |
US6295255B1 (en) | Optical pickup having a tilt mechanism to adjust an optical axis of an incident light beam | |
JPH0750023A (en) | Objective-lens driving device | |
US5182738A (en) | Objective lens actuator using a balance weight therein | |
US5050158A (en) | Magnetic clamp for a disk medium | |
KR20010094007A (en) | Optical pick up actuator | |
EP1394784B1 (en) | Objective lens driving apparatus used with an optical pickup | |
JPH0714200A (en) | Objective lens driving device | |
US5220544A (en) | Magnetic optical disk player having improved magnetic field orientations | |
KR20050020620A (en) | Optical pick-up and disc drive apparatus | |
JPH11306566A (en) | Optical pickup actuator of flux concentration type magnetization system | |
US6400674B1 (en) | Spindle motor holding structure for an optical disk drive | |
US7340756B2 (en) | Optical pickup actuator having flux shielding magnet, optical pickup employing the optical pickup actuator and optical disc drive apparatus employing the optical pickup | |
KR100438276B1 (en) | Optical pick-up actuator for radial tilting drive | |
JPS6076039A (en) | Objective lens driver | |
KR100636123B1 (en) | Actuator for optical pickup | |
KR20040042255A (en) | An optical pickup actuator and an optical disk drive using the same | |
EP0427441A2 (en) | Objective lens actuator | |
JP2720557B2 (en) | Objective lens drive | |
JPH03113757A (en) | Magneto-optical disk player | |
JP2009146461A (en) | Objective lens driving apparatus | |
JP2776672B2 (en) | Separate optical information recording / reproducing device | |
KR930009684B1 (en) | Optical head | |
JP3105628B2 (en) | Optical pickup actuator | |
JP2000276754A (en) | Objective lens driving device |