JPH0714086B2 - Excimer laser device - Google Patents

Excimer laser device

Info

Publication number
JPH0714086B2
JPH0714086B2 JP6458087A JP6458087A JPH0714086B2 JP H0714086 B2 JPH0714086 B2 JP H0714086B2 JP 6458087 A JP6458087 A JP 6458087A JP 6458087 A JP6458087 A JP 6458087A JP H0714086 B2 JPH0714086 B2 JP H0714086B2
Authority
JP
Japan
Prior art keywords
excimer laser
optical element
laser device
laser
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6458087A
Other languages
Japanese (ja)
Other versions
JPS63229880A (en
Inventor
拓弘 小野
直也 堀内
俊 岩渕
威男 宮田
令而 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6458087A priority Critical patent/JPH0714086B2/en
Priority to DE3854236T priority patent/DE3854236T2/en
Priority to DE3884832T priority patent/DE3884832T2/en
Priority to EP92105632A priority patent/EP0495535B1/en
Priority to EP88104387A priority patent/EP0283044B1/en
Priority to US07/169,784 priority patent/US5042047A/en
Publication of JPS63229880A publication Critical patent/JPS63229880A/en
Publication of JPH0714086B2 publication Critical patent/JPH0714086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • H01S3/09713Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited with auxiliary ionisation, e.g. double discharge excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、エキシマレーザ装置に関し、より詳細には、
半導体プロセス等の分野で応用展開が期待される希ガス
ハライドエキシマレーザにおいて、特に低ガス圧時に効
果の大きい利用効率の良い出力ビーム断面を得るエキシ
マレーザ装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an excimer laser device, and more specifically,
The present invention relates to an excimer laser device that can obtain an output beam cross section that is highly effective in a rare gas halide excimer laser, which is expected to be applied and applied in the field of semiconductor processes, etc., particularly when the gas pressure is low.

従来の技術 希ガスハライド放電励起エキシマレーザ(以後、エキシ
マレーザと言う)は、紫外線域で高出力、高繰返しのレ
ーザ発振をすることができるため、各種の研究用光源と
してはもちろんのこと、半導体プロセス、化学工業、医
療、エネルギー分野での応用展開が期待されている。
2. Description of the Related Art A rare gas halide discharge-excited excimer laser (hereinafter referred to as an excimer laser) is capable of performing high-power and high-repetition laser oscillation in the ultraviolet region, and of course it can be used not only as a light source for research, but also as a semiconductor. Applications are expected to be expanded in the fields of process, chemical industry, medicine and energy.

エキシマレーザとしては、代表される種類として、発振
波長、193nmのArF、248nmのKrF、308nmのXeClのエキシ
マレーザが知られている。いずれも、希ガスとハロゲン
ガスからなる利得媒体をガス圧力容器(放電室)に封入
し、放電励起することによりレーザ発振を得る。
As a typical type of excimer laser, an excimer laser having an oscillation wavelength, ArF of 193 nm, KrF of 248 nm, and XeCl of 308 nm is known. In both cases, a gain medium composed of a rare gas and a halogen gas is sealed in a gas pressure vessel (discharge chamber) and discharge excitation is performed to obtain laser oscillation.

第3図は、従来のエキシマレーザ装置の本発明に係る部
分の断面を示している。レーザ発振に必要な電源、電気
回路等は図示していない。第3図に於いて、利得媒質1
は、放電室2の中に封入されている。放電室2の中に
は、光軸7の方向に延びる2つの主電極3,4が配置され
ている。図示されていないが、コンデンサーに蓄えられ
たエネルギーを充放電できるよう主電極3,4はそれぞれ
電気的に結線されている。主電極3,4間に高圧パルスが
印加される直前に、予備電離手段5から、UV光が照射さ
れ、主電極3,4に挾まれたギャップ間があらかじめイオ
ン化される。主電極3,4間のパルス印加電圧が、利得媒
体1のブレークダウンボルテージに達すると、主電極3,
4間にグロー放電(放電路)6が生じ、利得媒体1が励
起され、光軸7の方向に対向して配置された部分透過鏡
10と図示していない全反射鏡間でレーザ発振が起きる構
造となっている。
FIG. 3 shows a cross section of a portion of a conventional excimer laser device according to the present invention. The power supply, electric circuit, etc. required for laser oscillation are not shown. In FIG. 3, gain medium 1
Are enclosed in the discharge chamber 2. In the discharge chamber 2, two main electrodes 3 and 4 extending in the direction of the optical axis 7 are arranged. Although not shown, the main electrodes 3 and 4 are electrically connected to each other so that the energy stored in the capacitor can be charged and discharged. Immediately before the high-voltage pulse is applied between the main electrodes 3 and 4, UV light is irradiated from the preionization means 5 and the gap between the main electrodes 3 and 4 is ionized in advance. When the pulse voltage applied between the main electrodes 3, 4 reaches the breakdown voltage of the gain medium 1, the main electrodes 3, 4
A glow discharge (discharge path) 6 is generated between the four, the gain medium 1 is excited, and the partial transmission mirrors are arranged facing each other in the direction of the optical axis 7.
Laser oscillation occurs between 10 and a total reflection mirror (not shown).

この時、封入される利得媒体のガス圧力が高い程、単一
パルス当りのレーザ出力エネルギーが大きい事は良く知
られており、2〜4気圧での動作が一般的である。
At this time, it is well known that the higher the gas pressure of the enclosed gain medium, the larger the laser output energy per single pulse, and the operation at 2 to 4 atmospheric pressure is general.

一方、光軸方向に延びる2つの主電極の間隔(放電路の
高さH)は、その最適値が封入ガス圧(P)に依存し、
経験的に次のような関係となっている。
On the other hand, the optimum value of the distance between the two main electrodes extending in the optical axis direction (height H of the discharge path) depends on the enclosed gas pressure (P),
Empirically, the relationship is as follows.

H(高さ)・P(圧力)6kg/cm したがって、封入圧力が高い程、電極間隔が狭くなり、
低ガス圧になるに従って電極間隔を広く設定する事が好
ましい。化学工業あるいは、エネルギー分野での応用で
は、単一パルス当りの出力エネルギーを大きくする事が
要望されるため、3気圧以上の高ガス圧動作が適し、こ
の場合の一般的出力ビーム断面はH≒20mm、W≒15mm程
度となる。
H (height) / P (pressure) 6kg / cm Therefore, the higher the filling pressure, the narrower the electrode spacing,
It is preferable to set the electrode interval wider as the gas pressure becomes lower. In the chemical industry or in the field of energy, it is desired to increase the output energy per single pulse, so high gas pressure operation of 3 atm or more is suitable. In this case, the general output beam cross section is H ≒ 20mm, W≈15mm.

半導体プロセスに於けるフォトリソグラフィー用光源と
しては、単一パルスに於ける出力エネルギよりむしろ、
高繰返し化による平均出力増大化が望まれる。何故なら
ば、フォトレジスト等感光性材料の露光には、余り大き
な単一パルスエネルギーは必要としない。例えばPMMAの
ような材料に於いても、300mJ/cm2を越える単一パルス
エネルギを照射するとアブレーションを生じ、かえって
問題となる。従って、ひとつのチップを露光するには、
小さなパルスエネルギで複数回照射を行なう方法が好ま
しい。フォトリソグラフィー光源として要求されるとこ
ろは、少なくとも200Hz以上の高繰返し性能を有するこ
とである。
As a light source for photolithography in semiconductor processes, rather than output energy in a single pulse,
It is desired to increase the average output by increasing the repetition rate. Because exposure of a photosensitive material such as photoresist does not require too much single pulse energy. For example, even in a material such as PMMA, irradiation with a single pulse energy exceeding 300 m J / cm 2 causes ablation, which is rather a problem. Therefore, to expose one chip,
A method in which irradiation is performed multiple times with a small pulse energy is preferable. What is required as a photolithography light source is to have a high repetition performance of at least 200 Hz or higher.

発明が解決しようとする問題点 高繰返し化実現のためには、2つの主電極間を通過する
利得媒体の流速が速い事が条件となる。例えば、主電極
間に形成される前記の放電路の幅をW(m)、繰返し周
波数をN(1/sec)とし、主放電後に、放電路内にある
レーザガスが次の放電時に完全に入替っているとすると
必要となるレーザガスの流速U(m/sec)は、 U=CR・W・N で定義される。CRの値は、理想的には1であるが、発振
器の構造、電極の形状等で大きく変化する値であり、一
般的にはCR=2〜3程度となる。例えば、放電路の幅W
=0.02m、繰返し数N=5001/secでCR=2となる構造の
レーザ発振器の場合、レーザガス流速は20m/secが必要
となってくる。
Problems to be Solved by the Invention In order to realize a high repetition rate, it is a condition that the flow velocity of the gain medium passing between the two main electrodes is high. For example, the width of the discharge path formed between the main electrodes is W (m), the repetition frequency is N (1 / sec), and after the main discharge, the laser gas in the discharge path is completely replaced during the next discharge. Therefore, the required flow velocity U (m / sec) of the laser gas is defined by U = CR · W · N. The value of C R is ideally 1, but it is a value that greatly changes depending on the structure of the oscillator, the shape of the electrodes, etc., and generally C R = 2 to 3. For example, the width W of the discharge path
= 0.02 m, if a repetition number N = 5001 / sec of the laser oscillator of the C R = 2 and made structure, the laser gas flow rate becomes necessary 20 m / sec.

高ガス圧動作のエキシマレーザで前記の流速を得るに
は、放電室内に設けられたガス循環のためのファンを駆
動するのに、大容量のモータが必要となってくるばかり
でなく、循環用ファンの構造、支持体、軸受等かなり頑
丈であることが要求され装置が大掛りとなるとともに、
コスト高につながり得策ではない。
In order to obtain the above-mentioned flow velocity with a high gas pressure excimer laser, not only a large capacity motor is required to drive the fan for gas circulation provided in the discharge chamber, but The structure of the fan, the support, the bearings, etc. are required to be fairly sturdy, and the device becomes bulky.
High cost and not a good idea.

従って、高繰返し化を図るためには、低ガス圧動作のエ
キシマレーザの方が有利と言える。しかしながら、低ガ
ス圧動作のエキシマレーザに於いて効率の良い発振を得
るためには、前記のごとく2つの主電極間隔を広くする
必要がある。このため、レーザ放射に利用可能な放電路
の高さ(H)が大きくなる。
Therefore, in order to achieve a high repetition rate, it can be said that the excimer laser operating at a low gas pressure is more advantageous. However, in order to obtain efficient oscillation in the low gas pressure excimer laser, it is necessary to widen the distance between the two main electrodes as described above. As a result, the height (H) of the discharge path that can be used for laser emission increases.

このことは、エキシマレーザの出力ビーム断面に於い
て、ビーム幅(W′)とビーム高さ(H′)の比が大き
くなることを意味している。低ガス圧動作例えば封入圧
力が2気圧の場合、最適な電極間隔が3cm程度となり、
取り出されるエキシマレーザビームの断面形状は、高さ
(H′)〜約3cm、幅(W′)〜約1.5cmの長方形とな
り、H′/W′≒2程度となる。更に封入ガス圧力が低い
時はH′/W′の比が更に大きい長方形ビームが得られ
る。このことは、エキシマレーザビームの応用面を考慮
すると、決して望ましいことではない。例えば、半導体
プロセスに於けるフォトリソグラフィーに利用する場合
にあっても、レーザ出力の有効利用を考慮すると、レン
ズ光学系の寸法が不必要に大きくなり、高価なものにな
る。又、レンズ有効径を、エキシマレーザビームの高さ
(H′)より小さいものを使用する場合には、レンズ有
効径に合せアパーチャ等により制限する必要があり、レ
ーザ出力の有効利用をはかることができない等の欠点を
有する。
This means that in the output beam cross section of the excimer laser, the ratio of the beam width (W ') to the beam height (H') becomes large. Low gas pressure operation For example, when the filling pressure is 2 atm, the optimum electrode interval is about 3 cm,
The cross-sectional shape of the extracted excimer laser beam is a rectangle having a height (H ') to about 3 cm and a width (W') to about 1.5 cm, which is about H '/ W'≈2. Further, when the filling gas pressure is low, a rectangular beam having a larger H '/ W' ratio can be obtained. This is by no means desirable considering the application of excimer laser beams. For example, even when it is used for photolithography in a semiconductor process, the size of the lens optical system becomes unnecessarily large and becomes expensive in view of effective use of laser output. Further, when using an effective lens diameter smaller than the height (H ') of the excimer laser beam, it is necessary to limit the effective laser diameter in accordance with the effective lens diameter by using an aperture or the like. It has the drawback that it cannot be done.

このように従来技術では、折返し構造をとっていないた
め、放電路6の幅(W′)及び高さ(H′)がそのま
ま、発振器から取り出されるレーザビームの断面形状と
なる。このため、低ガス圧動作の場合H′/W′の比が大
きくなるという欠点を有している。
As described above, in the conventional technique, since the folded structure is not adopted, the width (W ') and the height (H') of the discharge path 6 are the same as the sectional shape of the laser beam extracted from the oscillator. Therefore, there is a drawback that the H '/ W' ratio becomes large in the case of low gas pressure operation.

本発明の目的は、上記従来技術の問題を解決するもの
で、簡易な構造でビーム利用率の高い低ガス圧動作、高
繰返しエキシマレーザを提供しようとするものである。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a low gas pressure operation and high repetition rate excimer laser having a simple structure and a high beam utilization rate.

問題点を解決するための手段 上記問題点を解決するための本発明の技術的手段は、利
得媒体を入れた放電室、光軸の方向に延びる少なくとも
2個の主電極、主放電の前に予じめ予備電離するための
手段、ならびに全反射光学要素及び部分透過出力要素を
有する発振器からなるガスレーザに於いて、レーザ放射
に利用可能な放電路の高さ(H)が放電路の幅(W)よ
り少なくとも大きくなるように設定されており、かつ発
振器は前記放電路内で高さ(H)を2等分するように、
レーザビームを折返す少なくとも1個の光学要素を有
し、主電極間に形成されるレーザ放射に利用可能な放電
路内で互いに平行になるよう折返えすようにしたもので
ある。
Means for Solving the Problems Technical means of the present invention for solving the above problems include a discharge chamber containing a gain medium, at least two main electrodes extending in the direction of the optical axis, and a main discharge before the main discharge. In a gas laser consisting of a means for pre-ionizing and an oscillator with a total internal reflection optical element and a partially transmissive output element, the height (H) of the discharge path available for laser emission is the width of the discharge path ( W), and the oscillator divides the height (H) into two equal parts in the discharge path.
It has at least one optical element that folds the laser beam so that it folds parallel to each other in the discharge path that is available for laser radiation formed between the main electrodes.

作用 上記技術的手段による作用は、次のようになる。Action The action of the above technical means is as follows.

放電路内で放電路の高さを2等分するようにレーザビー
ムを少なくとも1個の光学要素により平行に折返す構成
となっているため、出力ビームのH/W比がほとんど1に
近く出来る。したがって、利用効率の高いエキシマレー
ザビームを取り出すことが可能となり、かつレンズ光学
系の寸法も小さくすることができる。
Since the laser beam is folded back in parallel by at least one optical element so as to divide the height of the discharge path into two equal parts in the discharge path, the H / W ratio of the output beam can be almost 1 . Therefore, it is possible to extract the excimer laser beam with high utilization efficiency, and it is possible to reduce the size of the lens optical system.

実施例 以下、本発明の実施例について、図面を参照しながら説
明する。まず本発明の第1の実施例について説明する。
Examples Examples of the present invention will be described below with reference to the drawings. First, a first embodiment of the present invention will be described.

第1図aは、本発明の第1実施例におけるエキシマレー
ザ発振器の光軸に直角な概略横断面図であり、第1図b
は、光軸方向の概略横断面図である。第1図において、
希ガス及びハロゲンガスからなる利得媒体(レーザガ
ス)1は、放電室2の閉空間内に3気圧(2280torr)以
下の所定の圧力で封入され、図示されていないが、クロ
スファンのようなもので、主電極3,4により形成される
ギャップ間を光軸7に直角な方向に高速(20〜30m/se
c)に循環されている。主電極3及び4は、均一なグロ
ー放電が得られるよう、ロゴスキー又はチャング型断面
形に少なくとも類似するよう形成されている。2つの主
電極3,4は、図示されていないが、例えば高電圧容量移
行型パルス回路に、それぞれ適合して接続されており、
コンデンサーの充放電エネルギーにより、主電極間のギ
ャップで短時間、均一なグロー放電が行なわれ、レーザ
放射に利用可能な放電路6が形成される。予備電離装置
5は、主電極3,4に高電圧パルスが印加される時、自動
的にUV光が放射されるよう設定されており、放電路6を
主放電に先立って予備的にイオン化させ、主放電の均質
グロー化を助けている。放電室2には、主電極3,4間に
形成されるレーザ放射に利用可能な放電路の高さ(H)
を2分割、例えば2等分するように、光軸7,7′が配置
される。この光軸7,7′に対応し放電室の片側に一体の
部分透過光学要素10、全反射光学要素11が直角に配置さ
れる。放電室2の一方の側には、一体の折返し光学要素
9が光軸7,7′に適合し、放電路6の高さ(H)を2等
分し、他方の光学要素10,11に相体して配置され、光学
共振器を構成している。
1a is a schematic cross-sectional view perpendicular to the optical axis of the excimer laser oscillator according to the first embodiment of the present invention, and FIG.
FIG. 4 is a schematic cross-sectional view in the optical axis direction. In FIG.
A gain medium (laser gas) 1 composed of a rare gas and a halogen gas is enclosed in a closed space of the discharge chamber 2 at a predetermined pressure of 3 atm (2280 torr) or less, and is not shown in the drawing, but is like a cross fan. , Between the gaps formed by the main electrodes 3 and 4 at a high speed in the direction perpendicular to the optical axis 7 (20 to 30 m / se
It is circulated in c). The main electrodes 3 and 4 are formed at least similar to the Rogowski or Chung type cross-sectional shape so as to obtain a uniform glow discharge. Although not shown, the two main electrodes 3 and 4 are adapted and connected to, for example, a high voltage capacity transfer type pulse circuit,
Due to the charge and discharge energy of the capacitor, uniform glow discharge is performed in the gap between the main electrodes for a short time, and a discharge path 6 that can be used for laser radiation is formed. The preionization device 5 is set to automatically emit UV light when a high voltage pulse is applied to the main electrodes 3 and 4, and preliminarily ionizes the discharge path 6 prior to the main discharge. , Helps to make the main discharge uniform glow. In the discharge chamber 2, the height (H) of the discharge path formed between the main electrodes 3 and 4 that can be used for laser radiation.
The optical axes 7 and 7'are arranged so as to be divided into two, for example, divided into two. A partial transmission optical element 10 and a total reflection optical element 11 which are integral with each other are arranged at right angles on one side of the discharge chamber corresponding to the optical axes 7, 7 '. On one side of the discharge chamber 2, an integral folding optical element 9 is fitted to the optical axis 7, 7 ', divides the height (H) of the discharge path 6 into two equal parts, and the other optical element 10, 11 is provided. They are arranged in phase with each other to form an optical resonator.

一体の折返し光学要素9は、光軸7,7′の方向に対し直
角をなす1個の全反射面91と光軸7,7′に対しそれぞれ
ブリュースタ角(tanφ=n1/n0n1は構成材料の発振波
長における屈折率、n0はレーザ媒質の屈折率)を満足
し、P偏光に対する表面反射率が極力ゼロとなるように
設けられた2つの透過平面92からなっている。
The integral folding optical element 9 includes a single total reflection surface 91 that is perpendicular to the directions of the optical axes 7 and 7'and a Brewster angle (tan φ = n 1 / n 0 n) with respect to the optical axes 7 and 7 '. 1 is a refractive index at the oscillation wavelength of the constituent materials, n 0 is a refractive index of the laser medium), and is composed of two transmission planes 92 provided so that the surface reflectance for P-polarized light is as zero as possible.

上記のように構成される本発明の第1実施例では、レー
ザ放射に利用可能な放電路を有効に活用し、かつ低ガス
圧動作時の欠点であった出力ビームの断面形状の長方形
比(H/W)を高さ方向に2分割することにより、高ガス
圧動作時と同様にH/W比を1に近づけることが出来、外
部で用いる光学系の有効寸法を最少限にすることが可能
となる。又、本発明の第1実施例では、一体の折返し光
学要素9により、レーザが選択的に垂直偏光発振(P偏
光)となるため、レーザ発振器の外部で斜入射光学系を
用いた場合に安定した光量の分割が可能となる事も利点
のひとつである。
In the first embodiment of the present invention configured as described above, the discharge path available for laser emission is effectively utilized, and the rectangular ratio of the cross-sectional shape of the output beam ( By dividing the H / W) into two in the height direction, the H / W ratio can be brought close to 1 as in high gas pressure operation, and the effective size of the optical system used externally can be minimized. It will be possible. Further, in the first embodiment of the present invention, the laser is selectively vertically polarized (P-polarized) by the folding optical element 9 which is integrated, so that it is stable when an oblique incidence optical system is used outside the laser oscillator. One of the advantages is that the divided light amount can be divided.

次に本発明の第2実施例について説明する。第2図は、
本発明の第2実施例を示す光軸方向の概略横断面図であ
る。第2実施例は、折返し光学要素12を除いては第1実
施例の通りである。
Next, a second embodiment of the present invention will be described. Figure 2 shows
It is a schematic cross section along the optical axis showing a second embodiment of the present invention. The second embodiment is the same as the first embodiment except for the folding optical element 12.

第2実施例の折返し光学要素12は、相互に直角を成し、
かつ光軸7,7′に対しそれぞれ45°の角を形成する2個
の反射鏡面13,13′を有し、光軸7,7′に対して垂直な透
過平面14により構成される一体の透明体から成る。
The folding optical elements 12 of the second embodiment form a right angle with each other,
In addition, it has two reflecting mirror surfaces 13 and 13 'forming an angle of 45 ° with respect to the optical axes 7 and 7', respectively, and is formed by a transmission plane 14 perpendicular to the optical axes 7 and 7 '. It consists of a transparent body.

第2実施例の第1実施例にない特長は、折返し光学要素
12が、波長による光軸ずれを生じないために、反射鏡面
13,13′がエキシマレーザ波長域で広帯域長射率を有す
る場合、XeCl(308nm)からArF(193nm)まで、封入す
る利得媒体を変えるだけでそれぞれ発振させることが出
来る点にある。第2実施例の他の効果は、第1実施例と
同様である。
The features of the second embodiment that the first embodiment does not have are the folding optical element.
12 is a reflecting mirror surface so that the optical axis does not shift depending on the wavelength.
If 13 and 13 'have a broadband emissivity in the excimer laser wavelength range, they can oscillate from XeCl (308 nm) to ArF (193 nm) simply by changing the enclosed gain medium. The other effects of the second embodiment are similar to those of the first embodiment.

発明の効果 以上述べたように、本発明によれば、レーザ放射に利用
可能な放電路の高さ(H)を1個の光学要素で主電極に
平行に2分割するため、放電により励起された利得媒質
を有効に活用し、高繰返しに重要な低ガス圧動作時に、
特性を損うことなしに、レーザ出力ビーム断面を正方形
あるいはそれに近い形状にすることが出来るようにな
り、外部で用いる光学系の有効寸法を小さくすることが
可能となり、低コスト化が図れる。
EFFECTS OF THE INVENTION As described above, according to the present invention, since the height (H) of the discharge path that can be used for laser radiation is divided into two parallel to the main electrode by one optical element, it is excited by discharge. The gain medium is effectively utilized, and at low gas pressure operation, which is important for high repetition,
The cross section of the laser output beam can be made into a square or a shape close to it without impairing the characteristics, the effective size of the optical system used outside can be reduced, and the cost can be reduced.

又、一体の折返し光学要素により、レーザが選択的に垂
直偏光発振となるため、レーザ発振器の外部で斜入射光
学系を容易に用いることが可能となり、出力モニター、
ビーム分割等の精度が向上する。
In addition, since the laser selectively oscillates vertically polarized light by the integrated folding optical element, it becomes possible to easily use the oblique incidence optical system outside the laser oscillator, and the output monitor,
The accuracy of beam splitting is improved.

更に、直角プリズム型折返し光学要素により、XeCl、Kr
F、ArFを光学要素に手を加えることなしに、低ガス圧で
高繰返し高効率発振出来るようになり、用途が広くなっ
た。
Furthermore, by using a right-angle prism type folding optical element, XeCl, Kr
It became possible to oscillate with high efficiency and high repetition at low gas pressure without modifying F and ArF to optical elements, and the application was widened.

本発明に於いて得られる上記の効果は、部分透過光学要
素、全反射光学要素が必ずしも一体であることには、制
約されるものではない。更に又、本発明による効果は、
直角プリズム形折返し光学要素が、必ずしも一体である
ことは制約するものでなく、相互に直角を成す別個の反
射鏡面であっても良い。
The above effects obtained in the present invention are not limited to the fact that the partial transmission optical element and the total reflection optical element are necessarily integrated. Furthermore, the effect of the present invention is
The right-angle prism type folding optical element is not necessarily limited to be integrated, and may be separate reflecting mirror surfaces that form a right angle with each other.

なお本発明は、低ガス圧動作のみに限らず、高ガス圧動
作に於いても応用出来るものである。
The present invention can be applied not only to low gas pressure operation but also to high gas pressure operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の第1実施例のレーザ発振器を示す概
略横断面図で、aは光軸に直角方向の断面図、bは光軸
方向の断面図、第2図は、本発明の第2実施例のレーザ
発振器を示す概略横断面図、第3図は、従来技術のレー
ザ発振器を示す概略横断図である。 1…利得媒体(エキシマレーザガス)、2…放電室、3,
4…主電極、5…予備電離装置、6…放電路、7,7′…光
軸、9…レーザビーム折返し光学要素、10…部分透過光
学要素、11…全反射光学要素、12…直角プリズム形折返
し光学要素、13,13′…反射鏡面、14…透過平面。
FIG. 1 is a schematic transverse sectional view showing a laser oscillator according to a first embodiment of the present invention, a is a sectional view in a direction perpendicular to the optical axis, b is a sectional view in the optical axis direction, and FIG. FIG. 3 is a schematic cross-sectional view showing a laser oscillator of the second embodiment of FIG. 3, and FIG. 3 is a schematic cross-sectional view showing a laser oscillator of the prior art. 1 ... Gain medium (excimer laser gas), 2 ... Discharge chamber, 3,
4 ... Main electrode, 5 ... Pre-ionization device, 6 ... Discharge path, 7, 7 '... Optical axis, 9 ... Laser beam folding optical element, 10 ... Partial transmission optical element, 11 ... Total reflection optical element, 12 ... Right angle prism Shape-folding optical element, 13, 13 '... Reflective mirror surface, 14 ... Transmission plane.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 宮田 威男 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 (72)発明者 佐野 令而 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeo Miyata 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture Matsushita Giken Co., Ltd. 3-10-1 Matsushita Giken Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】利得媒体を入れた放電室、光軸の方向に延
びる少なくとも2個の主電極、主放電の前に予じめ予備
電離するための手段、及び全反射光学要素、部分透過出
力要素、並びに放電路内で高さを2分するようにレーザ
ビームを折返す少なくとも1個の光学要素を有すること
を特徴とするエキシマレーザ装置。
1. A discharge chamber containing a gain medium, at least two main electrodes extending in the direction of the optical axis, means for pre-pre-ionization prior to the main discharge, and a total reflection optical element, a partial transmission output. An excimer laser device comprising: an element and at least one optical element that folds a laser beam so as to divide the height into two parts in a discharge path.
【請求項2】レーザビームは、主電極間に形成される放
射に利用可能な放電路内で互いに略平行になるように折
返されていることを特徴とする特許請求の範囲第1項記
載のエキシマレーザ装置。
2. The laser beam is turned back so as to be substantially parallel to each other in a discharge path that can be used for radiation formed between the main electrodes. Excimer laser device.
【請求項3】レーザビームを折返す光学要素が、レーザ
放射に利用可能な放電路内の光軸に対し略直角な1つの
反射面と、前記光軸に対し各々略ブリュースター角に相
当する角度に形成された2つの平面から成ることを特徴
とする特許請求の範囲第1項記載のエキシマレーザ装
置。
3. An optical element for returning a laser beam corresponds to one reflecting surface substantially perpendicular to an optical axis in a discharge path that can be used for laser radiation, and each has a Brewster's angle to the optical axis. The excimer laser device according to claim 1, wherein the excimer laser device comprises two planes formed at an angle.
【請求項4】レーザビームを折返す光学要素が、相互に
略直角を成し、かつ光軸に対し各々略45°の角度を有す
る2個の反射鏡面を有することを特徴とする特許請求の
範囲第1項記載のエキシマレーザ装置。
4. An optical element for folding a laser beam has two reflecting mirror surfaces that are substantially perpendicular to each other and each have an angle of about 45 ° with respect to the optical axis. An excimer laser device according to claim 1.
【請求項5】レーザ発振に必要な利得媒体の全圧が3気
圧以下であることを特徴とする特許請求の範囲第1項記
載のエキシマレーザ装置。
5. The excimer laser device according to claim 1, wherein the total pressure of the gain medium required for laser oscillation is 3 atm or less.
【請求項6】全反射光学要素及び部分透過出力要素が一
体となって構成されたことを特徴とする特許請求の範囲
第1項記載のエキシマレーザ装置。
6. An excimer laser device according to claim 1, wherein the total reflection optical element and the partial transmission output element are integrally formed.
JP6458087A 1987-03-19 1987-03-19 Excimer laser device Expired - Fee Related JPH0714086B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP6458087A JPH0714086B2 (en) 1987-03-19 1987-03-19 Excimer laser device
DE3854236T DE3854236T2 (en) 1987-03-19 1988-03-18 Laser apparatus.
DE3884832T DE3884832T2 (en) 1987-03-19 1988-03-18 Laser device.
EP92105632A EP0495535B1 (en) 1987-03-19 1988-03-18 Laser apparatus
EP88104387A EP0283044B1 (en) 1987-03-19 1988-03-18 Laser apparatus
US07/169,784 US5042047A (en) 1987-03-19 1988-03-18 Laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6458087A JPH0714086B2 (en) 1987-03-19 1987-03-19 Excimer laser device

Publications (2)

Publication Number Publication Date
JPS63229880A JPS63229880A (en) 1988-09-26
JPH0714086B2 true JPH0714086B2 (en) 1995-02-15

Family

ID=13262321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6458087A Expired - Fee Related JPH0714086B2 (en) 1987-03-19 1987-03-19 Excimer laser device

Country Status (1)

Country Link
JP (1) JPH0714086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02288280A (en) * 1989-04-27 1990-11-28 Nec Corp Transverse discharge excitation pulse gas laser device

Also Published As

Publication number Publication date
JPS63229880A (en) 1988-09-26

Similar Documents

Publication Publication Date Title
US7245420B2 (en) Master-oscillator power-amplifier (MOPA) excimer or molecular fluorine laser system with long optics lifetime
KR101194231B1 (en) Laser system
US7885309B2 (en) Laser system
US7227881B2 (en) Master oscillator—power amplifier excimer laser system
KR101548286B1 (en) Regenerative ring resonator
EP0066053B1 (en) Apparatus for, and method of, exposing a photosensitive medium to light
US6862307B2 (en) Electrical excitation circuit for a pulsed gas laser
US5042047A (en) Laser apparatus
JP3427889B2 (en) ArF excimer laser device and fluorine laser device
JP2002094160A (en) F2 laser
JPH0714086B2 (en) Excimer laser device
CN101004530A (en) Excimer laser and line narrowing module
JP2001267666A (en) ArF EXCIMER LASER DEVICE, KrF EXCIMER LASER DEVICE AND FLUORINE LASER DEVICE
JP3767674B2 (en) Discharge excitation gas laser device
JP4023579B2 (en) ArF excimer laser laser gas, ArF excimer laser and scanning exposure machine
JPS63231303A (en) Optical parts for short wavelength laser
JPH0846275A (en) Gas laser equipment
JPS63227082A (en) Gas laser oscillator
JP2699894B2 (en) X-ray preionization discharge excitation gas laser apparatus and oscillation method thereof
JPH04145678A (en) Gas laser oscillator
JPH03190177A (en) Pulse gas laser device
JPS6388882A (en) Output-stabilized excimer laser
JPH05102562A (en) Exposure optical source laser oscillation device
JPH03190178A (en) Gas laser oscillating device
JPS62111489A (en) Excimer laser apparatus

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees