JPH07140735A - Electrophotographic method - Google Patents

Electrophotographic method

Info

Publication number
JPH07140735A
JPH07140735A JP5169767A JP16976793A JPH07140735A JP H07140735 A JPH07140735 A JP H07140735A JP 5169767 A JP5169767 A JP 5169767A JP 16976793 A JP16976793 A JP 16976793A JP H07140735 A JPH07140735 A JP H07140735A
Authority
JP
Japan
Prior art keywords
charging
photoconductor
charge
potential
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5169767A
Other languages
Japanese (ja)
Inventor
Hiroshi Nagame
宏 永目
Shigeto Kojima
成人 小島
Hiroshi Ikuno
弘 生野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5169767A priority Critical patent/JPH07140735A/en
Publication of JPH07140735A publication Critical patent/JPH07140735A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrophotographic method by which the residual potential or its accumulation caused in a photoreceptor having a surface protective layer comprising a carbon thin film or a thin film essentially comprising carbon can be efficiently decreased while reduction of the charge potential or reduction of picture quantity due to charge fatigue is hardly caused bus stable electrophotographic characteristics can be maintained. CONSTITUTION:Lots of copies using general paper can be obtd. by repeating steps of main electrification, exposure for an image, development, transfer, separation, discharge, and cleaning for an org. photoreceptor having a carbon thin film or a thin film essentially comprising carbon as a surface protective layer. In this electrophotographic method, a step to give charges in the opposite polarity to the main electrification to the photoreceptor and simultaneously, just before or immediately after this step, another step to expose the photoreceptor are added between the cleaning step and the main electrification step. Further, in the main electrification step, the photoreceptor is electrified under at least two different electrification conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は画像形成装置における感
光体の残留電位を有効に低減化させ、かつ帯電電位の低
下及び電荷疲労が少なく、繰返し安定性が良い電子写真
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic method for effectively reducing the residual potential of a photosensitive member in an image forming apparatus, reducing charge potential drop and charge fatigue, and having good repetitive stability.

【0002】[0002]

【従来の技術】従来、電子写真感光体用の感光材料とし
てセレン(Se)、アモルファスシリコン(a−S
i)、硫化カドミウム(CdS)が主として用いられて
きたが、近年では価格、無公害、製造、電子写真特性等
といった面で有利な有機系感光材料へ置き換わってきて
いる。しかしながら、有機系感光材料はビッカース硬度
で20〜40kg/mm2程度と軟らかいため機械的耐久
性が低く、これを電子写真複写機やレーザービームプリ
ンター等の画像形成装置で使用した場合、5〜15万枚
程度で交換を余儀なくされる。そのため有機系感光体の
最表面を何らかの方法で硬度アップさせ耐摩耗性を向上
する必要がある。そして、その一手法として、感光体の
最表面に高硬度の保護層を形成する方法が知られてい
る。
2. Description of the Related Art Conventionally, selenium (Se) and amorphous silicon (a-S) have been used as photosensitive materials for electrophotographic photoreceptors.
i) and cadmium sulfide (CdS) have been mainly used, but in recent years, they have been replaced with organic photosensitive materials which are advantageous in terms of price, pollution-free, manufacturing, electrophotographic characteristics and the like. However, the organic photosensitive material has a low Vickers hardness of about 20 to 40 kg / mm 2 and thus has low mechanical durability, and when used in an image forming apparatus such as an electrophotographic copying machine or a laser beam printer, it has a mechanical strength of 5 to 15 You will be forced to replace it after about 10,000 copies. Therefore, it is necessary to increase the hardness of the outermost surface of the organic photoconductor by some method to improve the abrasion resistance. Then, as one method thereof, a method of forming a protective layer of high hardness on the outermost surface of the photoconductor is known.

【0003】表面保護層はオーバーコートされる感光体
の電子写真特性を損なうものであってはならない。従っ
て、表面保護層は光学特性や電気特性などを電子写真特
性的に満足する薄膜であり、かつ機械的に優れたもので
なければならない。耐久性があり電荷保持能力が高く、
表面保護層として好適な薄膜の例として、炭素または炭
素を主成分として構成される薄膜がある。この薄膜の代
表的な例としてダイヤモンド、グラファイト及びポリマ
ーの各構造が混在したダイヤモンド状カーボン膜(DL
C膜)があり、このDLC膜はメタン、エタン、ブタ
ン、プロパン、ブタジエン等の炭化水素系のガス、必要
に応じて水素、フッ素、窒素ガス等を流入しつつ、プラ
ズマCVD法、光CVD法、スパッタリング法などの真
空製膜法で作製される。この膜は製膜条件によって物理
特性が大きく変化する。硬度は10〜2000kg/m
2、電気抵抗は106〜1017Ω・cm、光透過率は着
色のため短波長での吸収が大きくなる傾向があり、実用
的な膜厚では450nmで数%〜60%、780nmで
80〜100%である。DLC膜を感光体の保護層とす
る場合には、表面電位、感度等の特性安定性の他、機械
特性等で長期に渡って使用しても十分使用に耐える物理
特性を選択する必要がある。DLC膜を有機系感光体に
オーバーコートする場合、製膜装置での基盤温度条件は
感光層のガラス転移温度の関係から、室温または室温以
下にする必要があるが、製膜の際の各種原料ガス、反応
圧、RF電力などといった製膜条件を適当に選定するこ
とにより、電子写真感光体としての表面保護層が作製可
能である。
The surface protective layer must not impair the electrophotographic properties of the overcoated photoreceptor. Therefore, the surface protective layer must be a thin film that satisfies optical characteristics and electrical characteristics in terms of electrophotographic characteristics, and must be mechanically excellent. Durable and high charge retention,
An example of a thin film suitable as the surface protective layer is carbon or a thin film composed mainly of carbon. As a typical example of this thin film, a diamond-like carbon film (DL) in which each structure of diamond, graphite and polymer is mixed
C film), and the DLC film is a plasma CVD method or a photo CVD method while inflowing a hydrocarbon-based gas such as methane, ethane, butane, propane, and butadiene, and if necessary, hydrogen, fluorine, nitrogen gas, and the like. It is produced by a vacuum film forming method such as a sputtering method. The physical properties of this film change greatly depending on the film forming conditions. Hardness is 10 to 2000 kg / m
m 2 , the electric resistance is 10 6 to 10 17 Ω · cm, and the light transmittance tends to increase absorption at a short wavelength due to coloring. In a practical film thickness, several nm to 60% at 450 nm, and 780 nm at 780 nm. It is 80 to 100%. When the DLC film is used as the protective layer of the photoconductor, it is necessary to select physical properties such as surface potential and sensitivity that are sufficiently stable to be used even if used for a long period in addition to stability of properties such as mechanical properties. . When overcoating the DLC film on the organic photoreceptor, the substrate temperature condition in the film forming apparatus must be room temperature or lower than room temperature because of the glass transition temperature of the photosensitive layer. By appropriately selecting the film forming conditions such as gas, reaction pressure, RF power, etc., the surface protective layer as an electrophotographic photoreceptor can be prepared.

【0004】ところで、保護層をオーバーコートした感
光体では、時として、感光体を繰返し使用すると、残留
電位の蓄積が生じ、濃度低下、ディテールの消失、地肌
汚れ等の画像品質を低下させるという問題がある。これ
はDLC膜への正孔もしくは電子の注入効率、および膜
中での移動度が小さいためであろうと考えられる。
However, in the case of a photoreceptor having a protective layer overcoated, when the photoreceptor is repeatedly used, residual potential is accumulated, which causes deterioration of image quality such as density decrease, loss of detail, and background stain. There is. It is considered that this is because the injection efficiency of holes or electrons into the DLC film and the mobility in the film are low.

【0005】残留電位が生じたり、均一帯電電位の安定
性などが不十分な場合の方策としては、複写プロセスか
ら感光体廻りの条件を検討したものとして、(i)クリー
ニング工程と均一帯電工程との間に交流バイアス電圧が
印加された導電性可撓性部材をa−Si系感光体に接触
させてトラッピングのリリースを行う(特開昭60−1
42355号公報)、(ii)クリーニング工程と均一帯電
工程との間に交流又は直流バイアス電圧が印加されかつ
加温された導電性可撓性部材をa−Si系感光体に接触
させてトラッピングのリリースを行う(特開昭60−1
56068号公報)、(iii)均一帯電を行う前に感光体
表面に交番電界を印加することにより、印加される一方
の極性の波形ピーク前後で感光体表面が帯電し、生ずる
電界によりトラッピングのリリースを可能とする(特開
昭60−203964号公報)、(iv)均一帯電及び/又
は除電を行う前に、均一帯電と同極性の前帯電を行う
(特開昭61−165764号公報)、(v)除電を均一
帯電とは逆極性の直流コロナ帯電により行う(特開昭6
0−10266号公報)などがあげられる。
As a measure to be taken when a residual potential is generated or the stability of the uniform charging potential is insufficient, it is necessary to consider the conditions around the photoconductor from the copying process, and (i) a cleaning step and a uniform charging step. The conductive flexible member, to which an AC bias voltage is applied, is brought into contact with the a-Si photosensitive member to release the trapping (JP-A-60-1).
No. 42355), (ii) a conductive flexible member to which an AC or DC bias voltage is applied and heated between the cleaning step and the uniform charging step is brought into contact with the a-Si-based photosensitive member to perform trapping. Release (Japanese Patent Laid-Open No. 60-1)
(56068 gazette), (iii) By applying an alternating electric field to the surface of the photoconductor before performing uniform charging, the surface of the photoconductor is charged before and after the waveform peak of one polarity applied, and the trapping is released by the generated electric field. (Iv) prior to uniform charging and / or static elimination, pre-charging of the same polarity as uniform charging (Japanese Patent Laid-Open No. 61-165664), (v) Static neutralization is performed by direct current corona charging having a polarity opposite to that of uniform charging (Japanese Patent Laid-Open No. Sho-6)
0-10266) and the like.

【0006】これらのうち(i) (ii) (iii)及び(iv)は
何れも保護層のないa−Si系感光体であり、感光体中
にトラップされた正孔及び/又は電子を、帯電工程に入
る前に交流バイアス(及び光除電、加熱)を印加するこ
とにより開放させ、電気抵抗、静電容量を回復させて繰
り返し帯電電位の低下及びメモリー現象を改善しようと
するものである。また、(v)の方法では逆極性帯電に要
する電流の40〜90%を流すことにより、帯電電位の
低下を補正しようとするものである。
Of these, (i), (ii), (iii) and (iv) are all a-Si type photoconductors having no protective layer, which are used for trapping holes and / or electrons trapped in the photoconductor. Prior to the charging step, an AC bias (and photo-erasing, heating) is applied to open the battery, and the electric resistance and electrostatic capacity are restored to repeatedly reduce the charging potential and improve the memory phenomenon. Further, in the method (v), 40 to 90% of the current required for reverse polarity charging is flowed to correct the decrease in charging potential.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、前記
(i) (ii) (iii)及び(iv)の場合においては表面保護層
が無いため、交流によるバイアス電圧が比較的容易に作
用し、期待した効果が得られるが、殆ど絶縁層に近いD
LC膜による表面保護層の場合作用が及びにくいため、
殆ど効果は期待できない。一方、前記(v)の場合におい
ては画像濃度低下防止という目的に対しては効果がある
ものの、クリーニング工程の前で逆電荷付与を行うと、
保護層の無い感光体の場合には影響があり、保護層があ
る感光体の場合にも時として、トナーのクリーニング不
良により、かぶり現像が発生し、画像品質の著しい劣化
を招くことがある。
[Problems to be Solved by the Invention]
In the cases of (i), (ii), (iii) and (iv), since there is no surface protection layer, the bias voltage due to AC acts relatively easily and the expected effect can be obtained, but D is almost close to the insulating layer.
In the case of the surface protection layer made of LC film, it is difficult to work, so
Little effect can be expected. On the other hand, in the case of (v), although it is effective for the purpose of preventing the image density reduction, if the reverse charge is applied before the cleaning step,
This is affected in the case of a photoreceptor having no protective layer, and sometimes, in the case of a photoreceptor having a protective layer, fogging development may occur due to defective cleaning of toner, resulting in remarkable deterioration of image quality.

【0008】本発明は、このような従来技術の実状に鑑
みてなされたもので、DLC膜を保護層とした感光体で
生じる残留電位及びその蓄積を効率良く低減させる一
方、電荷疲労に伴う帯電電位の低下や、画像品質の低下
が生じにくく、安定した電子写真特性を維持できる電子
写真法を提供することを目的とする。
The present invention has been made in view of the above-mentioned state of the art, and efficiently reduces the residual potential and its accumulation that occur in a photoconductor having a DLC film as a protective layer, while charging due to charge fatigue. It is an object of the present invention to provide an electrophotographic method which is capable of maintaining stable electrophotographic characteristics without causing a decrease in potential and a decrease in image quality.

【0009】[0009]

【課題を解決するための手段】上記(v)の場合における
不具合を防止する策としては、逆極性の直流コロナ放電
装置及び除電ランプをクリーニング装置と帯電装置の間
に配置することが考えられる。これにより、残留電位の
蓄積の抑制及び画像のSN比の改善が期待される。とこ
ろが、この場合、残留電位が通常より高くなったとき、
残留電位を所定の電位に設定するために逆極性の電荷を
過剰に与えると、繰返し複写により帯電電位の低下が大
きくなり、画像を形成するのに必要な電位が小さくなる
ため、良好な画像品質保証のための電位マージンが狭く
なるという問題が生じる。
As a measure for preventing the problem in the case of the above (v), it is conceivable to dispose a DC corona discharge device and a discharge lamp of opposite polarity between the cleaning device and the charging device. This is expected to suppress the accumulation of residual potential and improve the SN ratio of the image. However, in this case, when the residual potential becomes higher than usual,
If excessive charges of opposite polarity are applied to set the residual potential to a prescribed potential, the charge potential will drop significantly due to repeated copying, and the potential required to form an image will decrease, resulting in good image quality. There is a problem that the potential margin for guarantee becomes narrow.

【0010】有機系感光体の場合、帯電の際、支持体か
らの電荷注入により帯電特性が悪化するのを防止するた
めに、支持体と感光層の間に電荷注入阻止層(下引き
層)を形成するのが一般的に行われるが、この下引き層
が時として感光体特性を左右する要因になる。例えば、
前述した金属酸化物の微粉末を分散した下引き層等では
微粉末と樹脂の界面に電荷がトラップし易いため、電荷
のキャンセリングを阻害する。従って、光感度の劣化や
残留電位を発生する。帯電に先立ち逆極性の電荷を与
え、さらに長波長光を露光することにより、下引き層に
よる問題も実用上問題ないレベルに押さえることが可能
である。
In the case of an organic photoreceptor, a charge injection blocking layer (undercoat layer) is provided between the support and the photosensitive layer in order to prevent deterioration of charging characteristics due to charge injection from the support during charging. However, this undercoat layer is sometimes a factor that influences the characteristics of the photoreceptor. For example,
In the undercoat layer or the like in which the fine powder of the metal oxide is dispersed, the charge is easily trapped at the interface between the fine powder and the resin, which hinders the canceling of the charge. Therefore, deterioration of photosensitivity and residual potential occur. It is possible to suppress the problem due to the undercoat layer to a level that does not pose a practical problem by giving an electric charge of opposite polarity prior to charging and exposing it to long-wavelength light.

【0011】以上述べたように残留電位を低減させるた
めには主帯電に先立って逆電荷と露光を与える方法で所
期目的を達成できるが、感光体が数100ボルトの逆電
荷を帯電した状態で主帯電による電荷を帯電すると、そ
の切り替わり時感光体には瞬間的に大きな電界が加わ
る。このため、この状態で長期に使用し続けた場合、感
光体は電荷疲労によりしだいに帯電電位が低下し、帯電
特性の劣化を生じたり、場合によっては局部的に放電破
壊的な症状を呈し、画像品質低下の要因ともなる。この
ため帯電条件はできるだけ感光体に負担をかけないよう
なソフトチャージ法で行う必要がある。
As described above, in order to reduce the residual potential, the intended purpose can be achieved by the method of applying the reverse charge and the exposure prior to the main charging, but the photoreceptor is charged with the reverse charge of several hundred volts. When the electric charge due to the main charging is charged with, a large electric field is momentarily applied to the photoconductor at the time of switching. For this reason, when it is continuously used in this state for a long time, the charge potential of the photoconductor is gradually lowered due to charge fatigue, and the charging characteristics are deteriorated, or in some cases, the discharge-destructive symptom locally occurs. It also causes a deterioration in image quality. For this reason, it is necessary to set the charging conditions by the soft charge method so that the load on the photoconductor is minimized.

【0012】そこで、本発明者らはさらに鋭意研究を重
ねた結果、本発明を完成するに至った。すなわち、本発
明によれば、炭素または炭素を主成分として構成された
薄膜を表面保護層として有する有機系感光体に主帯電、
画像露光、現像、転写、分離、除電及びクリーニングの
工程を繰り返し行って普通紙に多数枚のコピーを得る電
子写真法において、クリーニング工程と主帯電工程との
間に、主帯電とは逆極性の電荷を感光体に付与すると同
時に又はその直前若しくは直後に露光を行う逆電荷付与
・露光工程を設け、かつ前記主帯電工程において少なく
とも2つの異なる帯電条件による帯電を行うことを特徴
とする電子写真法が提供される。また、本発明によれ
ば、上記構成において、前記逆電荷付与・露光工程によ
り感光体の帯電電位を+200〜+700ボルトとした
後、前記主帯電工程において、第1の帯電条件により感
光体の帯電電位を+300〜−500ボルトとした後、
第2の帯電条件により感光体の帯電電位を潜像形成のた
めの所定電位とすることを特徴とする電子写真法が提供
される。さらに、本発明によれば、前記感光体として、
比抵抗が1013〜1015Ω・cmのオーダーでヌープ硬
度が350kg/mm2以上の炭素または炭素を主成分と
して構成される薄膜からなる表面保護層を有する有機系
感光体を用い、かつ前記主帯電工程における第1の帯電
条件と第2の帯電条件による感光体面上の帯電電位の差
を400〜1200ボルトとすることを特徴とする電子
写真法が提供される。
Therefore, as a result of further intensive studies, the present inventors have completed the present invention. That is, according to the present invention, the main charging of the organic photoreceptor having a surface protective layer of carbon or a thin film composed mainly of carbon,
In an electrophotographic method for obtaining a large number of copies on plain paper by repeating the steps of image exposure, development, transfer, separation, charge removal and cleaning, a polarity opposite to the main charging is provided between the cleaning step and the main charging step. An electrophotographic method, characterized in that a reverse charge application / exposure step is carried out at the same time as or immediately before or immediately after the charge is applied to the photoconductor, and the main charging step is performed under at least two different charging conditions. Will be provided. Further, according to the present invention, in the above structure, after the charging potential of the photoconductor is set to +200 to +700 V by the reverse charge application / exposure process, the photoconductor is charged under the first charging condition in the main charging process. After setting the potential to +300 to -500 volts,
An electrophotographic method is provided in which the charging potential of the photoconductor is set to a predetermined potential for latent image formation under the second charging condition. Furthermore, according to the present invention, as the photoreceptor,
An organic photoreceptor having a surface protective layer made of carbon or a thin film composed mainly of carbon having a Knoop hardness of 350 kg / mm 2 or more on the order of specific resistance of 10 13 to 10 15 Ω · cm is used. There is provided an electrophotographic method characterized in that the difference in charging potential on the surface of the photoconductor under the first charging condition and the second charging condition in the main charging step is 400 to 1200 volts.

【0013】以下に、本発明を添付の図面に従いながら
更に詳細に説明する。図1は本発明で使用される有機系
感光体の構成例を示すものである。図1の(a)の感光
体は、導電性支持体1上にSnO2やTiO2などの金属
酸化物を分散した樹脂やAl23等からなる下引き層
(UL)2を形成し、その上にディッピング法やスプレ
ー法あるいは蒸着法等により製膜される感光層3を積層
したもので、感光層3は下側より電荷発生層(CGL)
4、電荷輸送層(CTL)5で構成された積層型(機能
分離型)感光体である。但し、感光層3は図1の(b)
のようにCGL4とCTL5が逆の構成になっていても
良いし、図1の(c)のように感光層3がCGL4とC
TL5の機能を両方持ち合わせている単層構成のもので
あっても良い。UL2は帯電時、導電性支持体1より電
荷が注入して表面電位が悪化すること及び画像品質のS
N比が低下することを防止するために形成される。感光
層3の上には更に機械的耐久性を向上させるために保護
層6が形成される。保護層6は、導電性支持体1上にU
L2及び感光層3を成膜したものを前述したプラズマC
VD法等の真空製膜装置にセットし、メタン、エタン、
エチレン、ブタン、ブタジエン等の炭化水素系のガス、
必要に応じて、水素、酸素、フッ素、窒素ガス等を流入
しつつ、反応圧、RF電力、バイアス電圧等の製膜条件
を設定し、1〜5μm程度のDLC膜として製膜したも
のである。保護層6の比抵抗は1013〜1015Ω・cm
のオーダーの範囲が最適で、1013Ω・cmより低い場
合にはシャープ性が不十分になり、さらに低くなると湿
度と関係なく画像流れ状態になる。一方、比抵抗が10
15Ω・cmより大きい場合、残留電位が高くなり、一時
的に残留電位を下げても、電荷の蓄積が大きいためプロ
セスでは補正しきれない場合も生じる。残留電位の蓄積
は画像品質特性の低下や装置の動作不良を引き起こし易
いので可能な限り低く抑える必要がある。また、保護層
6のヌープ強度は、機械的耐久性、耐摩耗性の観点か
ら、350kg/mm2以上であるのが望ましい。
The present invention will be described in more detail below with reference to the accompanying drawings. FIG. 1 shows an example of the constitution of the organic photoconductor used in the present invention. In the photoreceptor of FIG. 1A, an undercoat layer (UL) 2 made of a resin in which a metal oxide such as SnO 2 or TiO 2 is dispersed or Al 2 O 3 is formed on a conductive support 1. , A photosensitive layer 3 formed thereon by a dipping method, a spray method, an evaporation method, or the like, the photosensitive layer 3 being a charge generation layer (CGL) from below.
4 is a laminated (function separation type) photoconductor composed of a charge transport layer (CTL) 5. However, the photosensitive layer 3 is shown in FIG.
The CGL4 and the CTL5 may have the opposite configurations as shown in FIG. 1, or the photosensitive layer 3 may have the CGL4 and the CTL5 as shown in FIG.
It may have a single layer structure having both the functions of TL5. When the UL2 is charged, charges are injected from the conductive support 1 to deteriorate the surface potential, and the image quality S is reduced.
It is formed to prevent the N ratio from decreasing. A protective layer 6 is formed on the photosensitive layer 3 to further improve mechanical durability. The protective layer 6 is formed on the conductive support 1 by U
The above-mentioned plasma C obtained by forming L2 and the photosensitive layer 3 is formed.
Set it in a vacuum film forming apparatus such as the VD method, and use methane, ethane,
Hydrocarbon-based gas such as ethylene, butane, butadiene,
If necessary, hydrogen, oxygen, fluorine, nitrogen gas, etc. are introduced, while the film forming conditions such as reaction pressure, RF power, bias voltage, etc. are set, and the film is formed as a DLC film of about 1 to 5 μm. . The specific resistance of the protective layer 6 is 10 13 to 10 15 Ω · cm
The optimum range is on the order of 10 13 Ω · cm, and if it is lower than 10 13 Ω · cm, the sharpness becomes insufficient. On the other hand, the specific resistance is 10
If it is larger than 15 Ω · cm, the residual potential becomes high, and even if the residual potential is temporarily lowered, the process may not be able to be completely compensated for due to the large charge accumulation. The accumulation of residual potential is liable to cause deterioration of image quality characteristics and malfunction of the apparatus, and therefore it should be kept as low as possible. The Knoop strength of the protective layer 6 is preferably 350 kg / mm 2 or more from the viewpoint of mechanical durability and wear resistance.

【0014】図2は本発明の方法の実施に好適な装置の
概略図である。本発明の方法によれば、まず、上記のご
とき構成の感光体10に、シールドケース11a、チャ
ージワイヤー11b及びグリッド電極11cより構成さ
れる主帯電装置11により少なくとも2つの異なる帯電
条件で均一に電荷を与える。第1の帯電条件は、+30
0〜−500ボルトへの帯電であり、この帯電が行われ
た後に、第2の帯電が行われるが、その第2の帯電条件
は、所定の潜像形成のために必要な帯電電位への帯電で
あり、感光体の耐電圧や電気抵抗などの固有な特性にも
左右されるが、通常、第1の帯電による帯電電位に対し
て400〜1200ボルト、好ましくは600〜800
ボルトの電位差を生じさせるものである。電位差が40
0ボルトより小さくても、また1200ボルトより大き
くても、電荷疲労が起こり易くなるため、長期にわたっ
て使用した場合、実用的な帯電電位を保持し難くなる。
図示の例では、主帯電装置11は2本のチャージワイヤ
ー(ダブルチャージワイヤー式)11bが張架されてお
り、そのチャージワイヤー11bと感光体10の間に設
置されているグリッド電極11cは、それを構成する金
属ワイヤー間の間隔を主帯電装置11の入口側において
狭くし、出口側において広くして感光体10に流れる電
荷量に差をつける構成になっている。これにより、上記
2種の帯電条件による帯電を行い、逆電荷付与装置17
により主帯電に移行する際の主帯電装置11による感光
体10への急激な電荷の流れ込みを抑制し、感光体10
の電荷疲労を少なくし帯電電位が実用性以下に低下する
のを防止すると同時に繰返し安定性を維持できるように
なる。両チャージワイヤー11bは両者の影響が及ばな
い範囲で離間させるか、両チャージワイヤー11b間に
シールド板を設置することが望ましい。グリッド電極1
1cはコントロールグリッドであり、グリッド電極11
cには感光体10への流れ込み電流を制御するために電
圧が印加される。グリッド電極11cには、例えば高圧
電源により0〜±1000ボルトの電圧を印加するか、
前記範囲の電圧を印加できるバリスタ等の定電圧受動素
子を使用して電圧を印加することができる。
FIG. 2 is a schematic diagram of an apparatus suitable for carrying out the method of the present invention. According to the method of the present invention, first, the photosensitive member 10 having the above-described structure is uniformly charged by the main charging device 11 including the shield case 11a, the charge wire 11b, and the grid electrode 11c under at least two different charging conditions. give. The first charging condition is +30
The charging is performed to 0 to -500 V, and the second charging is performed after the charging is performed. The second charging condition is that the charging potential required for forming a predetermined latent image is increased. Although it is electrification, it is generally 400 to 1200 V, preferably 600 to 800 V with respect to the electrification potential due to the first electrification, although it depends on specific characteristics such as withstand voltage and electric resistance of the photoconductor.
This causes a potential difference of volt. Potential difference is 40
If the voltage is less than 0 volt or more than 1200 volt, charge fatigue is likely to occur, and it becomes difficult to maintain a practical charging potential when used for a long period of time.
In the illustrated example, the main charging device 11 has two charge wires (double charge wire type) 11b stretched thereon, and the grid electrode 11c installed between the charge wire 11b and the photoconductor 10 is The distance between the metal wires constituting the main charging device 11 is narrowed on the inlet side of the main charging device 11 and widened on the outlet side of the main charging device 11 to make a difference in the amount of charges flowing to the photoconductor 10. As a result, charging is performed under the two types of charging conditions described above, and the reverse charge applying device 17
The rapid charging of charges into the photoconductor 10 by the main charging device 11 at the time of shifting to the main charging is suppressed by
It is possible to reduce the charge fatigue and prevent the charging potential from falling below the practicability, and at the same time maintain the repeated stability. It is desirable to separate the charge wires 11b from each other within a range in which the influences of the charge wires 11b are not exerted, or to install a shield plate between the charge wires 11b. Grid electrode 1
1c is a control grid, which is a grid electrode 11
A voltage is applied to c in order to control the current flowing into the photoconductor 10. A voltage of 0 to ± 1000 volts is applied to the grid electrode 11c by, for example, a high voltage power source, or
The voltage can be applied by using a constant voltage passive element such as a varistor capable of applying the voltage in the above range.

【0015】図3及び図4はそれぞれ図2における主帯
電装置と同様な作用を行う別の主帯電装置の構成例で、
図3の主帯電装置では2本のチャージワイヤー11b間
に例えば固定抵抗Rを接続し、感光体入口側の感光体1
0への流れ込み電流を抑制するものである。2本のチャ
ージワイヤー11b間にはシールド板を設置しても良
い。この方式の場合にはグリッド電極の金属ワイヤー間
隔は同じで良い。図4は2本のチャージワイヤー11b
に高低差を設けた例である。また、図示はしていない
が、グリッド電極を分け、前部と後部で印加電圧差を設
ける手法を用いることもできる。
FIG. 3 and FIG. 4 each show an example of the structure of another main charging device that performs the same operation as the main charging device in FIG.
In the main charger of FIG. 3, for example, a fixed resistor R is connected between the two charge wires 11b, and the photosensitive member 1 on the photosensitive member inlet side is connected.
The current flowing into 0 is suppressed. A shield plate may be installed between the two charge wires 11b. In the case of this method, the metal wire intervals of the grid electrode may be the same. Figure 4 shows two charge wires 11b
This is an example in which there is a height difference. Although not shown, a method of dividing the grid electrode and providing a difference in applied voltage between the front part and the rear part can be used.

【0016】電荷を与えられた感光体10は画像露光装
置12により入力信号(原稿)に応じた潜像が形成さ
れ、現像装置13により現像され、感光体10上で可視
化される。感光体10上の可視像は給紙されたコピー用
紙19に転写・分離装置14により転写され、そして感
光体より分離される。転写されたコピー用紙19は定着
装置(図示せず)に搬送されハードコピー化される。一
方、転写後の感光体10表面はクリーニングを容易にす
るために除電装置15により電荷を50〜100V以下
になるように除電された後、クリーニング装置16によ
り清掃される。
An image exposure device 12 forms a latent image according to an input signal (original) on the photoconductor 10 to which an electric charge is applied, and a developing device 13 develops the latent image so that the photoconductor 10 is visualized. The visible image on the photoconductor 10 is transferred to the supplied copy paper 19 by the transfer / separation device 14 and separated from the photoconductor. The transferred copy paper 19 is conveyed to a fixing device (not shown) and made into a hard copy. On the other hand, the surface of the photoconductor 10 after the transfer is discharged by the discharging device 15 so that the charge becomes 50 to 100 V or less in order to facilitate the cleaning, and then cleaned by the cleaning device 16.

【0017】その後、更に残留電位を低減化するための
処理が行なわれる。この処理は、基本的には、クリーニ
ング装置16と主帯電装置11との間に、帯電とは逆極
性の電荷を感光体10に付与する逆電荷付与装置17と
露光装置18を配置し、主帯電に先立ち、感光体10に
主帯電とは逆の電荷と露光を付与することにより行われ
る。逆電荷と露光を感光体10に付与する方法には下記
の3通りの方法がある。 (1)主帯電とは逆の電荷を与えた後、露光する方法 (2)逆帯電を与えると同時に露光する方法 (3)露光を与えた後、逆帯電をする方法 逆電荷単独もしくは露光単独では効果は殆ど無く、逆電
荷のみ付与したのでは単に帯電電位を低下させるのみと
なるので、必ず両装置17、18の作用が必要である。
露光装置18用の光源にはLED等の半導体素子やフィ
ルターを被覆した豆ランプ等が利用できる。光源の波長
は感光体10が光疲労しない波長域であれば特に限定は
されない。
After that, a process for further reducing the residual potential is performed. In this process, basically, between the cleaning device 16 and the main charging device 11, a reverse charge applying device 17 and an exposure device 18 that apply a charge having a polarity opposite to that of the charge to the photoconductor 10 are arranged. Prior to charging, the photoconductor 10 is provided with a charge and an exposure opposite to the main charge. There are the following three methods for applying the opposite charge and the exposure to the photoconductor 10. (1) A method of exposing after applying a charge opposite to the main charge (2) A method of exposing at the same time as applying a reverse charge (3) A method of performing reverse charging after applying an exposure Reverse charge alone or exposure alone Has almost no effect, and applying only the reverse charge only lowers the charging potential. Therefore, the actions of both devices 17 and 18 are necessary.
As the light source for the exposure device 18, a semiconductor element such as an LED or a miniature lamp coated with a filter can be used. The wavelength of the light source is not particularly limited as long as it is a wavelength range in which the photoconductor 10 does not fatigue.

【0018】残留電位は逆電荷の量に応じて低減化を示
すが、感光体10を構成する下引き層、感光層及び保護
層の膜厚、電気抵抗、静電容量や電子、正孔の移動度等
の諸物性で制限される。残留電位は逆電荷量が多くなる
に従い低減化するが、帯電電位の低下量も増大する傾向
があるため、逆帯電電位は200〜700ボルトが好適
な使用範囲である。200ボルトより小さいと効果が不
十分となり、700ボルトを越えると長期的な繰返し使
用時、帯電電位の低下が大きくなり、画像品質に支障が
生じる傾向がある。
Although the residual potential shows a decrease depending on the amount of the reverse charge, the film thickness of the undercoat layer, the photosensitive layer and the protective layer constituting the photoconductor 10, the electric resistance, the electrostatic capacity, the electrons and the holes. Limited by physical properties such as mobility. The residual potential decreases as the amount of reverse charge increases, but the amount of decrease in the charging potential tends to increase, so the reverse charging potential is preferably in the range of 200 to 700 volts. If it is less than 200 V, the effect will be insufficient, and if it exceeds 700 V, the charge potential will be greatly lowered during repeated use over a long period of time, and the image quality will be impaired.

【0019】図5は従来方式の主帯電装置11’の構成
例で(逆電荷を与えないプロセスでは一般的に採用され
る)1本のチャージワイヤー(シングルチャージワイヤ
ー式)11b’にグリッド電極11c’を設置したもの
である。感光体10にあらかじめ主帯電とは逆極性の電
荷が荷電されていると、主帯電を印加したときに感光体
10に電流の流れ込みがあるが、シングルチャージワイ
ヤー方式では一気に所期表面電位にするために、逆極性
の帯電電位が大きいほど感光体10への電流の流れ込み
が多くなる。そのため感光体10を長期にわたって繰返
し使用していると、この影響が感光体10の電荷疲労や
局部的な放電破壊などの現象として現われる危険性があ
りうる。
FIG. 5 shows a configuration example of a conventional main charging device 11 '(generally adopted in a process that does not give a reverse charge) to one charge wire (single charge wire type) 11b' and a grid electrode 11c. 'Is installed. If the photoconductor 10 is previously charged with a charge having a polarity opposite to that of the main charge, current flows into the photoconductor 10 when the main charge is applied. However, in the single charge wire system, the desired surface potential is suddenly set. Therefore, the larger the opposite polarity charging potential is, the more current flows into the photoconductor 10. Therefore, when the photoconductor 10 is repeatedly used for a long period of time, there is a risk that this effect may appear as a phenomenon such as charge fatigue of the photoconductor 10 or local discharge breakdown.

【0020】図6は保護層をオーバーコートした有機光
導電体に逆電荷(+)及び露光を与え、次いで主帯電装
置による電荷(−)を与えたときの帯電状態を模式的に
示したものである。図中aは図5に示す従来方式による
主帯電装置を用いたときの帯電状態、bは図2に示すダ
ブルチャージワイヤー式の主帯電装置による帯電状態を
それぞれ示す。aは例えば、略+700ボルトより−8
00ボルトに帯電した場合であり、bは例えば、+70
0ボルトに帯電した後、一度、略−200ボルトに、さ
らに続けて−800ボルトに帯電した場合の帯電状態を
示している。
FIG. 6 schematically shows a charged state when an organic photoconductor overcoated with a protective layer is given a reverse charge (+) and an exposure, and then a charge (-) is given by a main charging device. Is. In the figure, a indicates a charging state when the conventional main charging device shown in FIG. 5 is used, and b indicates a charging state by the double charge wire type main charging device shown in FIG. a is, for example, approximately +700 V to −8
In the case of being charged to 00 volts, b is +70, for example.
The figure shows the charging state when the battery is charged to 0 volt, then to about -200 volt, and then to -800 volt.

【0021】本発明において、主帯電で少なくとも2つ
の帯電条件による帯電を行うことは、感光体への過剰な
電荷による負担が少なくなるため、電荷疲労や放電破壊
が軽減化され、感光体の長期使用を可能となる。すなわ
ち、逆帯電電位と主帯電装置の入口側での表面電位及び
主帯電装置の入口側と出口側の感光体の表面電位をバラ
ンスすることにより、感光体への影響を最小限に抑える
ことができ、感光体の長期安定性に寄与する。
In the present invention, when the main charging is performed under at least two charging conditions, the burden on the photoconductor due to excessive charges is reduced, so that charge fatigue and discharge breakdown are reduced, and the photoconductor is prolonged. Can be used. That is, it is possible to minimize the influence on the photoconductor by balancing the reverse charging potential, the surface potential on the inlet side of the main charging device, and the surface potential of the photoconductor on the inlet side and the outlet side of the main charging device. This contributes to the long-term stability of the photoconductor.

【0022】[0022]

【実施例】以下、本発明を実施例により更に詳細に説明
する。
EXAMPLES The present invention will now be described in more detail with reference to examples.

【0023】実施例1 直径80mm、長さ340mmのアルミニウムシリンダ
ー上にTiO2(石原産業製)の超微粒子を分散したポ
リアミド樹脂を約2μm塗工して下引き層(UL)を形
成し、次いでトリスアゾ顔料をポリエステル樹脂に分散
した0.15μmの電荷発生層(CGL)、さらにスチ
ルベン系化合物をポリカーボネート樹脂(パンライトC
−1400:帝人化成製)に分散した約28μmの電荷
輸送層(CTL)を夫々積層塗工し、機能分離型のOP
C感光体を作製した。このOPC感光体をプラズマCV
D装置にセットし、原料ガスとしてC24(100sc
cm)、NF3、H2の3種のガスを用い、RF電力(1
3.56MHz)120W、自己バイアス5W、反応圧
0.02Torrの条件で膜厚2.0〜2.2μm、ヌ
ープ硬度500〜530kg/mm2、比抵抗3〜6×1
14Ω・cmのDLC膜を製膜し、感光体サンプルとし
た。
Example 1 A polyamide resin having ultrafine particles of TiO 2 (manufactured by Ishihara Sangyo Co., Ltd.) dispersed on an aluminum cylinder having a diameter of 80 mm and a length of 340 mm by about 2 μm to form an undercoat layer (UL). A 0.15 μm charge generation layer (CGL) in which a trisazo pigment is dispersed in a polyester resin, and a stilbene compound as a polycarbonate resin (Panlite C
-1400: Teijin Chemical Co., Ltd.) and a charge-transporting layer (CTL) of about 28 μm dispersed in each layer is laminated to form a functional separation type OP.
A C photoreceptor was produced. This OPC photoconductor is plasma CV
Set it in the D device and use C 2 H 4 (100 sc
cm), NF 3 and H 2 gas, and RF power (1
3.56 MHz) 120 W, self-bias 5 W, reaction pressure 0.02 Torr, film thickness 2.0 to 2.2 μm, Knoop hardness 500 to 530 kg / mm 2 , specific resistance 3 to 6 × 1.
A DLC film of 0 14 Ω · cm was formed into a photoconductor sample.

【0024】効果確認用の装置として、改造したリコー
製デジタル複写機イマジオ420機を用意した。改造内
容は、逆電荷付与装置と660nmのLEDを光源とす
る露光装置(露光量17〜20μW/cm2)をクリー
ニング装置と主帯電装置間に設置すると共に、主帯電装
置として40mm幅のニッケルメッキした鉄板製のシー
ルドケースを用意し、0.06mmのループ状のタング
ステンワイヤーを張架しダブルワイヤー構造にしたチャ
ージワイヤーを設けると共に、グリッド電極として感光
体の入口側20mmは0.06mmのタングステンワイ
ヤーを幅2mm間隔で、出口側20mmは0.1mmの
タングステンワイヤーを幅3.5mm間隔でチャージワ
イヤーより12mm離して夫々張架し、夫々のグリッド
電極に対して外部電源により電圧を印加できるようにし
た。
As a device for confirming the effect, a modified Ricoh digital copying machine Imagio 420 was prepared. The contents of the remodeling are as follows: a reverse charge applying device and an exposure device (exposure amount of 17 to 20 μW / cm 2 ) using a 660 nm LED as a light source are installed between the cleaning device and the main charging device, and nickel plating of 40 mm width is used as the main charging device. A shield case made of iron plate is prepared, and a charge wire with a double wire structure is provided by stretching a 0.06 mm loop-shaped tungsten wire, and a tungsten wire of 0.06 mm is used as a grid electrode at the entrance side of the photoconductor of 20 mm. At a width of 2 mm, and at the exit side of 20 mm, a tungsten wire of 0.1 mm is stretched at a width of 3.5 mm at a distance of 12 mm from the charge wire so that a voltage can be applied to each grid electrode by an external power source. did.

【0025】逆電荷付与装置にプラスの高電圧を印加
し、感光体表面電位が略+600ボルトになるようにド
ラム電流を設定した。次に、両グリッド電極共通に−3
50ボルトを印加した状態で、主帯電装置に高電圧を印
加したとき、現像装置の位置での感光体の表面電位が略
−750ボルトになるように高電圧電源の出力を調整し
た。このとき、主帯電装置の感光体入口側20mmを通
過した時点での逆電荷付与後の表面電位は略−150〜
180ボルト相当であった。
A high positive voltage was applied to the reverse charge applying device, and the drum current was set so that the surface potential of the photoconductor was approximately +600 volts. Next, in common for both grid electrodes, -3
When a high voltage was applied to the main charging device with 50 V applied, the output of the high voltage power supply was adjusted so that the surface potential of the photoconductor at the position of the developing device was approximately -750 V. At this time, the surface potential after application of the reverse charge at the time of passing 20 mm on the photoreceptor entrance side of the main charging device is approximately -150 to.
It was equivalent to 180 volts.

【0026】評価方法として、現像装置およびクリーニ
ング装置を取外した状態で1日8時間の非通紙による繰
返しランニングを20万枚相当実施し、その間、定期的
にグレースケールによる感光体の表面電位の測定及び白
紙、指定テストチャートによる作像を行い、感光体特性
を評価した。機内表面電位の推移結果を図7に示す。図
7から明らかなように、本発明法によるものは、帯電部
電位は安定した推移を示しており実用上の問題はない。
一方、画像部電位は一時的に低下した後上昇に転ずる
が、上昇は少なく実用上の問題は全く無い。また、画像
品質的には20万枚後でも白/黒斑点等の異常画像は発
生せず問題は無かった。
As an evaluation method, 200,000 sheets were repeatedly run for 8 hours a day with no paper passing with the developing device and the cleaning device removed, and during that period, the surface potential of the photoreceptor was periodically measured by gray scale. The characteristics of the photoconductor were evaluated by measuring, forming a blank sheet, and forming an image on a designated test chart. FIG. 7 shows the transition result of the in-machine surface potential. As is apparent from FIG. 7, the method according to the present invention shows a stable transition of the potential of the charging portion and has no practical problem.
On the other hand, the potential of the image area temporarily drops and then starts to rise, but the rise is small and there is no practical problem at all. In terms of image quality, no abnormal image such as white / black spots was generated even after 200,000 sheets and there was no problem.

【0027】比較例1 感光体は実施例1と同等なものを用い、実験機の主帯電
装置のみリコー製複写機イマジオ420機標準品に変
え、その他の実験条件は実施例1と同じ条件で特性評価
を実施した。この場合の機内表面電位の推移結果を図7
に併せて示す。本比較例法の場合、画像部電位は特に問
題にはならなかったが、帯電部電位は20万枚後スター
ト値に較べ約85〜90ボルト低下した。この低下量で
実用上問題は生じないが、更に継続した場合には問題が
顕在化するレベルである。一方、画像品質的には20万
枚後、白紙コピー上に0.1〜0.5μm径の黒斑点の
発生が数個確認され、更なる継続で実用上問題があるこ
とが判った。
Comparative Example 1 The same photoconductor as in Example 1 was used, only the main charging device of the experimental machine was changed to a standard product of Ricoh Copier Imagio 420 machine, and other experimental conditions were the same as those of Example 1. Characteristic evaluation was carried out. Fig. 7 shows the transition result of the in-flight surface potential in this case.
Are also shown. In the case of the method of this comparative example, the potential of the image portion did not cause any particular problem, but the potential of the charging portion decreased by about 85 to 90 volts compared to the start value after 200,000 sheets. This amount of reduction does not cause any problems in practical use, but it is a level at which the problems become apparent when continued. On the other hand, in terms of image quality, after 200,000 sheets, several black spots having a diameter of 0.1 to 0.5 μm were confirmed on a blank copy, and it was found that there was a problem in practical use with further continuation.

【0028】実施例2〜7 実験機及び感光体サンプルは実施例1に同じものを使用
した。感光体表面電位は逆電荷付与装置に印加する電圧
を変化させ、また、主帯電装置のグリッド電極には別々
の外部電源を接続し、チャージワイヤーへの入力電圧を
も変化させて設定した。表1に逆帯電位及び主帯電装置
入口側電位の条件を示す。
Examples 2 to 7 The same experimental machine and photoconductor sample as in Example 1 were used. The surface potential of the photoconductor was set by changing the voltage applied to the reverse charge applying device, and by connecting different external power supplies to the grid electrode of the main charging device and changing the input voltage to the charge wire. Table 1 shows the conditions of the reverse charging position and the potential on the inlet side of the main charging device.

【0029】[0029]

【表1】 [Table 1]

【0030】また、実施例2〜7における感光体の評価
を実施例1の場合と同様に実施した。その結果を表2に
示す。
The evaluation of the photoconductors in Examples 2 to 7 was carried out in the same manner as in Example 1. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】上記結果に示されるよう、本発明法によれ
ば、逆電荷付与装置と主帯電装置による感光体表面電位
の電位差が少なく、バランスが良好な条件にすることよ
り、電位の変化量も相対的に少なくなり、画像品質に与
える影響も抑えられた。
As shown in the above results, according to the method of the present invention, the potential difference between the surface potential of the photoconductor by the reverse charging device and the main charging device is small, and the amount of change in the potential can be changed by setting the balance well. It was relatively small, and the influence on the image quality was suppressed.

【0033】比較例2〜4 評価用の実験機及び感光体サンプルは比較例1と同じも
のを使用し、表3に示す条件で評価を実施した。その評
価結果を表4に示す。
Comparative Examples 2 to 4 The same experimental machine and photoreceptor sample as those used in Comparative Example 1 were used, and the evaluation was carried out under the conditions shown in Table 3. The evaluation results are shown in Table 4.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】実施例8〜13 感光体の保護層であるDLC膜の比抵抗及び硬度を製造
条件(主として反応圧を0.01〜0.05Torr、
バイアス電力を3〜15Wの間で可変した)を変えるこ
とで変化させた。また主帯電装置は実施例1の帯電装置
をそのまま使用し、グリッド電極には夫々電源を接続し
てチャージワイヤーへの印加電圧可変と合わせて感光体
の表面電位を抑制することにより、感光体入口側と出口
側の感光体への流れ込み電流を変え電位差を変化させ
て、実施例1と同じ確認法により画像品質に与える影響
を観測した。なお、この時の逆電荷付与装置による感光
体の表面電位は+600〜660ボルトとした。DLC
膜の諸物性及び表面電位差の条件を表5に示し、評価結
果を表6に示す。
Examples 8 to 13 The specific resistance and hardness of the DLC film, which is the protective layer of the photoconductor, were set under the manufacturing conditions (mainly the reaction pressure was 0.01 to 0.05 Torr,
The bias power was varied between 3 and 15 W). Further, the main charging device is the same as the charging device of the first embodiment, and a power source is connected to each of the grid electrodes to control the surface potential of the photoconductor in accordance with the voltage applied to the charge wire. The effect on image quality was observed by the same confirmation method as in Example 1 by changing the current flowing into the photoconductors on the side of the outlet and the side of the outlet and changing the potential difference. The surface potential of the photoconductor by the reverse charge applying device at this time was +600 to 660 volts. DLC
The physical properties of the film and the conditions of the surface potential difference are shown in Table 5, and the evaluation results are shown in Table 6.

【0037】[0037]

【表5】 [Table 5]

【0038】[0038]

【表6】 [Table 6]

【0039】比抵抗が1013Ω・cmより小さいと画像
流れが、1015Ω・cmより大きいと画像部電位が上昇
し、画像品質の劣化を生じる。またDLC膜の硬度は3
50kg/mm2が限度であり、それ以上の硬度が要求さ
れる。更に、主帯電装置の入口側と出口側の電位差が小
さくても、大きくても、感光体に対する電界によるダメ
ージが大きくなり、好ましくないことが判った。
When the specific resistance is less than 10 13 Ω · cm, the image deletion occurs, and when the specific resistance is more than 10 15 Ω · cm, the potential of the image area increases and the image quality deteriorates. The hardness of the DLC film is 3
The limit is 50 kg / mm 2 , and hardness higher than that is required. Further, it was found that the potential difference between the inlet side and the outlet side of the main charger is small or large, and the electric field to the photoconductor is greatly damaged.

【0040】[0040]

【発明の効果】本発明によれば、前記構成としたので、
DLC膜を保護層とした感光体で生じる残留電位及びそ
の蓄積を効率良く低減させることができ、また電荷疲労
に伴う帯電電位の低下、画像品質の低下を防止し、長期
にわたって安定した電子写真特性を維持することが可能
となる。
According to the present invention, because of the above-mentioned structure,
It is possible to efficiently reduce the residual potential and its accumulation that occur in the photoconductor having the DLC film as the protective layer, and prevent the reduction of the charging potential and the deterioration of the image quality due to the charge fatigue, and the stable electrophotographic characteristics for a long time. It is possible to maintain.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で使用する有機系感光体の構成例
を示す模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing a constitutional example of an organic photoreceptor used in the method of the present invention.

【図2】本発明の方法の実施に好適な装置の概略図であ
る。
FIG. 2 is a schematic diagram of an apparatus suitable for carrying out the method of the present invention.

【図3】2本のチャージワイヤー間に抵抗を設置し放電
電流に差をつけた主帯電装置を示す図である。
FIG. 3 is a diagram showing a main charging device in which a resistor is installed between two charge wires to make a difference in discharge current.

【図4】2本のチャージワイヤーに高低差を設け放電電
流に差をつけた主帯電装置を示す図である。
FIG. 4 is a diagram showing a main charging device in which two charge wires are provided with a height difference and a discharge current is made different.

【図5】従来のシングルチャージワイヤー方式の主帯電
装置を示す図である。
FIG. 5 is a diagram showing a conventional single charge wire type main charging device.

【図6】逆帯電工程及び主帯電工程での帯電状態を示す
図である。
FIG. 6 is a diagram showing a charging state in a reverse charging step and a main charging step.

【図7】本発明法及び従来法での20万枚リピート時の
機内電位の推移を比較して示す図である。
FIG. 7 is a diagram showing a comparison of changes in the in-machine potential at the time of repeating 200,000 sheets in the method of the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

1 導電性支持体 2 下引き層
(UL) 3 感光層 4 電荷発生層
(CGL) 5 電荷輸送層(CTL) 6 保護層 10 感光体 11 主帯電装
置 11a シールドケース 11b チャー
ジワイヤー 11c グリッド電極 12 画像露光
装置 13 現像装置 14 転写・分
離装置 15 除電装置 16 クリーニ
ング装置 17 逆電荷付与装置 18 露光装置 19 コピー用紙
1 Conductive Support 2 Undercoat Layer (UL) 3 Photosensitive Layer 4 Charge Generation Layer (CGL) 5 Charge Transport Layer (CTL) 6 Protective Layer 10 Photoconductor 11 Main Charging Device 11a Shield Case 11b Charge Wire 11c Grid Electrode 12 Image Exposure device 13 Developing device 14 Transfer / separation device 15 Static eliminator 16 Cleaning device 17 Reverse charge applying device 18 Exposure device 19 Copy paper

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素または炭素を主成分として構成され
た薄膜を表面保護層として有する有機系感光体に主帯
電、画像露光、現像、転写、分離、除電及びクリーニン
グの工程を繰り返し行って普通紙に多数枚のコピーを得
る電子写真法において、クリーニング工程と主帯電工程
との間に、主帯電とは逆極性の電荷を感光体に付与する
と同時に又はその直前若しくは直後に露光を行う逆電荷
付与・露光工程を設け、かつ前記主帯電工程において少
なくとも2つの異なる帯電条件による帯電を行うことを
特徴とする電子写真法。
1. A plain paper obtained by repeating steps of main charging, image exposure, development, transfer, separation, charge removal and cleaning of an organic photoreceptor having a surface protective layer of carbon or a thin film composed mainly of carbon. In the electrophotographic method for obtaining a large number of copies, during the cleaning step and the main charging step, a charge having a polarity opposite to that of the main charging is applied to the photoreceptor at the same time, or immediately before or immediately after the exposure, a reverse charge application is performed. An electrophotographic method characterized in that an exposure step is provided and charging is performed under at least two different charging conditions in the main charging step.
【請求項2】 前記逆電荷付与・露光工程により感光体
の帯電電位を+200〜+700ボルトとした後、前記
主帯電工程において、第1の帯電条件により感光体の帯
電電位を+300〜−500ボルトとした後、第2の帯
電条件により感光体の帯電電位を潜像形成のための所定
電位とすることを特徴とする請求項1に記載の電子写真
法。
2. The charging potential of the photoconductor is set to +200 to +700 volts by the reverse charge application / exposure step, and then the charging potential of the photoconductor is set to +300 to −500 volts under the first charging condition in the main charging step. 2. The electrophotographic method according to claim 1, wherein the charging potential of the photoconductor is set to a predetermined potential for latent image formation under the second charging condition.
【請求項3】 前記感光体として、比抵抗が1013〜1
15Ω・cmのオーダーでヌープ硬度が350kg/m
2以上の炭素または炭素を主成分として構成される薄
膜からなる表面保護層を有する有機系感光体を用い、か
つ前記主帯電工程における第1の帯電条件と第2の帯電
条件による感光体面上の帯電電位の差を400〜120
0ボルトとすることを特徴とする請求項1又は2に記載
の電子写真法。
3. The photosensitive member has a specific resistance of 10 13 to 1 1.
Knoop hardness of 350 kg / m on the order of 0 15 Ω · cm
An organic photoconductor having a surface protective layer made of m 2 or more carbon or a thin film mainly composed of carbon is used, and the photoconductor surface is subjected to the first charging condition and the second charging condition in the main charging step. The difference in the charging potential of 400 to 120
The electrophotographic method according to claim 1, wherein the electrophotographic method is 0 volt.
JP5169767A 1993-06-16 1993-06-16 Electrophotographic method Pending JPH07140735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5169767A JPH07140735A (en) 1993-06-16 1993-06-16 Electrophotographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5169767A JPH07140735A (en) 1993-06-16 1993-06-16 Electrophotographic method

Publications (1)

Publication Number Publication Date
JPH07140735A true JPH07140735A (en) 1995-06-02

Family

ID=15892483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5169767A Pending JPH07140735A (en) 1993-06-16 1993-06-16 Electrophotographic method

Country Status (1)

Country Link
JP (1) JPH07140735A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243357A (en) * 2005-03-03 2006-09-14 Fuji Xerox Co Ltd Image forming apparatus
JP2017024222A (en) * 2015-07-17 2017-02-02 富士ゼロックス株式会社 Semiconductor element, substrate device, exposure device, image formation device, method for manufacturing semiconductor element, and method for manufacturing substrate device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006243357A (en) * 2005-03-03 2006-09-14 Fuji Xerox Co Ltd Image forming apparatus
JP4720215B2 (en) * 2005-03-03 2011-07-13 富士ゼロックス株式会社 Image forming apparatus
JP2017024222A (en) * 2015-07-17 2017-02-02 富士ゼロックス株式会社 Semiconductor element, substrate device, exposure device, image formation device, method for manufacturing semiconductor element, and method for manufacturing substrate device

Similar Documents

Publication Publication Date Title
EP0367203B1 (en) Electrophotographic apparatus
US5438401A (en) Multicolor image forming method and apparatus therefor
US5452061A (en) Image formation apparatus
US5068762A (en) Electrophotographic charging device
CN1312536C (en) Electric camera photosensitive members
JPH07140735A (en) Electrophotographic method
JPH07239565A (en) Electrophotographic copying method
US5583616A (en) Electrophotographic apparatus with pre-exposure controlled according to photoconductor thinning
JP3584565B2 (en) Electronic device and image forming apparatus
JPH0451168A (en) Electrophotographic copying method
JPH0764455A (en) Electrophotography
JPH06214497A (en) Electrophotographic method
JP4971737B2 (en) Image forming apparatus
US5567556A (en) Electrophotographic process and apparatus simultaneously effecting image exposure and developing steps to opposites sides of photosensitive member
JPH08254930A (en) Image forming device
JPH06202530A (en) Electrophotographic method
JPS6049357A (en) Sensitivity correcting method of photoconductive sensitive body
JP3878752B2 (en) Image forming apparatus
JPH1124358A (en) Image forming device
JPH11143176A (en) Electrifying member and image forming device
JPH1010761A (en) Electrophotographic photoreceptor, manufacture thereof and image forming device using the same
JPH1152599A (en) Image forming device
JP2004133399A (en) Electrophotographic photoreceptor
JP2005148303A (en) Cleaning system, process cartridge, and image forming apparatus
JP2002214870A (en) Image forming device