JPH07140493A - Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal - Google Patents

Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal

Info

Publication number
JPH07140493A
JPH07140493A JP6209135A JP20913594A JPH07140493A JP H07140493 A JPH07140493 A JP H07140493A JP 6209135 A JP6209135 A JP 6209135A JP 20913594 A JP20913594 A JP 20913594A JP H07140493 A JPH07140493 A JP H07140493A
Authority
JP
Japan
Prior art keywords
liquid crystal
vertical alignment
electrodes
parallel
alignment layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6209135A
Other languages
Japanese (ja)
Inventor
Masashi Akaha
正志 赤羽
Munehiro Kimura
宗弘 木村
Takashi Hagiwara
隆 萩原
Giichi Suzuki
義一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP6209135A priority Critical patent/JPH07140493A/en
Publication of JPH07140493A publication Critical patent/JPH07140493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

PURPOSE:To provide a liquid crystal light valve of high-speed response by low electric field driving by using a liquid crystal cell formed by perpendicularly orienting an antiferroelectric liquid crystal and impressing a low electric field between electrodes which are held in this cell and are disposed to face each other in parallel, thereby changing the direction in the molecule orientation of the antiferroelectric liquid crystal and generating a bright and dark contrast when the cell is placed between polarizing plates orthogonal with each other. CONSTITUTION:This liquid crystal cell is constituted by disposing transparent substrates 1, 2 having perpendicularly oriented layers 3, 4 opposite to each other in such a manner that the respective perpendicularly oriented layers 3, 4 exist on the inner side, inserting and arranging >=1 pairs of plus electrodes 5 and minus electrodes 6 therebetween in parallel and encapsulating the antiferroelectric liquid crystal 7 into the space enclosed between the plus electrodes 5 and the minus electrodes 6. This liquid crystal light valve is composed of such liquid crystal cell and the polarizing plates arranged on the outer sides of the upper and lower liquid crystal display substrates 1, 2 in such a relation that the respective polarization directions are not paralleled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直配向層を持つ透明
基板間に挟み込んだ平行に対向した電極の間に反強誘電
性液晶を封入した液晶セル、または垂直配向層を持つ透
明基板間に挟みこんだ平行に対向した電極の間に、垂直
配向層に対して螺旋軸が垂直に、電極に対して平行にな
るように、反強誘電性液晶を封入した液晶セル、これら
の液晶セルの上下を偏光板で挾んだ液晶ライトバルブお
よび螺旋ピッチ測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal cell in which an antiferroelectric liquid crystal is sealed between electrodes facing in parallel sandwiched between transparent substrates having vertical alignment layers, or between transparent substrates having vertical alignment layers. A liquid crystal cell in which an antiferroelectric liquid crystal is sealed so that the spiral axis is perpendicular to the vertical alignment layer and parallel to the electrodes between electrodes facing each other sandwiched in parallel. The present invention relates to a liquid crystal light valve in which polarizing plates are sandwiched above and below and a spiral pitch measuring device.

【0002】[0002]

【従来の技術】従来の液晶ライトバルブは、ネマチック
液晶を用いており、ネマチック液晶の電界に対する応答
速度が数ミリ秒と遅いため、応答速度が不十分であっ
た。特開昭56−10726号公報に基づいて強誘電性
液晶が従来のネマチック液晶にくらべて高速応答を有す
ることに着目し、高速応答型の液晶ライトバルブの開発
が試みられてきた。しかし、強誘電性液晶の配向はネマ
チック液晶の配向にくらべてこわれやすく、一度こわれ
ると復帰はしない。また、しきい値電圧がネマチック液
晶のTNモードにくらべて高いなどの問題点が観察され
てきた。
2. Description of the Related Art A conventional liquid crystal light valve uses a nematic liquid crystal, and the response speed of the nematic liquid crystal to an electric field is as slow as several milliseconds, so that the response speed is insufficient. Based on Japanese Patent Application Laid-Open No. 56-10726, attention has been paid to the fact that a ferroelectric liquid crystal has a faster response than a conventional nematic liquid crystal, and attempts have been made to develop a fast response type liquid crystal light valve. However, the orientation of the ferroelectric liquid crystal is more easily broken than the orientation of the nematic liquid crystal, and once it is broken, it does not recover. Further, there have been observed problems such as a higher threshold voltage than the TN mode of nematic liquid crystal.

【0003】特開平2−153322号公報には、電界
を印加していない時に第三の安定状態を示す反強誘電性
液晶表示素子が示されているが、この液晶を用いれば高
速応答と配向のこわれにくさを実現できるはずである。
しかし、反強誘電性液晶は、例えばJPN.J.APP
L.PHYS.VOL27,NO5,1988,P72
9〜732に示されているように、しきい値電界が高い
(2MV/m以上)ものであり、ライトバルブを交番電
界で駆動する場合、消費電力が大きくなるという問題を
抱えている。なお、3つの安定状態をもつ反強誘電性液
晶を平行配向処理を施した透明電極付透明基板間に封入
し、これに電圧を印加する液晶電気光学装置について
は、すでに本出願人が特願昭63−70212号として
出願し、特開平2−153322号として公開されてい
る。
Japanese Unexamined Patent Publication (Kokai) No. 2-153322 discloses an antiferroelectric liquid crystal display element that exhibits a third stable state when no electric field is applied. Using this liquid crystal, high-speed response and alignment are achieved. It should be possible to realize the durability.
However, the antiferroelectric liquid crystal is disclosed in JPN. J. APP
L. PHYS. VOL27, NO5, 1988, P72
9 to 732, the threshold electric field is high (2 MV / m or more), and when the light valve is driven by the alternating electric field, power consumption increases. The applicant has already applied for a liquid crystal electro-optical device in which an antiferroelectric liquid crystal having three stable states is enclosed between transparent substrates with transparent electrodes subjected to parallel alignment processing and a voltage is applied to the transparent substrates. It was filed as Japanese Patent Laid-Open No. 63-70212 and published as Japanese Patent Application Laid-Open No. 2-153322.

【0004】また、垂直配向セルに挟み込んだ場合、反
強誘電性液晶は二重らせんを巻いていることが、JP
N.J.APPL.PHYS.VOL28,NO7,J
ULY,1989,P1265〜1268に報告されて
いる。また、螺旋の巻具合い、すなわち螺旋のピッチは
セルに封入した時の反強誘電性液晶の配向に大きく影響
するにもかかわらず、分光器を用いた従来の方法では未
だに正確に求められていない。
When sandwiched in a vertically aligned cell, the antiferroelectric liquid crystal has a double helix.
N. J. APPL. PHYS. VOL28, NO7, J
ULY, 1989, P1265-1268. Further, although the winding condition of the spiral, that is, the pitch of the spiral has a great influence on the orientation of the antiferroelectric liquid crystal when it is enclosed in the cell, it has not yet been accurately determined by the conventional method using the spectroscope. .

【0005】さらに反強誘電性液晶化合物は、本発明者
の特開平1−316367号、特開平1−316372
号、特開平1−316339号、特開平2−28128
号及び市橋等の特開平1−213390号公報があり、
また反強誘電性液晶を利用した液晶電気光学装置として
は本出願人の特開平2−40625号、特開平2−15
3322号、特開平2−173724号がある。しか
し、これらの先行文献には本発明のような構造の液晶ラ
イトバルブを示唆する記載はない。
Further, an antiferroelectric liquid crystal compound is disclosed in Japanese Patent Application Laid-Open Nos. 1-331667 and 1-316372 of the present inventor.
JP-A-1-316339, JP-A-2-28128
And Japanese Patent Laid-Open No. 1-213390, such as Ichihashi,
Further, as a liquid crystal electro-optical device using an antiferroelectric liquid crystal, Japanese Patent Application Laid-Open No. 2-40625 and Japanese Patent Application Laid-Open No. 2-15 are filed by the applicant.
3322 and JP-A-2-173724. However, there is no description suggesting a liquid crystal light valve having the structure as in the present invention in these prior documents.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の第一
の目的は、前述したような不具合に対処すべく、反強誘
電性液晶を垂直配向させた液晶セルを提供すること、お
よびこの液晶セル中に挟み込んで平行に対向させた電極
間に低い電界を印加することによって、反強誘電性液晶
の分子配向の方向を変化させ、それぞれの偏光方向が平
行にならないように、好ましくは偏光方向が直交するよ
うな関係の偏光板の間に前記液晶セルを置いた時に明暗
のコントラストを生じさせて、低電界駆動によっても高
速応答が可能な液晶ライトバルブを提供する点にある。
SUMMARY OF THE INVENTION Therefore, a first object of the present invention is to provide a liquid crystal cell in which an antiferroelectric liquid crystal is vertically aligned in order to deal with the above-mentioned problems, and this liquid crystal. By applying a low electric field between the electrodes sandwiched in the cell and facing each other in parallel, the direction of the molecular orientation of the antiferroelectric liquid crystal is changed, and it is preferable that the polarization directions are not parallel. The point is to provide a liquid crystal light valve capable of producing a high-speed response even when driven by a low electric field, by causing a contrast of light and dark when the liquid crystal cell is placed between polarizing plates having a relationship of being orthogonal to each other.

【0007】本発明の第二の目的は、前述したような不
具合に対処すべく、螺旋を巻いた反強誘電性液晶の螺旋
軸を垂直配向層に垂直になるように封入した液晶セルを
提供すること、およびこの液晶セル中に挟み込んで平行
に対向させた電極間に低い電界を反強誘電性液晶の螺旋
軸に垂直に印加することによって、反強誘電性液晶の螺
旋構造を歪ませるか、または螺旋ピッチを変化させ、そ
れぞれの偏光方向が平行にならないように、好ましくは
偏光方向が直交するような関係の偏向板の間に置いた時
に明暗のコントラストを生じさせて、低電界駆動によっ
ても高速応答が可能な液晶ライトバルブを提供する点に
ある。
A second object of the present invention is to provide a liquid crystal cell in which a spiral axis of a spirally wound antiferroelectric liquid crystal is enclosed so as to be perpendicular to a vertical alignment layer in order to deal with the above-mentioned problems. And distort the spiral structure of the antiferroelectric liquid crystal by applying a low electric field perpendicularly to the spiral axis of the antiferroelectric liquid crystal between the electrodes sandwiched in the liquid crystal cell and facing each other in parallel. , Or the spiral pitch is changed so that the polarization directions are not parallel, preferably when they are placed between polarizing plates in such a relationship that the polarization directions are orthogonal to each other, a contrast of light and dark is generated, and high speed is achieved even by low electric field driving. The point is to provide a liquid crystal light valve capable of responding.

【0008】本発明の第三の目的は、前記螺旋を巻いた
セルを用いて反強誘電性液晶の選択反射波長を正確に測
定することにより、螺旋ピッチを正確に測定する装置を
提供する点にある。
A third object of the present invention is to provide a device for accurately measuring the spiral pitch by accurately measuring the selective reflection wavelength of the antiferroelectric liquid crystal using the spirally wound cell. It is in.

【0009】[0009]

【課題を解決するための手段】本発明の第一は、垂直配
向層を有する透明基板をそれぞれ垂直配向層を内側にし
て対向させ、その間に一対以上のプラス電極とマイナス
電極を平行に挿入配置し、垂直配向層とプラス電極およ
びマイナス電極間に囲まれた空間に反強誘電性液晶を封
入した液晶セルに関する。
According to the first aspect of the present invention, transparent substrates having vertical alignment layers are made to face each other with the vertical alignment layers facing inward, and a pair of positive electrodes and negative electrodes are inserted in parallel therebetween. And a liquid crystal cell in which an antiferroelectric liquid crystal is enclosed in a space surrounded by the vertical alignment layer and the plus and minus electrodes.

【0010】本発明の第二は、垂直配向層を有する透明
基板をそれぞれ垂直配向層を内側にして対向させ、その
間に一対以上のプラス電極とマイナス電極を平行に挿入
配置し、垂直配向層とプラス電極およびマイナス電極間
に囲まれた空間に螺旋を巻いた反強誘電性液晶を該液晶
の螺旋軸が垂直配向層に対しては垂直に、両電極に対し
ては平行になるように封入した液晶セルに関する。
In the second aspect of the present invention, the transparent substrates having the vertical alignment layers are made to face each other with the vertical alignment layers facing inside, and a pair of positive electrodes and negative electrodes are inserted in parallel between them to arrange the vertical alignment layers. An antiferroelectric liquid crystal wound in a space surrounded by the positive and negative electrodes is enclosed so that the spiral axis of the liquid crystal is perpendicular to the vertical alignment layer and parallel to both electrodes. Liquid crystal cell.

【0011】本発明の第三は、請求項1または2記載の
液晶セルおよび前記液晶セルの上下透明基板の外側にそ
れぞれの偏光方向が平行にならないような関係で配置さ
れた偏光板よりなることを特徴とする液晶ライトバルブ
に関する。
A third aspect of the present invention comprises a liquid crystal cell according to claim 1 and a polarizing plate arranged outside the upper and lower transparent substrates of the liquid crystal cell in such a relationship that their polarization directions are not parallel. The present invention relates to a liquid crystal light valve.

【0012】第一〜第三発明において、前記平行に挿入
配置されたプラス電極とマイナス電極との間隙は100
μm〜2mm、好ましくは100μm〜200μmであ
る。前記対向させた透明基板の間隔は50〜200μm
であることが好ましい。
In the first to third inventions, the gap between the plus electrode and the minus electrode inserted and arranged in parallel is 100.
μm to 2 mm, preferably 100 μm to 200 μm. The distance between the transparent substrates facing each other is 50 to 200 μm.
Is preferred.

【0013】また、本発明の第三においては、上下の透
明基板の外側に偏光板をそれぞれの偏光方向が直交する
ような関係(それに近い関係を含む)で配置することが
好ましい。
Further, in the third aspect of the present invention, it is preferable to arrange the polarizing plates outside the upper and lower transparent substrates in such a relationship that the respective polarization directions are orthogonal to each other (including a relationship close thereto).

【0014】このように構成した本発明の液晶ライトバ
ルブは、印加電界とお互いに偏光方向が直交した偏光板
の作用により前記反強誘電性液晶を透過する光の強度が
変化するというような印加電界−透過光強度特性を発揮
し、これにより、印加電界に対する透過光強度の変化の
しきい値電界を低下させ、機械的ショックに対しても配
向がこわれにくくすることができた。
In the liquid crystal light valve of the present invention thus constructed, the intensity of the light transmitted through the antiferroelectric liquid crystal is changed by the action of the polarizing plate whose polarization directions are orthogonal to each other with the applied electric field. By exhibiting the electric field-transmitted light intensity characteristic, the threshold electric field of the change of the transmitted light intensity with respect to the applied electric field was lowered, and the orientation could be made resistant to mechanical shock.

【0015】本発明の第四は、 単色の光の波長を連続的に変化させて光を発射する
出力光手段、 垂直配向層を有する透明基板をそれぞれ垂直配向層
を内側にして対向させ、その間に一対以上のプラス電極
とマイナス電極を平行に挿入配置し、垂直配向層とプラ
ス電極およびマイナス電極間に囲まれた空間に螺旋を巻
いた反強誘電性液晶を、該液晶の螺旋軸が垂直配向層に
対しては垂直に、両電極に対しては平行になるように封
入した液晶セル、その一方の側に設けられた偏光子およ
びその他方の側に設けられた検光子よりなり、両者はそ
れぞれの偏光方向が平行にならないような関係で配置さ
れている液晶ライトバルブ、 前記液晶ライトバルブの作動温度を制御するための
温度コントローラ、 出力光手段から偏光子、前記液晶セル、検光子の順
で通過してきた光を検知するための光検出器、よりなる
ことを特徴とする反強誘電性液晶の螺旋ピッチ測定装置
に関する。
A fourth aspect of the present invention is: output light means for emitting light by continuously changing the wavelength of monochromatic light; transparent substrates having vertical alignment layers are made to face each other with the vertical alignment layers inside, and A pair of positive and negative electrodes are inserted in parallel with each other, and an antiferroelectric liquid crystal wound spirally in a space surrounded by the vertical alignment layer and the positive and negative electrodes is It consists of a liquid crystal cell enclosed perpendicularly to the alignment layer and parallel to both electrodes, a polarizer provided on one side and an analyzer provided on the other side. Are liquid crystal light valves arranged such that their respective polarization directions are not parallel, a temperature controller for controlling the operating temperature of the liquid crystal light valve, a polarizer from the output light means, the liquid crystal cell, and an analyzer. And a photodetector for detecting light passing through in this order, and a spiral pitch measuring device for an antiferroelectric liquid crystal.

【0016】本発明の反強誘電性液晶の螺旋ピッチ測定
装置の基本原理を図6を用いて説明する。モノクロメー
ターで光源から単色の光を取り出し、この光の波長を連
続的に変化させつつ、光を偏光子、液晶ライトバルブ、
検光子(偏光板の光源側のものを偏光子と称し、検出器
側のものを検光子と称する)を通過させ、検出器で透過
光の強度を測定する。そして、波長に対してこの透過光
強度をプロットすると、図7に示す曲線を得ることがで
きる。従来の測定装置は、図6に示すような偏光子や検
光子を用いない。本発明における液晶ライトバルブと偏
光板(偏光子と検光子)の関係は図3のようになってい
る。液晶ライトバルブのセルを図のように回転したと
き、平行に対抗した電極面が、偏光子と検光子の中間、
すなわち、どちらからも45゜の角度になるように固定
して、透過光度を測定する。透過光の強度はこの角度の
ときが最も強いので一番有効である。図3の(a)は、
この固定した状態をセルの観点のみを重視して図示した
ものであり、図3の(b)は、それを斜視図的に示した
ものである。
The basic principle of the spiral pitch measuring device for antiferroelectric liquid crystal of the present invention will be described with reference to FIG. Monochromatic light is extracted from the light source with a monochromator, and while continuously changing the wavelength of this light, the light is polarized by a polarizer, a liquid crystal light valve,
An analyzer (the one on the light source side of the polarizing plate is called a polarizer and the one on the detector side is called an analyzer) is passed through, and the intensity of the transmitted light is measured by the detector. Then, by plotting this transmitted light intensity against the wavelength, the curve shown in FIG. 7 can be obtained. The conventional measuring device does not use a polarizer or an analyzer as shown in FIG. The relationship between the liquid crystal light valve and the polarizing plate (polarizer and analyzer) in the present invention is as shown in FIG. When the cell of the liquid crystal light valve is rotated as shown in the figure, the electrode surfaces facing each other in parallel are between the polarizer and the analyzer,
That is, the transmitted luminosity is measured while fixing them at an angle of 45 ° from both sides. The intensity of the transmitted light is strongest at this angle, so it is most effective. FIG. 3A shows
This fixed state is shown by emphasizing only the viewpoint of the cell, and FIG. 3B is a perspective view showing it.

【0017】液晶が螺旋を巻いているとき、螺旋を巻く
方向と同じ方向の円偏光は、その波長と螺旋ピッチが一
致すると選択的に反射される(選択反射)。本発明のよ
うに直線偏光を螺旋構造を持つ液晶相に入射すると、旋
光性により偏光方向が回転する。選択反射波長付近では
回転角が大きくなり、検光子に平行な光の成分が多くな
り、光の透過率が大きくなる。旋光性は図10のように
変化し、選択反射波長を挾んで旋光能が逆転するため透
過率ピークが2つ現れると考えられる。透過率の落ち込
み部分は、選択反射波長に対応している。これらの理由
から、図7のピークとピークの間の谷間すなわち2つの
ピーク間の最小値の位置を測定して、選択反射波長を求
めることができる。選択反射波長が求められれば、後は
下記式により反強誘電性液晶の螺旋ピッチを計算により
得ることができる。別の液晶について測定したいとき
は、液晶ライトバルブ中の液晶を入れかえて使用する。
When the liquid crystal is wound in a spiral, circularly polarized light in the same direction as the spiral is selectively reflected when its wavelength matches the spiral pitch (selective reflection). When linearly polarized light is incident on the liquid crystal phase having a spiral structure as in the present invention, the polarization direction is rotated due to the optical rotatory power. In the vicinity of the selective reflection wavelength, the rotation angle increases, the component of light parallel to the analyzer increases, and the light transmittance increases. The optical rotatory power changes as shown in FIG. 10, and it is considered that two transmittance peaks appear because the optical rotatory power is reversed by sandwiching the selective reflection wavelength. The portion where the transmittance drops corresponds to the selective reflection wavelength. For these reasons, it is possible to obtain the selective reflection wavelength by measuring the position of the valley between the peaks in FIG. 7, that is, the position of the minimum value between the two peaks. Once the selective reflection wavelength is obtained, the spiral pitch of the antiferroelectric liquid crystal can be calculated later by the following formula. If you want to measure with another liquid crystal, replace the liquid crystal in the liquid crystal light valve.

【0018】選択反射波長をλ、螺旋ピッチをPとする
と、
When the selective reflection wavelength is λ and the spiral pitch is P,

【数1】λ=nav・P/m (m=1,2,3・・・
・・などの自然数である。) nav=(ne 2+no 2)/2 nav:平均屈折率 no :常光の屈折率 ne :異常光の屈折率
[ Formula 1] λ = n av · P / m (m = 1, 2, 3 ...
.. is a natural number such as. ) N av = (n e 2 + n o 2 ) / 2 n av : average refractive index n o : ordinary light refractive index n e : extraordinary light refractive index

【0019】前記透明基板としては、ガラス、石英、合
成樹脂などよりなるシートまたは板を例示することがで
きる。
Examples of the transparent substrate include a sheet or plate made of glass, quartz, synthetic resin or the like.

【0020】前記垂直配向層としては、クロム錯体(例
えば、パーフルオロノナン酸クロム錯体)、シラン系カ
ップリング剤、ポリイミドなどを例示することができ
る。
Examples of the vertical alignment layer include a chromium complex (eg, chromium perfluorononanoate complex), a silane coupling agent, and polyimide.

【0021】前記対向電極はステンレス板、アルミニウ
ム板などを例示することができる。印加する電圧を均一
にするためには液晶を挾む面を鏡面仕上げとしたものを
使用することが好ましい。
Examples of the counter electrode include a stainless plate and an aluminum plate. In order to make the applied voltage uniform, it is preferable to use a mirror-finished surface for holding the liquid crystal.

【0022】本発明は、一対のプラス電極とマイナス電
極を組合わせただけのものとすることもできるが、多数
対のプラス電極とマイナス電極を大きな基板間に挿入
し、一対の基板間に多数の液晶ライトバルブを形成する
こともできる。また、一方の基板のみを大きい基板と
し、他方の基板は、一個のライトバルブに相当する大き
さのものを多数設けることもできる(図5参照)。
In the present invention, a combination of a pair of positive electrodes and negative electrodes can be used only, but a large number of pairs of positive electrodes and negative electrodes are inserted between large substrates and a large number of them are provided between a pair of substrates. The liquid crystal light valve can be formed. Alternatively, only one substrate may be a large substrate, and the other substrate may be provided with a large number of substrates each having a size corresponding to one light valve (see FIG. 5).

【0023】本発明で使用する反強誘電性液晶は、本出
願人の出願している発明にかかる反強誘電性液晶をはじ
め、その他の各種反強誘電性液晶のいずれをも使用する
ことができる。
As the antiferroelectric liquid crystal used in the present invention, any of various antiferroelectric liquid crystals other than the antiferroelectric liquid crystal according to the invention filed by the present applicant can be used. it can.

【0024】[0024]

【実施例】以下、本発明の一実施例を図面により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0025】実施例1 図1にセルの構造を示す。ガラス基板1、2の表面はシ
ラン系カップリング剤商品名TLI−3334〔メルク
ジャパン(株)製〕を塗布し垂直配向層3、4を形成し
ている。2つの電極5、6はステンレス板を用い、両電
極の間隔は約100〜200μmである。これらの電極
はスペーサも兼ねており、厚さは50μmである。
Example 1 FIG. 1 shows a cell structure. The surfaces of the glass substrates 1 and 2 are coated with a silane coupling agent, trade name TLI-3334 (manufactured by Merck Japan Ltd.) to form vertical alignment layers 3 and 4. A stainless plate is used for the two electrodes 5 and 6, and the distance between both electrodes is about 100 to 200 μm. These electrodes also serve as spacers and have a thickness of 50 μm.

【0026】図2にはこのセルを駆動させる際の光学系
を含むシステムを示す。これは通常の光学実験で良く使
われるシステムの改良であり、フィルターとモノクロメ
ーターは光源の波長を任意に変えるためのものであり、
ロックインアンプは周波数と位相が既知の信号の振幅を
高い感度で測定できるようにするための増幅器である。
図3は、偏光子と検光子およびセルの幾何学的配置関係
を示す。クロスニコルから45°回転する。
FIG. 2 shows a system including an optical system for driving this cell. This is an improvement of the system often used in ordinary optical experiments, the filter and the monochromator are for arbitrarily changing the wavelength of the light source,
The lock-in amplifier is an amplifier that enables the amplitude of a signal whose frequency and phase are known to be measured with high sensitivity.
FIG. 3 shows a geometrical arrangement relationship between a polarizer, an analyzer and a cell. Rotate 45 degrees from crossed Nicols.

【0027】実験で使用した反強誘電性液晶は以下の化
合物であり、
The antiferroelectric liquid crystal used in the experiment is the following compound,

【化1】 その相転移は、表1に示した。[Chemical 1] The phase transition is shown in Table 1.

【表1】 [Table 1]

【0028】この液晶セルについて印加電圧の変化に対
応して透過光強度がどのように変化するかをみたのが図
4である。いいかえれば透過光強度の電界依存性を図4
に示す。電界強度の増加に対する透過光強度の立ち上が
りは、急しゅんではないが平行配向させた反強誘電性液
晶セルのしきい値(2MV/m以上)に比べて、このセ
ルのしきい値は0.2〜0.3MV/m程度と約1/1
0に低下している。またこのセルの透過光強度の変化は
らせんを巻いた反強誘電性液晶の電界による配向の歪み
というバルクの性質によっており、基板界面への依存も
少いため、変化の過程は再現性があり、階調性がある。
FIG. 4 shows how the transmitted light intensity changes in response to changes in the applied voltage for this liquid crystal cell. In other words, the electric field dependence of the transmitted light intensity is shown in Fig. 4.
Shown in. The rise of the transmitted light intensity with respect to the increase of the electric field intensity is not steep, but the threshold value of this cell is less than that of the parallel-oriented antiferroelectric liquid crystal cell (2 MV / m or more). About 2 to 0.3 MV / m and about 1/1
It has dropped to zero. Also, the change in transmitted light intensity of this cell is due to the bulk property of the orientation distortion due to the electric field of the spirally wound antiferroelectric liquid crystal, and the dependence on the substrate interface is small, so the change process is reproducible, There is gradation.

【0029】実施例2 セル及び反強誘電性液晶は実施例1と同じものを用い
た。光学系は3と同じである。測定装置は図6に示し
た。モノクロメーターと検出器はマイクロコンピュータ
ーで同期をとってある。測定は従来の選択反射の測定と
同様、Sm A相で分光特性を測定しておき、これをバッ
クグラウンドとしてSmC* A相で分光特性を測定し、
割り算をして透過率を算出する。本発明の装置では、バ
ックグラウンドは偏光子と検光子を平行にして挾んだS
m A相で測定した。SmC* A相での測定は偏光子と検
光子を直交させて行い、電極と偏光板の角度は45゜と
した。このとき透過率の変化の大きさが最も大きくな
る。図7は透過率の測定結果である。二つのピークに挾
まれて透過率が最小になる位置が選択反射の起きる波長
である。ここで測定した選択反射波長λ(図7では約
0.425μm)より、以下の式により螺旋ピッチPが
求められる。
Example 2 The same cell and antiferroelectric liquid crystal as in Example 1 were used. The optical system is the same as 3. The measuring device is shown in FIG. The monochromator and detector are synchronized by a microcomputer. The measurement is similar to the conventional selective reflection measurement, the spectral characteristic is measured in the Sm A phase, and the spectral characteristic is measured in the SmC * A phase with this as the background.
The transmittance is calculated by dividing. In the device of the present invention, the background is S which is made by putting the polarizer and the analyzer in parallel.
It was measured in the mA phase. The measurement in the SmC * A phase was performed with the polarizer and the analyzer orthogonal to each other, and the angle between the electrode and the polarizing plate was 45 °. At this time, the magnitude of the change in transmittance becomes the largest. FIG. 7 shows the measurement results of the transmittance. The position where the transmittance is minimized between the two peaks is the wavelength at which selective reflection occurs. From the selective reflection wavelength λ measured here (about 0.425 μm in FIG. 7), the spiral pitch P is obtained by the following formula.

【数2】λ=nav・P/m (m=1,2,3・・
・・・などの自然数) nav=(ne 2+no 2)/2 (平均の屈折率) no :常光の屈折率 ne :異常光の屈折率 たとえばno=1.46、ne=1.59、λ=0.42
5μmとするとm=1として、P=0.18μmとな
る。
[ Formula 2] λ = n av · P / m (m = 1, 2, 3 ...
(Natural number such as) n av = (n e 2 + n o 2 ) / 2 (average refractive index) n o : refractive index of ordinary light n e : refractive index of extraordinary light For example, n o = 1.46, n e = 1.59, λ = 0.42
When it is 5 μm, m = 1 and P = 0.18 μm.

【0030】図8は本発明の装置を用い、印加電圧0V
のときと、印加電圧40Vのときのそれぞれの波長に対
応する透過率を示している。印加電圧により液晶に螺旋
が発生したとき(40V)でも、谷の存在位置(選択反
射波長)が明確である。これに対して従来の場合は、図
9に示すように印加電圧をかければかけるほど谷の存在
位置(選択反射波長)が不明確になる。例えば図8で4
0Vの電界を印加した時の選択反射波長(カーブの最小
値)は1つの測定点(0.4275μm)に特定できる
が、図9の60Vを印加した時の従来法の結果において
は3点が同じ透過率を示してカーブの最小値となってお
り、選択反射波長は0.400〜0.402程度としか
判断できない。本発明の装置はこのように測定精度を従
来法の3倍程度以上に向上できる。
FIG. 8 shows the case where the device of the present invention is used and the applied voltage is 0V.
And the transmittance corresponding to each wavelength when the applied voltage is 40V. Even when a spiral is generated in the liquid crystal due to the applied voltage (40 V), the existing position of the valley (selective reflection wavelength) is clear. On the other hand, in the conventional case, as shown in FIG. 9, the more the applied voltage is applied, the more unclear the existing position of the valley (selective reflection wavelength). For example, 4 in FIG.
The selective reflection wavelength (the minimum value of the curve) when an electric field of 0 V is applied can be specified at one measurement point (0.4275 μm), but in the result of the conventional method when 60 V of FIG. It shows the same transmittance and is the minimum value of the curve, and it can be judged that the selective reflection wavelength is only about 0.400 to 0.402. As described above, the apparatus of the present invention can improve the measurement accuracy about three times or more as compared with the conventional method.

【0031】以下に、本発明の実施態様項を列挙する。 (1) 垂直配向層を有する透明基板をそれぞれ垂直配
向層を内側にして対向させ、その間に一対以上のプラス
電極とマイナス電極を平行に挿入配置し、垂直配向層と
プラス電極およびマイナス電極間に囲まれた空間に反強
誘電性液晶を封入した液晶セル。 (2) 垂直配向層を有する透明基板をそれぞれ垂直配
向層を内側にして対向させ、その間に一対以上のプラス
電極とマイナス電極を平行に挿入配置し、垂直配向層と
プラス電極およびマイナス電極間に囲まれた空間に螺旋
を巻いた反強誘電性液晶を該液晶の螺旋軸が垂直配向層
に対しては垂直に、両電極に対しては平行になるように
封入した液晶セル。 (3) 前記平行に挿入配置されたプラス電極とマイナ
ス電極との間隙が100μm〜2mm、好ましくは10
0μm〜200μmである前項(1)または(2)記載
の液晶セル。 (4) 前記対向する透明基板の間隔が50〜200μ
mである前項(1)、(2)または(3)記載の液晶セ
ル。 (5) 前項(1)、(2)、(3)または(4)記載
の液晶セルおよび前記液晶セルの上下透明基板の外側に
それぞれの偏光方向が平行にならないような関係で配置
された偏光板よりなることを特徴とする液晶ライトバル
ブ。 (6) 上下の透明基板の外側に配置された偏光板がそ
れぞれの偏光方向が直交するような関係で配置されてい
る前項(5)記載の液晶ライトバルブ。 (7) 単色の光の波長を連続的に変化させて光を発
射する出力光手段、 垂直配向層を有する透明基板をそれぞれ垂直配向層を
内側にして対向させ、その間に一対以上のプラス電極と
マイナス電極を平行に挿入配置し、垂直配向層とプラス
電極およびマイナス電極間に囲まれた空間に螺旋を巻い
た反強誘電性液晶を、該液晶の螺旋軸が垂直配向層に対
しては垂直に、両電極に対しては平行になるように封入
した液晶セル、その一方の側に設けられた偏光子および
その他方の側に設けられた検光子よりなり、両者はそれ
ぞれの偏光方向が平行にならないような関係で配置され
ている液晶ライトバルブ、 前記液晶ライトバルブの作動温度を制御するための温
度コントローラ、 出力光手段から偏光子、前記液晶セル、検光子の順で
通過してきた光を検知するための光検出器、 よりなることを特徴とする反強誘電性液晶の螺旋ピッチ
測定装置。 (8) 人工光を単色化するとともに、その波長を連続
的に変化させる手段としてモノクロメーターを用い、モ
ノクロメーターと検出器を同期させるためにモノクロメ
ーターと検出器とをコンピューターで結んだ前項(7)
記載の反強誘電性液晶の螺旋ピッチ測定装置。 (9) 前記液晶セルの上下透明基板の外側に配置され
た偏光子と検光子が、その偏光方向がそれぞれ直交する
ような関係で配置されてなるものである前項(7)また
は(8)記載の反強誘電性液晶の螺旋ピッチ測定装置。 (10) 前記液晶セルにおける平行に挿入配置された
プラス電極とマイナス電極との間隔が、100μmから
2mm、好ましくは100〜200μmである前項
(7)、(8)または(9)記載の反強誘電性液晶の螺
旋ピッチ測定装置。 (11) 前記液晶セルにおける対向する透明基板の間
隔が50〜200μmである前項(7)、(8)、
(9)または(10)記載の反強誘電性液晶の螺旋ピッ
チ測定装置。
The embodiments of the present invention will be listed below. (1) The transparent substrates having the vertical alignment layers are made to face each other with the vertical alignment layers facing inward, and a pair of positive electrodes and negative electrodes are inserted in parallel between them to arrange them between the vertical alignment layers and the positive electrodes and negative electrodes. A liquid crystal cell that encloses an antiferroelectric liquid crystal in the enclosed space. (2) The transparent substrates having the vertical alignment layers are made to face each other with the vertical alignment layers facing inward, and a pair of positive electrodes and negative electrodes are inserted in parallel between them to arrange them between the vertical alignment layers and the positive electrodes and the negative electrodes. A liquid crystal cell in which an antiferroelectric liquid crystal wound in a spiral in an enclosed space is enclosed so that the spiral axis of the liquid crystal is perpendicular to the vertical alignment layer and parallel to both electrodes. (3) The gap between the plus electrode and the minus electrode inserted and arranged in parallel is 100 μm to 2 mm, preferably 10 μm.
The liquid crystal cell according to item (1) or (2), which has a thickness of 0 μm to 200 μm. (4) The interval between the transparent substrates facing each other is 50 to 200 μm.
The liquid crystal cell according to the above item (1), (2) or (3), wherein m is m. (5) Polarized light arranged on the liquid crystal cell according to (1), (2), (3) or (4) above and outside the upper and lower transparent substrates of the liquid crystal cell in such a relationship that their respective polarization directions are not parallel. A liquid crystal light valve that consists of a plate. (6) The liquid crystal light valve according to the above item (5), wherein the polarizing plates arranged outside the upper and lower transparent substrates are arranged in such a relationship that their polarization directions are orthogonal to each other. (7) Output light means for emitting light by continuously changing the wavelength of monochromatic light, transparent substrates having vertical alignment layers are made to face each other with the vertical alignment layers facing inside, and a pair of plus electrodes are provided between them. An antiferroelectric liquid crystal in which a negative electrode is inserted and arranged in parallel and a spiral is wound in a space surrounded by the vertical alignment layer and the positive electrode and the negative electrode, and the spiral axis of the liquid crystal is perpendicular to the vertical alignment layer. Consists of a liquid crystal cell enclosed so that it is parallel to both electrodes, a polarizer provided on one side and an analyzer provided on the other side, and both polarization directions are parallel. The liquid crystal light valve arranged in such a relationship that does not become a temperature controller, a temperature controller for controlling the operating temperature of the liquid crystal light valve, the light passing through the polarizer, the liquid crystal cell and the analyzer in this order from the output light means. An antiferroelectric liquid crystal spiral pitch measuring device comprising a photodetector for detecting. (8) The monochromator is used as a means for changing the wavelength of the artificial light continuously and the monochromator is used, and the monochromator and the detector are connected by a computer in order to synchronize the monochromator and the detector. )
An antiferroelectric liquid crystal spiral pitch measuring device as described. (9) The above item (7) or (8), wherein the polarizer and the analyzer arranged outside the upper and lower transparent substrates of the liquid crystal cell are arranged in such a relationship that their polarization directions are orthogonal to each other. Antiferroelectric Liquid Crystal Spiral Pitch Measuring Device. (10) The repulsive strength according to the above (7), (8) or (9), wherein the distance between the plus electrode and the minus electrode inserted in parallel in the liquid crystal cell is 100 μm to 2 mm, preferably 100 to 200 μm. Measuring device for spiral pitch of dielectric liquid crystal. (11) The preceding paragraphs (7), (8), wherein the distance between the transparent substrates facing each other in the liquid crystal cell is 50 to 200 μm.
(9) or the spiral pitch measuring device for an antiferroelectric liquid crystal according to (10).

【0032】[0032]

【発明の効果】本発明の液晶セルは、垂直配向層を設け
ることにより、はじめて反強誘電液晶の軸が垂直方向に
配列したり、斜めに傾むいたりするタイプの液晶セルを
提供することができた。本発明の液晶ライトバルブは、
従来の構造のものに比べて極めて低電界で作動し、かつ
高速応答で駆動できる。また明暗の変化を連続的に行え
るため、しぼりとしても有効である。本発明の液晶ライ
トバルブは配向がこわれにくいため、機械的ショックを
受けやすい環境でも使用できる。また、本発明の測定装
置を用いることにより、反強誘電性液晶の選択反射波長
が精度良く測定され、螺旋ピッチを精度良く求めること
ができる。
The liquid crystal cell of the present invention can provide a liquid crystal cell in which the axis of the antiferroelectric liquid crystal is vertically aligned or obliquely tilted by providing the vertical alignment layer. did it. The liquid crystal light valve of the present invention,
It operates with an extremely low electric field and can be driven with a high-speed response as compared with the conventional structure. It is also effective as a squeeze because it can continuously change the brightness. Since the liquid crystal light valve of the present invention is not easily broken in orientation, it can be used even in an environment susceptible to mechanical shock. Further, by using the measuring device of the present invention, the selective reflection wavelength of the antiferroelectric liquid crystal can be accurately measured, and the spiral pitch can be accurately obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる液晶セルの構造を示す図であ
る。
FIG. 1 is a diagram showing a structure of a liquid crystal cell according to the present invention.

【図2】液晶ライトバルブにおける光学系を示す図であ
る。
FIG. 2 is a diagram showing an optical system in a liquid crystal light valve.

【図3】図1の矢印方向からみたときの液晶セルと偏光
子、検光子との位置関係を示す図であり、(a)は液晶
セルと偏光子、検光子の位置関係を断面図的に示すもの
であり、(b)は斜視図的に示したものである。
3 is a diagram showing the positional relationship between the liquid crystal cell, the polarizer, and the analyzer when viewed in the direction of the arrow in FIG. 1, and FIG. 3A is a sectional view showing the positional relationship between the liquid crystal cell, the polarizer, and the analyzer. And (b) is a perspective view.

【図4】液晶ライトバルブに加わる電界と透過光強度の
変化を示す図である。
FIG. 4 is a diagram showing changes in an electric field applied to a liquid crystal light valve and a transmitted light intensity.

【図5】下側に大きな透明基板を用い、上側には各画素
毎に一対の+電極と−電極をもつ小さな透明基板を多数
配置したタイプの液晶ライトバルブの構造を示す図であ
る。
FIG. 5 is a diagram showing a structure of a liquid crystal light valve of a type in which a large transparent substrate is used on the lower side and a large number of small transparent substrates having a pair of + electrodes and − electrodes for each pixel are arranged on the upper side.

【図6】本発明の反強誘電性液晶の螺旋ピッチ測定装置
の基本を説明するための図である。
FIG. 6 is a diagram for explaining the basics of the spiral pitch measuring device for antiferroelectric liquid crystal of the present invention.

【図7】本発明の反強誘電性液晶の螺旋ピッチ測定装置
を用いて測定した結果を波長と透過光強度の関係におい
てプロットしたグラフである。
FIG. 7 is a graph plotting the results of measurement using the spiral pitch measuring device for antiferroelectric liquid crystal of the present invention in the relationship between wavelength and transmitted light intensity.

【図8】本発明の装置を用いて電圧を印加したとき、選
択反射波長が明確に現われることを示すための透過率と
波長の関係図である。
FIG. 8 is a relationship diagram of transmittance and wavelength for showing that the selective reflection wavelength clearly appears when a voltage is applied using the device of the present invention.

【図9】図8に対応した従来法の結果を示す透過率と波
長の関係図である。
FIG. 9 is a relationship diagram between the transmittance and the wavelength, which shows the result of the conventional method corresponding to FIG.

【図10】本発明における螺旋構造をもつ液晶相に直線
偏光が入射したとき、その波長により偏光方向が回転す
る、すなわち、回転角が変化することを説明する図であ
り、縦軸は回転角、横軸は波長である。
FIG. 10 is a diagram for explaining that when linearly polarized light is incident on a liquid crystal phase having a spiral structure in the present invention, the polarization direction is rotated, that is, the rotation angle is changed according to the wavelength, and the vertical axis is the rotation angle. , The horizontal axis is the wavelength.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ガラス基板 3 垂直配向層 4 垂直配向層 5 電極 6 電極 7 螺旋を巻いた状態の反強誘電性液晶 8 リード線 9 リード線 1 Glass Substrate 2 Glass Substrate 3 Vertical Alignment Layer 4 Vertical Alignment Layer 5 Electrode 6 Electrode 7 Antiferroelectric Liquid Crystal in a Helixed State 8 Lead Wire 9 Lead Wire

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02F 1/1335 510 1/1337 510 G09G 3/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location G02F 1/1335 510 1/1337 510 G09G 3/36

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 垂直配向層を有する透明基板をそれぞれ
垂直配向層を内側にして対向させ、その間に一対以上の
プラス電極とマイナス電極を平行に挿入配置し、垂直配
向層とプラス電極およびマイナス電極間に囲まれた空間
に反強誘電性液晶を封入した液晶セル。
1. A vertical alignment layer, a plus electrode and a minus electrode, wherein transparent substrates having vertical alignment layers are opposed to each other with the vertical alignment layers facing inward, and a pair of positive electrodes and negative electrodes are inserted in parallel between them. A liquid crystal cell that encloses an antiferroelectric liquid crystal in the space surrounded by it.
【請求項2】 垂直配向層を有する透明基板をそれぞれ
垂直配向層を内側にして対向させ、その間に一対以上の
プラス電極とマイナス電極を平行に挿入配置し、垂直配
向層とプラス電極およびマイナス電極間に囲まれた空間
に螺旋を巻いた反強誘電性液晶を該液晶の螺旋軸が垂直
配向層に対しては垂直に、両電極に対しては平行になる
ように封入した液晶セル。
2. A transparent substrate having a vertical alignment layer is made to face each other with the vertical alignment layer facing inward, and a pair of positive electrodes and negative electrodes are inserted in parallel between them to arrange the vertical alignment layer, the positive electrode and the negative electrode. A liquid crystal cell in which an antiferroelectric liquid crystal wound in a space surrounded by a spiral is enclosed so that the spiral axis of the liquid crystal is perpendicular to the vertical alignment layer and parallel to both electrodes.
【請求項3】 請求項1または2記載の液晶セルおよび
前記液晶セルの上下透明基板の外側にそれぞれの偏光方
向が平行にならないような関係で配置された偏光板より
なることを特徴とする液晶ライトバルブ。
3. A liquid crystal comprising the liquid crystal cell according to claim 1 or 2 and a polarizing plate arranged outside the upper and lower transparent substrates of the liquid crystal cell in such a relationship that their polarization directions are not parallel to each other. Light valve.
【請求項4】 単色の光の波長を連続的に変化させて
光を発射する出力光手段、 垂直配向層を有する透明基板をそれぞれ垂直配向層を
内側にして対向させ、その間に一対以上のプラス電極と
マイナス電極を平行に挿入配置し、垂直配向層とプラス
電極およびマイナス電極間に囲まれた空間に螺旋を巻い
た反強誘電性液晶を、該液晶の螺旋軸が垂直配向層に対
しては垂直に、両電極に対しては平行になるように封入
した液晶セル、その一方の側に設けられた偏光子および
その他方の側に設けられた検光子よりなり、両者はそれ
ぞれの偏光方向が平行にならないような関係で配置され
ている液晶ライトバルブ、 前記液晶ライトバルブの作動温度を制御するための温
度コントローラ、 出力光手段から偏光子、前記液晶セル、検光子の順で
通過してきた光を検知するための光検出器、 よりなることを特徴とする反強誘電性液晶の螺旋ピッチ
測定装置。
4. Output light means for continuously changing the wavelength of monochromatic light to emit light, and transparent substrates each having a vertical alignment layer face each other with the vertical alignment layer inside, and a pair of plus or more positive electrodes therebetween. An antiferroelectric liquid crystal in which an electrode and a negative electrode are inserted and arranged in parallel and a spiral is wound in a space surrounded by the vertical alignment layer and the plus electrode and the negative electrode, and the spiral axis of the liquid crystal is relative to the vertical alignment layer. Consists of a liquid crystal cell enclosed vertically, parallel to both electrodes, a polarizer provided on one side and an analyzer provided on the other side. Liquid crystal light valves arranged in such a way that they do not become parallel, a temperature controller for controlling the operating temperature of the liquid crystal light valve, a polarizer from the output light means, the liquid crystal cell, and an analyzer in this order. An antiferroelectric liquid crystal spiral pitch measuring device comprising a photodetector for detecting the emitted light.
【請求項5】 人工光を単色化するとともに、その波長
を連続的に変化させる手段としてモノクロメーターを用
い、モノクロメーターと検出器を同期させるためにモノ
クロメーターと検出器とをコンピューターで結んだ請求
項4記載の反強誘電性液晶の螺旋ピッチ測定装置。
5. A monochromator is used as a means for continuously changing the wavelength of the artificial light, and a monochromator and a detector are connected by a computer in order to synchronize the monochromator and the detector. Item 4. An antiferroelectric liquid crystal spiral pitch measuring device according to Item 4.
JP6209135A 1993-08-31 1994-08-10 Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal Pending JPH07140493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6209135A JPH07140493A (en) 1993-08-31 1994-08-10 Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP23875793 1993-08-31
JP24877693 1993-09-09
JP5-248776 1993-09-20
JP25644693 1993-09-20
JP5-256446 1993-09-20
JP5-238757 1993-09-20
JP6209135A JPH07140493A (en) 1993-08-31 1994-08-10 Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal

Publications (1)

Publication Number Publication Date
JPH07140493A true JPH07140493A (en) 1995-06-02

Family

ID=27476446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6209135A Pending JPH07140493A (en) 1993-08-31 1994-08-10 Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal

Country Status (1)

Country Link
JP (1) JPH07140493A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000865A1 (en) * 1998-06-30 2000-01-06 Citizen Watch Co., Ltd. Antiferroelectric liquid crystal panel and method for determining angle of displacement of layer
US6040889A (en) * 1996-12-25 2000-03-21 Nec Corporation Liquid crystal display with continuous grayscale, wide viewing angle, and exceptional shock resistance
KR100393883B1 (en) * 1999-03-02 2003-08-06 인터내셔널 비지네스 머신즈 코포레이션 Liquid crystal structure with improved black state, and projector using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040889A (en) * 1996-12-25 2000-03-21 Nec Corporation Liquid crystal display with continuous grayscale, wide viewing angle, and exceptional shock resistance
WO2000000865A1 (en) * 1998-06-30 2000-01-06 Citizen Watch Co., Ltd. Antiferroelectric liquid crystal panel and method for determining angle of displacement of layer
KR100393883B1 (en) * 1999-03-02 2003-08-06 인터내셔널 비지네스 머신즈 코포레이션 Liquid crystal structure with improved black state, and projector using same

Similar Documents

Publication Publication Date Title
EP1042702B1 (en) Bistable nematic liquid crystal device
Welford et al. Guided modes and surface plasmon-polaritons observed with a nematic liquid crystal using attenuated total reflection
US6822737B2 (en) Pretilt angle measuring method and measuring instrument
KR950029815A (en) Color liquid crystal display device
Mazzulla et al. Optical determination of flexoelectric coefficients and surface polarization in a hybrid aligned nematic cell
US4579422A (en) Liquid crystal device for continuous rotation of selective polarization of monochromatic light
US20080074598A1 (en) Sample for measuring alignment axis for liquid crystal display, method of manufacturing sample, and method of measuring alignment axis
Xu et al. Effects of cell structure on the reflection of cholesteric liquid crystal displays
KR101296905B1 (en) Apparatus and method for measuring polarized direction of polarizer for liquid crystal display
Faetti et al. Strong azimuthal anchoring energy at a nematic-polyimide interface
JPH07140493A (en) Liquid crystal cell, liquid crystal light valve and instrument for measuring spiral pitch of antiferroelectric liquid crystal
KR100254857B1 (en) Method for aligning high molecular thin film and method for aligning liquid crystal using the same
Kim et al. Dual domain effects on a homogeneously aligned nematic liquid crystal cell driven by a fringe-field
RU2582208C2 (en) Method of controlling amplitude and direction of electric field in liquid crystal layer, device for controlling amplitude and direction of electric field in liquid crystal layer and liquid crystal light modulator
KR0163944B1 (en) Liquid crystal display device using liquid crystal compound with chirality of negative dielectric anisotropy
US6476966B1 (en) Continuously variable, wavelength-independent polarization rotator
JP2778935B2 (en) Method for measuring azimuthal anchoring energy of nematic liquid crystal device
JP3006806B2 (en) Cell thickness measurement method for liquid crystal cell
Valyukh et al. Spectrophotometric determination of reflective liquid crystal cell parameters
CN117607038A (en) Polarization state detection system based on layered two-dimensional nano liquid crystal material
JPH06250166A (en) Optical phase element and liquid crystal display device
JP2770481B2 (en) Method for measuring cell thickness of liquid crystal display panel and its measuring device
Wiener‐Avnear Laser speckle studies of the electric field suppression of the fluctuations in nematic liquid crystals
JP2001100200A (en) Reflective liquid crystal display device
Risse et al. Dynamics of a liquid crystal-based modulator with germanium substrates for mid-infrared radiation