JPH07140070A - Method for determining optical characteristic value of recording material - Google Patents

Method for determining optical characteristic value of recording material

Info

Publication number
JPH07140070A
JPH07140070A JP26622693A JP26622693A JPH07140070A JP H07140070 A JPH07140070 A JP H07140070A JP 26622693 A JP26622693 A JP 26622693A JP 26622693 A JP26622693 A JP 26622693A JP H07140070 A JPH07140070 A JP H07140070A
Authority
JP
Japan
Prior art keywords
recording material
optical characteristic
characteristic value
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26622693A
Other languages
Japanese (ja)
Other versions
JP3416221B2 (en
Inventor
Mitsuo Sugita
充朗 杉田
Shigeyuki Suda
繁幸 須田
Keishin Shiraiwa
敬信 白岩
Tatsuya Nakai
逹也 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP26622693A priority Critical patent/JP3416221B2/en
Publication of JPH07140070A publication Critical patent/JPH07140070A/en
Application granted granted Critical
Publication of JP3416221B2 publication Critical patent/JP3416221B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To make it possible to determined the optical characteristic values, e.g. PSF, of recording materials having single layer and multilayer structures easily and correctly as compared with a conventional method. CONSTITUTION:Reflectance R and and transmittance T are measured for the incident light to a recording material. Basic optical characteristic values, e.g. scattering coefficient AS and reflection coefficient PR, are then determined for each layer of the recording material from the measurements by an approximate method, e.g. Monte Carlo method, and then other optical characteristic values, e.g. point-spread-function(PSF), are determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、印刷機、特にカラー複
写機等に用いる記録材の光学特性値、例えばポイント・
スプレッド・ファンクション(以下PSFと略す。)の
測定法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical characteristic value of a recording material used in a printing machine, especially a color copying machine, for example,
The present invention relates to a spread function (hereinafter abbreviated as PSF) measurement method.

【0002】[0002]

【従来の技術】記録材の光学的特性、例えば散乱係数、
吸収係数等が印刷適正特にカラー印刷適正との関係で重
要視され、特にPSFとして知られている性質が重視さ
れている。そのPSFの測定法として従来は「光技術ハ
ンドブック」(朝倉書店)P250〜P251に示され
ている手法、即ち記録材に細い光線を垂直あるいは斜め
から入射し、その記録材表面における反射光の強度分布
をCCD、写真等の画像として取り込み、入射光の強度
分布でデコンボリューションして求めるものがあった。
2. Description of the Related Art Optical characteristics of a recording material such as a scattering coefficient,
The absorption coefficient and the like are emphasized in relation to printing suitability, especially color printing suitability, and the property known as PSF is particularly emphasized. As a method for measuring the PSF, conventionally, a method described in "Optical Technology Handbook" (Asakura Shoten) P250 to P251, that is, a thin light beam is vertically or obliquely incident on the recording material, and the intensity of reflected light on the surface of the recording material is measured. There has been a method in which the distribution is captured as an image such as a CCD or a photograph and deconvoluted with the intensity distribution of incident light to obtain the distribution.

【0003】[0003]

【発明が解決しようとする課題】現在普通に使用されて
いる草木等の繊維から製造される紙などからなる記録材
は、入射した光が記録材構造の内部で多重散乱されるた
め、仮に光束の幅が無限小の仮想的な光を記録材表面に
入射したとしても、入射した光はその位置を中心に広が
りを持って記録材表面から出射することになる。その際
の出射光の記録材表面での強度分布が一般にPSFと称
されている。
A recording material made of paper or the like, which is commonly used at present, is made of fibers such as vegetation. Since incident light is multiple-scattered inside the recording material structure, the light flux is tentatively changed. Even if virtual light having an infinitely small width is incident on the surface of the recording material, the incident light is spread from the surface of the recording material with a spread centering on that position. The intensity distribution of the emitted light at that time on the surface of the recording material is generally called PSF.

【0004】記録材に印刷を行なった際のドットゲイ
ン、およびカラー印刷時の色のにじみや不要な混色の原
因は上述の内部散乱による光の広がりである。よってそ
の記録材のPSFを知ることができれば、印刷後のドッ
トゲインや色のにじみの程度を予測することができ、従
ってその記録材の光学特性、換言すれば印刷適性を知る
ことができる。
The cause of dot gain when printing on a recording material and color bleeding and unnecessary color mixing during color printing is the spread of light due to the above-mentioned internal scattering. Therefore, if the PSF of the recording material can be known, it is possible to predict the dot gain after printing and the degree of color bleeding, and thus the optical characteristics of the recording material, in other words, the printability.

【0005】しかし前述した測定方法では光学系は複雑
であり、しかも測定には手間がかかり、PSFの測定角
度の分布や入射角を変える度に同様な測定を繰り返さな
ければならないという難点があった。また実際の測定で
は、反射光強度の角度分布が記録材表面に垂直な軸に対
して対称でない場合、あるいは位置によって角度分布が
異なるときは測定が困難であり、記録材の光学的性質を
容易かつ正確に把握することは非常に困難なことであっ
た。
However, the above-mentioned measuring method has a drawback that the optical system is complicated, and the measurement is time-consuming, and the same measurement must be repeated every time the distribution of the measurement angle of the PSF or the incident angle is changed. . In actual measurement, if the angular distribution of reflected light intensity is not symmetrical with respect to the axis perpendicular to the surface of the recording material, or if the angular distribution differs depending on the position, it is difficult to measure, and the optical properties of the recording material are easy to measure. And it was very difficult to grasp accurately.

【0006】また現在使用されている記録用紙あるいは
OHPシート等の記録材は、基材層の上に、所謂コート
層と呼ばれる層が存在しているもの等の多層構造の記録
材が多く、特にこれらの記録材に関しては、前述した方
法を初め、従来法では様々な光学特性値の正確な測定は
極めて困難であった。
Many recording materials such as recording sheets or OHP sheets currently used have a multi-layer structure such as a layer having a so-called coat layer on a base material layer, and particularly, With respect to these recording materials, it is extremely difficult to accurately measure various optical characteristic values by the conventional method including the method described above.

【0007】本発明は上記事情に鑑みてなされたもの
で、その課題とするところはあらゆる記録材に対してP
SF等の光学特性値をより正確かつ容易に求める方法を
提供することにある。
The present invention has been made in view of the above circumstances, and its problem is that P is applied to all recording materials.
It is to provide a method of more accurately and easily obtaining optical characteristic values such as SF.

【0008】[0008]

【課題を解決するための手段】本発明は、記録材の入射
光に対する反射率(以後Rと称する)および/または透
過率(以後Tと称する)を測定し、次いでそれら測定値
から近似計算と最適化手法により、該記録材の基本的光
学特性値を求める工程(以後第一段階と称する)を有し
て成ることを特徴とする記録材の光学特性値を求める方
法を提供する。さらに本発明は、上記基本的光学特性値
に必要に応じて記録材全体の厚み、各層の厚み等の要素
をさらに加重し、これらの値を基にさらに近似計算を行
なって(以後第二段階と称する)記録材の光学特性値を
求める方法を提供する。
According to the present invention, the reflectance (hereinafter referred to as R) and / or the transmittance (hereinafter referred to as T) of a recording material with respect to incident light is measured, and then an approximate calculation is performed from the measured values. Provided is a method for obtaining an optical characteristic value of a recording material, which comprises a step (hereinafter referred to as a first step) of obtaining a basic optical characteristic value of the recording material by an optimization method. Further, according to the present invention, the basic optical characteristic value is further weighted with factors such as the thickness of the entire recording material and the thickness of each layer, if necessary, and further approximate calculation is performed based on these values (hereinafter, the second step). (Hereinafter referred to as a “recording material”).

【0009】本発明の方法は、1層からなるもの、ある
いは例えばコート紙(基材層:繊維質)やOHPシート
(基材層:透明樹脂層)のような基材層およびコート層
からなる2層構造を有するものに限らず、3層以上の多
層構造の記録材に対しても適用できる。
The method of the present invention comprises one layer, or a base layer and a coat layer such as a coated paper (base layer: fibrous material) or an OHP sheet (base layer: transparent resin layer). The present invention can be applied not only to those having a two-layer structure but also to recording materials having a multilayer structure of three or more layers.

【0010】本発明の方法の第一段階で求めようとする
記録材の基本的光学特性値としては、例えば散乱係数
(以後ASと称する)や反射係数(以後PRと称する)
が、また記録材の光学特性値としては、記録材全体の特
性または各層毎の特性値のいずれであっても良く、前述
のPSFをはじめ、オプティカルドットゲイン、分光反
射率、分光透過率、不透明度、白色度等が挙げられる。
The basic optical characteristic value of the recording material to be obtained in the first step of the method of the present invention is, for example, a scattering coefficient (hereinafter referred to as AS) or a reflection coefficient (hereinafter referred to as PR).
However, the optical characteristic value of the recording material may be either the characteristic of the entire recording material or the characteristic value of each layer, such as the above-mentioned PSF, optical dot gain, spectral reflectance, spectral transmittance, Examples include transparency and whiteness.

【0011】また、本発明で用いる近似計算とは、例え
ばモンテカルロ法や拡散方程式を用いて記録材内部の光
の挙動を再現し、反射率(R)や透過率(T)、PSF
等の光学特性値を算出するものである。
The approximate calculation used in the present invention is to reproduce the behavior of light inside the recording material using, for example, the Monte Carlo method or the diffusion equation to calculate the reflectance (R), the transmittance (T), the PSF.
It is for calculating optical characteristic values such as.

【0012】図10に、上記の基本的光学特性値、光学
特性値および近似計算との関係を示した概念図を示し
た。
FIG. 10 is a conceptual diagram showing the relationship between the basic optical characteristic value, the optical characteristic value and the approximate calculation described above.

【0013】記録材表面に入射した光は、記録材内部に
伝播し、その過程で記録材内部構造で何度も衝突して吸
収、散乱される。散乱された光は方向を曲げられ、一部
は再び記録材の表面から出射し、残りは記録材裏面から
出射する。
The light incident on the surface of the recording material propagates inside the recording material, and in the process, it collides with the internal structure of the recording material many times and is absorbed and scattered. The scattered light is bent in its direction, part of which is emitted again from the front surface of the recording material, and the rest is emitted from the rear surface of the recording material.

【0014】1例として、2層構造を持つ記録材の表入
射の場合の光挙動について説明する。図7は、記録材に
光が表側より入射し(図7(a))、その後出射する
(図7(b))様子を表わしたものである。出射が表側
のものは反射光であり、裏側のものは透過光である。図
7(a)に示した例では、12本の光線が入射してい
る。各光線の強度が入射時、出射時で全て等しいと仮定
すると、この場合12本中9本が反射し3本が透過して
いる(図7(b))ことから、反射率は75%、透過率
は25%である。図8は図7の光線の中の1本につい
て、記録材中の軌道を表わした図である。
As an example, the optical behavior of a recording material having a two-layer structure in the case of front incidence will be described. FIG. 7 shows how light enters the recording material from the front side (FIG. 7A) and then exits (FIG. 7B). The emission on the front side is reflected light, and the emission on the back side is transmitted light. In the example shown in FIG. 7A, 12 light rays are incident. Assuming that the intensities of the respective light rays are equal at the time of incidence and at the time of emission, in this case, 9 out of 12 rays are reflected and 3 out of them are transmitted (FIG. 7 (b)), so that the reflectance is 75%, The transmittance is 25%. FIG. 8 is a diagram showing the orbit in the recording material for one of the light rays in FIG.

【0015】この例で示したような過程をモンテカルロ
法などの近似計算によって、次のように再現する。今、
モデル空間における記録材の中で、入射光線がある記録
材構造に衝突して散乱される方向と、次の構造に衝突す
るまでに進む距離とを乱数を使って決定し、光強度は衝
突の度にある割合で減少するものとする。これを記録材
から光線が出射するまで計算機中で繰り返し、最終的に
記録材の表もしくは裏から出射した光線の位置、強度、
出射角を記録する。入射光線の数を非常に多くすること
により、その記録材の任意の角度分布のPSFを得るこ
とができる。
The process shown in this example is reproduced as follows by an approximate calculation such as the Monte Carlo method. now,
In the recording material in the model space, the direction in which the incident light collides with a certain recording material structure and is scattered, and the distance traveled until it collides with the next structure are determined using random numbers. It shall decrease at a certain rate. This is repeated in the computer until the light beam is emitted from the recording material, and finally the position, intensity, and
Record the exit angle. By making the number of incident light rays very large, it is possible to obtain a PSF having an arbitrary angular distribution of the recording material.

【0016】図1に、本発明の方法の手順の概略を示
し、具体的なRおよびTの測定例を図2に示す。
FIG. 1 shows the outline of the procedure of the method of the present invention, and FIG. 2 shows a concrete example of measurement of R and T.

【0017】RおよびTの測定は、例えば図2のように
記録材21に光線23を垂直に入射させて、その反射光
24と透過光25とについて積分球22を用いて行な
う。次に図1の第一段階として、RおよびTで表現され
る光学的性質を持った記録材の中で実際に起こっている
ことをモンテカルロ法、拡散方程式など(光挙動計算)
の近似計算で再現し、記録材の基本的光学特性であるA
SとPRとを求める。ASとはこの場合、光線が記録材
内部を単位距離進む間に平均して何回反射され得るかを
表わす量であり、PRとは記録材内部の構造に光線が衝
突し、散乱された場合の反射率を表わす。RとTとは記
録材のASとPRの関数であり、下記式のような関係に
ある。
For example, as shown in FIG. 2, the measurement of R and T is performed by making a light ray 23 vertically incident on the recording material 21 and using the integrating sphere 22 for the reflected light 24 and the transmitted light 25. Next, as the first step in FIG. 1, what actually occurs in the recording material having optical properties represented by R and T is Monte Carlo method, diffusion equation, etc. (optical behavior calculation)
Reproduced by the approximate calculation of A, which is the basic optical characteristic of the recording material.
Find S and PR. In this case, AS is an amount that represents how many times a light beam can be reflected on the inside of the recording material on average while traveling a unit distance, and PR is a case where the light beam collides with the structure inside the recording material and is scattered. Represents the reflectance of. R and T are functions of AS and PR of the recording material, and have a relationship as shown in the following formula.

【0018】[0018]

【数1】R=f(AS,PR)[Equation 1] R = f (AS, PR)

【0019】[0019]

【数2】T=g(AS,PR)この場合、記録材が1層
構造であればASおよびPRはそれぞれ1つであるが、
複数の層から成る構造であれば各層ごとにASおよびP
Rが異なり、またRおよびTも例えば光線の入射が記録
表面側からか裏面からかで異なる。従って、例えば図5
のような2層構造の場合は次の式のような関係となる。
## EQU2 ## T = g (AS, PR) In this case, if the recording material has a single-layer structure, there are one AS and one PR, respectively.
If the structure consists of multiple layers, AS and P are provided for each layer.
R is different, and R and T are also different depending on whether the incident light beam is from the recording front surface side or the recording back surface side. Therefore, for example, in FIG.
In the case of such a two-layer structure, the relationship is as in the following equation.

【0020】[0020]

【数3】R1=f1(ASa,ASb,PRa,PRb## EQU3 ## R 1 = f 1 (AS a , AS b , PR a , PR b )

【0021】[0021]

【数4】R2=f2(ASa,ASb,PRa,PRb## EQU4 ## R 2 = f 2 (AS a , AS b , PR a , PR b )

【0022】[0022]

【数5】T1=g1(ASa,ASb,PRa,PRb## EQU5 ## T 1 = g 1 (AS a , AS b , PR a , PR b )

【0023】[0023]

【数6】T2=g2(ASa,ASb,PRa,PRb) 式中、ASa、PRa、ASbおよびPRbはそれぞれ、図
8のa層のAS、PR、b層のAS、PRであり、
1、T1は表入射の場合のR、Tで、R2、T2は裏入射
の場合のR、Tである。3層以上の構造の場合も、考慮
すべき特性値の数は増すが、概念としては同様である。
## EQU6 ## T 2 = g 2 (AS a , AS b , PR a , PR b ) where AS a , PR a , AS b, and PR b are AS, PR, and b of the a layer in FIG. 8, respectively. AS and PR of the layer,
R 1 and T 1 are R and T for front incidence, and R 2 and T 2 are R and T for back incidence. In the case of a structure having three or more layers, the number of characteristic values to be considered increases, but the concept is the same.

【0024】しかしながら、関数形(上記の場合、f、
1、f2、g、g1およびg2)が未知であるため、Rと
Tから直接ASとPRを求めることはできない。そこ
で、近似計算および最適化手法によってそれらの値を求
めるのである。
However, the functional form (in the above case, f,
Since f 1 , f 2 , g, g 1 and g 2 ) are unknown, AS and PR cannot be directly obtained from R and T. Therefore, these values are obtained by approximation calculation and optimization methods.

【0025】以下に、近似計算の1例として、モンテカ
ルロ法を用いた光挙動計算について述べる。
The optical behavior calculation using the Monte Carlo method will be described below as an example of the approximate calculation.

【0026】光線がある構造に衝突して次の構造に衝突
するまでに進む距離Lは、次式によって求められる。
The distance L that a light ray travels before striking one structure and striking the next structure is determined by the following equation.

【0027】[0027]

【数7】L=−log((RAN)/AS) ただし式中、RANは、0〜1の一様散乱である。これ
は、散乱をモンテカルロ法で扱う際の一般的な式である
が、これ以外に、散乱体の様子を考慮した確率分布を用
いて距離を決定することもできる。
## EQU7 ## L = -log ((RAN) / AS) where RAN is a uniform scattering of 0 to 1. This is a general formula for handling scattering by the Monte Carlo method, but in addition to this, it is also possible to determine the distance using a probability distribution that considers the state of the scatterer.

【0028】衝突後の光線の進む向きは乱数によってラ
ンダムに決定される。これは等方向的散乱をモデル化し
た1つの例であり、これ以外にも散乱強度の角度依存性
を考慮した確率分布を用いて方向を決定することができ
る。
The traveling direction of the light beam after the collision is randomly determined by a random number. This is one example in which isotropic scattering is modeled, and the direction can be determined by using a probability distribution in which the angular dependence of scattering intensity is taken into consideration.

【0029】次に吸収について説明する。a、b、・・
・mのm個の層から成る記録材において、入射光線の強
度がI0のとき出射光線の強度Iは下記式を用いて決定
する。
Next, absorption will be described. a, b, ...
In a recording material composed of m layers of m, when the intensity of the incident light beam is I 0 , the intensity I of the outgoing light beam is determined using the following formula.

【0030】[0030]

【数8】 ここで、na、nb、・・・nmはa、b、・・・mの各
層での総散乱回数である。これ以外にも、総軌道距離を
用いる吸収決定法等を用いることができる。
[Equation 8] Here, n a , n b , ... N m are the total number of scatterings in each layer of a, b ,. Other than this, an absorption determination method or the like using the total orbital distance can be used.

【0031】次に、第一段階の最適化手法について、1
層構造の記録材を対象物とした場合の例を説明する。
Next, regarding the optimization method of the first stage, 1
An example in which a recording material having a layered structure is used as an object will be described.

【0032】入射光線の数を非常に多くし、前記操作を
各光線について行なう。記録材の表から出射した光線の
強度の総和を入射光線の総強度で割った値R*がRに一
致し、かつ厚さLの記録材を透過して裏から出射した光
線の強度の総和を入射光線の総強度で割った値T*がT
に一致するようなASとPRの値はただ一組存在する。
従って、この値を求めることで記録材の光学的性質を代
表する値であるASとPRが決定される。
The number of incident light rays is made very large, and the above operation is performed for each light ray. The value R * obtained by dividing the total intensity of the light rays emitted from the surface of the recording material by the total intensity of the incident light rays is equal to R, and the total intensity of the light rays emitted from the back through the recording material having the thickness L. Divided by the total intensity of the incident ray, T * is T
There is only one set of AS and PR values that match
Therefore, by obtaining this value, AS and PR, which are values representative of the optical properties of the recording material, are determined.

【0033】ASとPRの求め方の1例を挙げると、こ
れら特性値に適当な初期値AS*、PR*を与え、AS*
とPR*の値を微小量変化させる前後で前述の第一段階
の作業を行ない、その際に求められたR*、T*の変化の
割合ΔRおよびΔTを求める。
As an example of the method of obtaining AS and PR, given these initial values, appropriate initial values AS * and PR * are given .
The above-mentioned first step work is performed before and after minute changes in the values of and PR * , and the change rates ΔR and ΔT of R * and T * obtained at that time are obtained.

【0034】次に、ΔRおよびΔTから線形近似最小二
乗法、ラグランジュ(Lagrange)乗数法、模擬アニーリ
ング(simulated annealing)等の最適化手法で、R*
R、T*=Tの条件を満たすAS**とPR**を推定し、
前述の作業を行なって、実際にR*=R、T*=Tとなっ
ているかどうかを確認する。この条件が満たされていな
い場合は、AS**、PR**を初期値としてR**、T**
求め、RとR**、TとT**の差を得て上記のような評価
を行なう。このような操作は、差がRおよびTの測定誤
差以下となるまで繰り返す。
Next, an optimization method such as a linear approximation least squares method, a Lagrange multiplier method, or a simulated annealing from ΔR and ΔT is used, and R * =
Estimate AS ** and PR ** satisfying the condition of R, T * = T,
Perform the above-mentioned work to confirm whether or not R * = R and T * = T are actually satisfied. When this condition is not satisfied, R ** and T ** are obtained by using AS ** and PR ** as initial values, and the difference between R and R ** and T and T ** is obtained to obtain the above. Make an evaluation. Such an operation is repeated until the difference becomes equal to or less than the measurement error of R and T.

【0035】さら図1の次の作業である第二段階とし
て、第一段階で求めたASとPRで決定される光学的性
質を持った記録材の1点に任意の方向から入射した光線
の反射光の強度および角度の分布をモンテカルロ法を用
いて求める。すなわち、計算機中で記録材の表面の特定
の1点に任意の方向から幅無限小の光線を非常に多数入
射し、モンテカルロ法で各光線を追跡し、出射した光線
の位置と強度と出射角を記録する。こうして求めた出射
光の強度分布すなわちPSFの例を図3および図4に示
す。図3はモンテカルロ法によりレーザープリンター用
紙に垂直に1万本の光線を入射して求めたPSFであ
る。図中、縦軸は入射光強度を1.0としたときの反射
光強度、横軸はスケールで1辺300μmである。図4
は入射角20度で斜めから入射した例であり、横軸のス
ケールは1辺100μmである。
Further, as a second step, which is the next work of FIG. 1, a ray of light incident from an arbitrary direction on one point of the recording material having the optical property determined by AS and PR obtained in the first step is used. The distribution of reflected light intensity and angle is obtained using the Monte Carlo method. That is, in the computer, a very large number of infinitely small light rays are made incident on one specific point on the surface of the recording material from an arbitrary direction, each light ray is traced by the Monte Carlo method, and the position, intensity, and emission angle of the emitted light ray are calculated. To record. An example of the intensity distribution of the emitted light thus obtained, that is, the PSF is shown in FIGS. 3 and 4. FIG. 3 is a PSF obtained by the Monte Carlo method in which 10,000 light rays are vertically incident on the laser printer paper. In the figure, the vertical axis represents the reflected light intensity when the incident light intensity is 1.0, and the horizontal axis represents the scale of 300 μm on each side. Figure 4
Is an example where light is obliquely incident at an incident angle of 20 degrees, and the scale on the horizontal axis is 100 μm on a side.

【0036】次に、2層構造の記録材を例に挙げて、本
発明の方法の手順を図を用いて詳細に説明する。
Next, the procedure of the method of the present invention will be described in detail with reference to the drawings, taking a recording material having a two-layer structure as an example.

【0037】図6は、図5のような2層構造の記録材に
関する特性値を求める手順の概略を示し、図9は図6の
第一段階の流れを表わすフローチャートである。
FIG. 6 shows the outline of the procedure for obtaining the characteristic values for the recording material having the two-layer structure as shown in FIG. 5, and FIG. 9 is a flow chart showing the flow of the first step of FIG.

【0038】図9において、分光光度計1により記録材
の反射率、透過率を測定する。表入射および裏入射の両
条件での測定を行ない、T1、R1、T2、R2の4つの測
定値を得る。ここで言う表とは図5のa層側であり、裏
とはb層側である。
In FIG. 9, the reflectance and the transmittance of the recording material are measured by the spectrophotometer 1. The measurement is performed under both conditions of front incidence and back incidence, and four measurement values of T 1 , R 1 , T 2 , and R 2 are obtained. The front side here is the layer a side in FIG. 5, and the back side is the layer b side.

【0039】近似計算部3は光挙動再現計算部4とそれ
以外の部分に分けられる。光挙動再現計算部4は、4つ
の基本的光学特性値ASa *、PRa *、ASb *、PRb *
入力パラメータとし、前述のモンテカルロ法等の光挙動
再現計算によって、T1 *、R 1 *、T2 *、R2 *の4つの反
射率、透過率の出力を得る。
The approximate calculation unit 3 includes the optical behavior reproduction calculation unit 4 and
It is divided into other parts. Four light behavior reproduction calculation units 4
Basic optical characteristic value ASa *, PRa *, ASb *, PRb *To
As an input parameter, the optical behavior such as the Monte Carlo method described above
By the reproduction calculation, T1 *, R 1 *, T2 *, R2 *The four anti
Obtain the output of emissivity and transmittance.

【0040】第1回目には初期値として適当なASa *
PRa *、ASb *、PRb *を与え、モンテカルロ法等の光
挙動再現計算を行なえばよい。
In the first time, AS a * , which is appropriate as an initial value,
PR a * , AS b * , and PR b * are given, and the optical behavior reproduction calculation such as the Monte Carlo method may be performed.

【0041】比較・精度判定手段10は、測定で得られ
たT1、R1、T2、R2の4値と、光挙動再現計算部によ
り得られたT1 *、R1 *、T2 *、R2 *の4値を比較し、も
し充分な精度で一致していれば、ASa *、PRa *、AS
b *、PRb *をこの記録材の基本的光学特性値ASa、P
a、ASb、PRbとして出力する。
The comparison / accuracy determining means 10 has four values of T 1 , R 1 , T 2 and R 2 obtained by the measurement and T 1 * , R 1 * and T obtained by the optical behavior reproduction calculation section. The 4 values of 2 * and R 2 * are compared, and if they match with each other with sufficient accuracy, AS a * , PR a * , AS
b * , PR b * are the basic optical characteristic values AS a , P of this recording material
R a, AS b, and outputs a PR b.

【0042】もし充分な精度で一致していなければ、新
パラメータ決定手段11により、新しいASa *、P
a *、ASb *、PRb *を決定し、光挙動再現計算を繰り
返す。
If they do not coincide with each other with sufficient accuracy, the new parameter determining means 11 causes new AS a * , P
R a *, AS b *, determines a PR b *, repeated light behavior reproduced calculation.

【0043】比較・精度判定手段10、新パラメータ決
定手段11としては、前述の線形近似最小二乗法、ラグ
ランジュ(Lagrange)乗数法、模擬アニーリング(simu
lated annealing)法などのいわゆる最適化手法を用い
ることができる。
The comparison / accuracy determination means 10 and the new parameter determination means 11 are the above-mentioned linear approximation least squares method, Lagrange multiplier method, and simulated annealing (simu).
A so-called optimization method such as a plated annealing) method can be used.

【0044】引き続き、求めた基本的光学特性値A
a、PRa、ASb、PRbを基に、さらに前述の如く近
似計算を行なって(第二段階)、PSF等の記録材の光
学特性値を求める。
Subsequently, the obtained basic optical characteristic value A
Based on S a , PR a , AS b , and PR b , approximation calculation is further performed as described above (second step) to obtain the optical characteristic value of the recording material such as PSF.

【0045】本発明で扱う記録材の各層毎の基本的光学
特性値、全体の光学特性値等は全て、光の波長に対して
依存性であるのが普通である。それゆえ本発明の方法
は、波長毎に行なうことが本来望ましいが、ある波長区
間の平均値等を用いることもできる。
All the basic optical characteristic values and the entire optical characteristic values of each layer of the recording material treated in the present invention are usually dependent on the wavelength of light. Therefore, it is originally desirable to perform the method of the present invention for each wavelength, but an average value or the like of a certain wavelength section can be used.

【0046】[0046]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0047】(実施例1)記録材として山陽国策パルプ
(株)製のホワイトリサイクルペーパーEW−500の
記録用紙を用いて光学特性値を求めた。
Example 1 Optical characteristic values were obtained using a recording paper such as white recycled paper EW-500 manufactured by Sanyo Kokusaku Pulp Co., Ltd. as a recording material.

【0048】まず、島津製作所製の島津自記分光光度計
UV−3100Sを用いて、反射率Rと透過率Tを測定
した結果、可視波長平均値でR=0.74、T=0.1
3であった。測定時の光学条件は積分球を用いた全拡散
光測定である。この値を基に、紙の散乱係数ASと反射
係数PRを、R=0.74、T=0.13の条件を満た
すようにモンテカルロ法を適用して、AS=84.9/
mm、PR=0.9887と決定した。
First, the reflectance R and the transmittance T were measured using a Shimadzu self-recording spectrophotometer UV-3100S manufactured by Shimadzu Corporation. As a result, the average visible wavelength was R = 0.74, T = 0.1.
It was 3. The optical condition at the time of measurement is total diffused light measurement using an integrating sphere. Based on this value, the scattering coefficient AS and the reflection coefficient PR of the paper are applied with the Monte Carlo method so as to satisfy the conditions of R = 0.74 and T = 0.13, and AS = 84.9 /
mm, PR = 0.9887 was determined.

【0049】次にこの値を用いて上記の紙のライン・ス
プレッド・ファンクション(以後LSFと略す)をモン
テカルロ法による計算により求めた。ここで、LSFと
はPSFの一種のコンボリューションである。モンテカ
ルロ法による計算値が図11、上記の紙のLSF実測値
が図12である。図11と図12においては横軸はスリ
ット状の検出領域の中央部の位置を示し、縦軸は反射光
強度(%)(ナイフエッジから充分離れた位置にある紙
面からの反射光を100とする)である。測定は、紙面
に鏡面のナイフエッジを配置し、充分広い範囲を斜め上
から45度の角度で照明し、幅約10μm長さ250μ
mの微小なスリット状の領域からの反射光を検出して行
なった。図12は、上記の条件で測定領域をエッジと垂
直方向にエッジをはさんで200μmにわたって操作し
た結果である。
Next, using this value, the line spread function of the above paper (hereinafter abbreviated as LSF) was obtained by calculation by the Monte Carlo method. Here, LSF is a kind of convolution of PSF. FIG. 11 shows calculated values by the Monte Carlo method, and FIG. 12 shows measured LSF values of the above paper. 11 and 12, the horizontal axis represents the position of the central portion of the slit-shaped detection area, and the vertical axis represents the reflected light intensity (%) (the reflected light from the paper surface at a position sufficiently separated from the knife edge is 100). Yes). The measurement is performed by arranging the knife edge of the mirror surface on the paper surface and illuminating a sufficiently wide range at an angle of 45 degrees from diagonally above, width about 10 μm and length 250 μ
The measurement was performed by detecting the reflected light from the minute slit-shaped area of m. FIG. 12 shows the result of operating the measurement area for 200 μm across the edge in the direction perpendicular to the edge under the above conditions.

【0050】なおここで、図12の最高値が100%を
超えているのは、実測値のバラツキのためである。
Note that the maximum value in FIG. 12 exceeds 100% because of variations in the actual measurement values.

【0051】図11と図12を比較すると両者はよく相
関し、本発明の方法は記録材の光学的特性値判定方法と
して有用であることが明らかである。
Comparing FIG. 11 and FIG. 12, it is clear that the two correlate well and that the method of the present invention is useful as a method for determining the optical characteristic value of the recording material.

【0052】(実施例2)次に、図8に示したような2
層構造で、コート層および紙層から成るコート紙につい
て、本発明の光線追跡を光線1万本に関して行ない、計
算を実施した。その結果得られた特性値からPSFを求
め、実測の結果と比較したところ、両者の間には良好な
一致が見られ、本発明の方法により得られた光学的特性
値は実測結果を良好に反映することがわかった。
(Embodiment 2) Next, as shown in FIG.
The ray tracing of the present invention was performed on 10,000 coated rays in a coated paper having a layered structure and comprising a coated layer and a paper layer, and calculations were performed. When PSF was calculated from the obtained characteristic values and compared with the actual measurement results, a good agreement was found between the two, and the optical characteristic values obtained by the method of the present invention showed that the actual measurement results were good. It turned out to reflect.

【0053】[0053]

【発明の効果】以上説明した通り、本発明では記録材の
透過率と吸収率の測定値を基に、モンテカルロ法などの
近似計算によってPSFを求めることができる。従っ
て、複雑な光学系も画像処理装置も必要とせず、ひとた
びAS、PRの値を求めれば、何度も煩わしい測定を行
なうことなく、任意の入射角で任意の角度分布における
PSFを何度でも求めることができる。さらに、本発明
の方法は、単層、2層の記録材に限らず、3層以上の多
層構造の記録材における特性値決定においても有効であ
り、従来法より正確な値を容易に求めることができる。
As described above, in the present invention, the PSF can be obtained by an approximate calculation such as the Monte Carlo method based on the measured values of the transmittance and the absorptance of the recording material. Therefore, a complicated optical system and an image processing device are not required, and once the values of AS and PR are obtained, the PSF at an arbitrary incident angle and an arbitrary angular distribution can be repeatedly calculated without any troublesome measurement. You can ask. Further, the method of the present invention is effective not only for the recording material having a single layer or two layers but also for determining the characteristic value in the recording material having a multilayer structure of three or more layers, and it is possible to easily obtain a more accurate value than the conventional method. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の記録材の光学特性値推定法の流れを示
す概略図である。
FIG. 1 is a schematic diagram showing a flow of a method for estimating an optical characteristic value of a recording material of the present invention.

【図2】反射率および吸収率の測定法の1例を示す概略
図である。
FIG. 2 is a schematic diagram showing an example of a method for measuring reflectance and absorptance.

【図3】本発明を実施して求められたPSFの例を示し
た図である。
FIG. 3 is a diagram showing an example of PSF obtained by carrying out the present invention.

【図4】本発明を実施して求められたPSFの別の例を
示した図である。
FIG. 4 is a diagram showing another example of PSF obtained by carrying out the present invention.

【図5】2層構造の記録材の各層の基本的光学特性値を
示す図である。
FIG. 5 is a diagram showing basic optical characteristic values of each layer of a recording material having a two-layer structure.

【図6】本発明の2層構造の記録材の光学特性値推定法
の流れを示す概略図である。
FIG. 6 is a schematic diagram showing a flow of an optical characteristic value estimation method for a recording material having a two-layer structure of the present invention.

【図7】2層記録材における光線の入射と出射を模式的
に表わす図である。
FIG. 7 is a diagram schematically showing incidence and emission of light rays on a two-layer recording material.

【図8】2層記録材における1光線の軌道追跡と吸収を
表わす模式図である。
FIG. 8 is a schematic diagram showing trajectory tracking and absorption of one ray in a two-layer recording material.

【図9】図6の本発明の第一段階の手順を示すフローチ
ャートである。
9 is a flowchart showing a procedure of a first step of the present invention in FIG.

【図10】本発明における、基本的光学特性値、近似計
算および光学特性値との間の関連を示す概略図である。
FIG. 10 is a schematic diagram showing a relationship between a basic optical characteristic value, an approximate calculation, and an optical characteristic value in the present invention.

【図11】本発明におけるLSF計算値を示すグラフで
ある。
FIG. 11 is a graph showing LSF calculated values according to the present invention.

【図12】本発明におけるLSF実測値を示すグラフで
ある。
FIG. 12 is a graph showing measured LSF values in the present invention.

【符号の説明】[Explanation of symbols]

1 分光光度計 2 反射率、透過率データ 3 近似計算部 4 光挙動計算部 5 光線入射部 6 散乱吸収部 7 光線出射部 8 反射率、透過率データ 9 基本的光学特性値パラメータ 10 比較・精度判定手段 11 新パラメータ決定手段 12 基本的光学特性 21 記録材 22 積分球 23 入射光 24 反射光 25 透過光 1 Spectrophotometer 2 Reflectance and transmittance data 3 Approximate calculation part 4 Light behavior calculation part 5 Light incident part 6 Scattering absorption part 7 Light emission part 8 Reflectance and transmittance data 9 Basic optical characteristic value parameter 10 Comparison / accuracy Judgment means 11 New parameter determination means 12 Basic optical characteristics 21 Recording material 22 Integrating sphere 23 Incident light 24 Reflected light 25 Transmitted light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中井 逹也 北海道札幌市西区西野一条一丁目6−10 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsuya Nakai 1-6-1, Nishino 1-chome, Nishi-ku, Sapporo-shi, Hokkaido

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 記録材の入射光に対する反射率および/
または透過率を測定し、次いでそれら測定値から近似計
算と最適化手法により、該記録材の基本的光学特性値を
求める工程を有して成ることを特徴とする記録材の光学
特性値を求める方法。
1. A reflectance of an incident light of a recording material and //
Alternatively, the optical characteristic value of the recording material is obtained, which comprises a step of measuring the transmittance and then obtaining the basic optical characteristic value of the recording material by an approximate calculation and an optimization method from the measured values. Method.
【請求項2】 記録材の入射光に対する反射率および/
または透過率を測定し、次いでそれら測定値から近似計
算と最適化手法により、該記録材の基本的光学特性値を
求める工程と、さらに該基本的光学特性値より、近似計
算により該記録材の光学特性値を求める工程とを有して
成ることを特徴とする記録材の光学特性値を求める方
法。
2. The reflectance of the recording material for incident light and / or
Alternatively, a step of measuring the transmittance, and then obtaining the basic optical characteristic value of the recording material by an approximate calculation and an optimization method from the measured values, and further, from the basic optical characteristic value, the approximate calculation of the recording material of the recording material. A method for obtaining an optical characteristic value of a recording material, the method comprising: obtaining an optical characteristic value.
【請求項3】 基本的光学特性値が、散乱係数および/
または反射係数である請求項1または2記載の方法。
3. The basic optical characteristic values are a scattering coefficient and / or
The method according to claim 1 or 2, which is also a reflection coefficient.
【請求項4】 最終的に求める光学特性値が、ポイント
スプレッドファンクションである請求項1または2記載
の方法。
4. The method according to claim 1, wherein the finally obtained optical characteristic value is a point spread function.
【請求項5】 記録材が1層から成る請求項1ないし4
のいずれか1項に記載の方法。
5. The recording material comprises one layer.
The method according to any one of 1.
【請求項6】 記録材が複数の層から成る請求項1ない
し4のいずれか1項に記載の方法。
6. The method according to claim 1, wherein the recording material comprises a plurality of layers.
【請求項7】 記録材の各層について基本的光学特性値
を求め、該基本的光学特性値を用いて光学特性値を求め
る請求項6記載の方法。
7. The method according to claim 6, wherein a basic optical characteristic value is determined for each layer of the recording material, and the optical characteristic value is determined using the basic optical characteristic value.
【請求項8】 記録材が2層から成る請求項7記載の方
法。
8. The method according to claim 7, wherein the recording material comprises two layers.
【請求項9】 反射率および/または透過率の測定値と
して、記録材の記録表面および/または裏面への入射光
についての測定値を用いる請求項7または8記載の方
法。
9. The method according to claim 7, wherein a measured value of incident light on the recording front surface and / or the back surface of the recording material is used as the measured value of the reflectance and / or the transmittance.
【請求項10】 反射率および/または透過率の測定値
として、記録材の記録表面および/または裏面への入射
角の異なる複数の入射光についての複数の測定値を用い
る請求項7または8記載の方法。
10. The measurement value of the reflectance and / or the transmission rate, a plurality of measurement values of a plurality of incident light having different incident angles to the recording front surface and / or the back surface of the recording material is used. the method of.
JP26622693A 1992-11-06 1993-10-25 How to determine the optical properties of recording materials Expired - Fee Related JP3416221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26622693A JP3416221B2 (en) 1992-11-06 1993-10-25 How to determine the optical properties of recording materials

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP29726792 1992-11-06
JP23616893 1993-09-22
JP4-297267 1993-09-22
JP5-236168 1993-09-22
JP26622693A JP3416221B2 (en) 1992-11-06 1993-10-25 How to determine the optical properties of recording materials

Publications (2)

Publication Number Publication Date
JPH07140070A true JPH07140070A (en) 1995-06-02
JP3416221B2 JP3416221B2 (en) 2003-06-16

Family

ID=27332340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26622693A Expired - Fee Related JP3416221B2 (en) 1992-11-06 1993-10-25 How to determine the optical properties of recording materials

Country Status (1)

Country Link
JP (1) JP3416221B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040849A (en) * 2011-08-15 2013-02-28 Kobe Univ Method for calculating effective scattering coefficient of three-dimensional light scattering medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3681142B1 (en) * 2019-01-14 2021-09-08 GMG GmbH & Co. KG Method for estimating an expected spectral reflection value of a layer system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013040849A (en) * 2011-08-15 2013-02-28 Kobe Univ Method for calculating effective scattering coefficient of three-dimensional light scattering medium

Also Published As

Publication number Publication date
JP3416221B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
KR0159925B1 (en) Process for determining the optical quality of flat glasss or flat glass products
US4929846A (en) Surface quality analyzer apparatus and method
US8270700B2 (en) Method and apparatus for pattern inspection
DE112014006304T5 (en) Film thickness measuring method and film thickness measuring device
US5122672A (en) Surface quality analyzer apparatus and method
JPH0731050B2 (en) Optical film thickness measuring device
EP0299646B1 (en) Improved method and apparatus for sensing or determining one or more properties or the identity of a sample
JP3416221B2 (en) How to determine the optical properties of recording materials
WO2020199207A1 (en) Surface defect optical inspection method and related device
CN111207912A (en) Method for detecting spatial distribution of scattered light beam of optical element
JP2003506675A (en) Improved optical method for measuring metal thin films
JP3495797B2 (en) Optical constant measuring method and device
EP0905505A1 (en) Apparatus and methods for assessing the resistance of a material to damage from exposure to high-intensity polarized laser light
JPH05272949A (en) Method for evaluating glass plate surface
EP0528915B1 (en) Method and apparatus for determining the image clarity of a surface
US6927408B2 (en) Apparatus for and method of inspecting sheet body
JPH0634523A (en) Polarization analysis method and ellipsometer based on it
JP2842241B2 (en) Film thickness measurement method
JP6557688B2 (en) Measuring device, information processing device, information processing method, and program
JP2003329586A (en) Method and apparatus for predicting specular glossiness
JP3388497B2 (en) Characteristic evaluation method of single mode optical fiber
JP3889388B2 (en) Membrane structure analysis method and apparatus
JP2006023183A (en) Device and method for measuring level difference, computer program for controlling the device and computer readable recording medium recorded with the same
JPH02297008A (en) Optical measuring method for thickness of opaque thin film
JPH0791926A (en) Method and device for measuring characteristic value

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090404

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20090404

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees