JPH07139547A - Gas bearing - Google Patents

Gas bearing

Info

Publication number
JPH07139547A
JPH07139547A JP28511193A JP28511193A JPH07139547A JP H07139547 A JPH07139547 A JP H07139547A JP 28511193 A JP28511193 A JP 28511193A JP 28511193 A JP28511193 A JP 28511193A JP H07139547 A JPH07139547 A JP H07139547A
Authority
JP
Japan
Prior art keywords
bearing
shaft
heat
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28511193A
Other languages
Japanese (ja)
Inventor
Satoshi Omutsuno
智 大六野
Takashi Murai
隆司 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP28511193A priority Critical patent/JPH07139547A/en
Publication of JPH07139547A publication Critical patent/JPH07139547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PURPOSE:To provide a gas bearing which can simply restrain temperature rise even without using a complicated fluid cooling mechanism. CONSTITUTION:Material of emissivity more than 0.4 is used for both, the bearing surface 1a of the movable member and the bearing surface 2a of the supporting member of a gas bearing. Therefore, remarkably much heat than that in a customary case can be taken away from the movable member 1, and excellent baring performance can be insured without forcedly cooling the movable member by water or liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体軸受に関し、特に、
精密機械加工の分野などで利用される場合に問題となる
熱膨張に対して、可動部材に対し冷却流体を使用せずに
対応できるようにしたものである。
FIELD OF THE INVENTION This invention relates to gas bearings, and more particularly to
The present invention can cope with thermal expansion, which is a problem when used in the field of precision machining, etc., without using a cooling fluid for the movable member.

【0002】[0002]

【従来の技術】一般に、気体軸受は摩擦係数が非常に小
さくて転がり軸受や油静圧軸受に比べて発熱が少なく、
また超高精度の回転が可能なことなどから、例えば超精
密加工用の工作機械の等に盛んに利用されている。図4
は、工作機械の主軸軸受である気体軸受スピンドルに用
いられている従来の気体軸受の一例であり、可動部材で
ある軸(ロータ)1の軸受面(以下、可動側軸受面とも
いう)1aが支持部材である軸受2の軸受面(以下、支
持側軸受面ともいう)2aに非接触回転可能に支持され
ている。
2. Description of the Related Art Generally, a gas bearing has a very small coefficient of friction and generates less heat than a rolling bearing or a hydrostatic bearing.
Further, since it can be rotated with ultra-high precision, it is widely used in machine tools for ultra-precision machining. Figure 4
Is an example of a conventional gas bearing used in a gas bearing spindle that is a main shaft bearing of a machine tool, and a bearing surface (hereinafter, also referred to as a movable bearing surface) 1a of a shaft (rotor) 1 that is a movable member is It is supported by a bearing surface (hereinafter, also referred to as a support-side bearing surface) 2a of a bearing 2 which is a support member so as to be non-contact rotatable.

【0003】軸1,軸受2ともにステンレス製で、各軸
受面1a,2aは研削加工してある。図外の給気源から
供給された圧縮気体5が、給気孔3から軸受すき間4に
送られて、その圧縮気体5の圧力によって軸1が浮上支
持される。その非接触構造のため軸受部での熱の発生が
少ない。しかし、熱の発生が少ないとはいっても、高速
回転の場合には20〜40℃程度の温度上昇は避けられ
ない。このため、軸受2は図示しない冷却機構により冷
却される。軸受2が冷却されると軸受2と軸1の間に温
度差が生じ、この温度差の応じた熱が軸1から軸受2に
伝わることにより軸1が冷却される。ところが、軸1,
軸受2ともに鏡面に近くて熱放射および熱吸収は極端に
小さいことから軸1と軸受2の間における伝熱量は少な
く、軸1の熱が軸受2へ移動して軸1が冷却される程度
は非常に小さい。
Both the shaft 1 and the bearing 2 are made of stainless steel, and the bearing surfaces 1a and 2a are ground. Compressed gas 5 supplied from an unillustrated air supply source is sent from the air supply hole 3 to the bearing gap 4, and the shaft 1 is levitationally supported by the pressure of the compressed gas 5. Due to the non-contact structure, less heat is generated in the bearing portion. However, although the amount of heat generated is small, a temperature rise of about 20 to 40 ° C. is inevitable in the case of high speed rotation. Therefore, the bearing 2 is cooled by a cooling mechanism (not shown). When the bearing 2 is cooled, a temperature difference is generated between the bearing 2 and the shaft 1, and heat corresponding to this temperature difference is transferred from the shaft 1 to the bearing 2 to cool the shaft 1. However, axis 1,
Since both the bearing 2 is close to the mirror surface and the heat radiation and the heat absorption are extremely small, the amount of heat transfer between the shaft 1 and the bearing 2 is small, and the heat of the shaft 1 moves to the bearing 2 and the shaft 1 is cooled to a degree. Very small.

【0004】図5は従来の気体軸受の他の例である。軸
1はステンレス製で、その軸1には二硫化モリブデン
(MoS2 )のコーティング6が施されている。コーテ
ィング6を施した目的は、トラブルがおきて給気孔3か
ら軸受すき間4への圧縮気体5の給気が止まったときに
軸1と軸受2との軸受面1a,2a同士が接触して焼き
付く事故を防止することにあり、この目的は軸1の側だ
けの片側コーティングで十分に果たすことできる。
FIG. 5 shows another example of a conventional gas bearing. The shaft 1 is made of stainless steel, and the shaft 1 is coated with a coating 6 of molybdenum disulfide (MoS 2 ). The purpose of applying the coating 6 is to cause seizure when the bearing surfaces 1a and 2a of the shaft 1 and the bearing 2 come into contact with each other when the supply of the compressed gas 5 from the air supply hole 3 to the bearing gap 4 is stopped due to a trouble. In order to prevent accidents, a one-sided coating on the side of the shaft 1 can suffice for this purpose.

【0005】ところで、二硫化モリブデンの被膜は、た
またま熱放射率が大きいという性質を持っているため、
この図5の軸1は図4のものと違って多くの熱量を放出
する。しかし、その放出熱の大部分は熱吸収率の小さい
軸受2の軸受面2aで反射されて、軸1に戻ってきてし
まう。しかも、軸1の熱放射率が大きいことが災いして
自ら放出した熱をまた吸収してしまう(熱放射率が大き
いと熱放射能力と共に熱吸収能力も大きい)。その結
果、コーティング6により軸1の熱放射率はコーティン
グなしの場合の十倍にもなるにも拘わらず、伝熱量すな
わち軸1から軸受2への熱移動量は僅か二倍程度にしか
なっていない。
By the way, since the coating film of molybdenum disulfide happens to have a large thermal emissivity,
The shaft 1 of FIG. 5 radiates a large amount of heat unlike the shaft 1 of FIG. However, most of the emitted heat is reflected by the bearing surface 2a of the bearing 2 having a small heat absorption rate and returns to the shaft 1. In addition, the large heat emissivity of the shaft 1 causes a great deal of damage and absorbs the heat released by itself (the larger the heat emissivity is, the larger the heat emissivity is. As a result, although the coating 6 increases the thermal emissivity of the shaft 1 to 10 times that in the case without the coating, the amount of heat transfer, that is, the amount of heat transfer from the shaft 1 to the bearing 2 is only about twice. Absent.

【0006】以上のように、従来の気体軸受の場合は、
いずれも軸1からの熱移動量が少ない。換言すれば軸の
冷却効果が小さい。そのため、軸1が20〜40℃程度
温度上昇する結果、軸1が熱膨張して軸受すき間が変化
し、軸受性能の低下をきたしたり工作機械の加工精度の
劣化を招いたりする。この精度の劣化を避けるには機械
を熱平衡させることが必要であるが、そのためには例え
ば工作機械の暖気運転(ウオ ームアップ)時間を長くと
らねばならず時間の損失になる。
As described above, in the case of the conventional gas bearing,
In both cases, the amount of heat transfer from the shaft 1 is small. In other words, the cooling effect of the shaft is small. Therefore, as a result of the temperature of the shaft 1 rising by about 20 to 40 ° C., the shaft 1 thermally expands to change the bearing clearance, resulting in deterioration of bearing performance and deterioration of machining accuracy of the machine tool. In order to avoid this deterioration of accuracy, it is necessary to equilibrate the machine, but for that purpose, for example, the warm-up time (warm-up) time of the machine tool must be lengthened, which results in a loss of time.

【0007】そこで従来は、気体軸受の軸受のみなら
ず、軸についても水冷又は油冷方式で強制冷却すること
が必要であった。
Therefore, conventionally, not only the bearing of the gas bearing but also the shaft has been required to be forcibly cooled by a water cooling or oil cooling system.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、高速で
回転する軸に水や油などの冷却流体を洩れを防ぎながら
供給するには、シールなどに特殊の技術が必要で非常に
コストが高くなるという問題点があった。そこで本発明
は、このような従来の問題点に着目してなされたもの
で、その目的とするところは、簡単に可動部材の温度上
昇を抑制できる気体軸受を提供することにある。
However, in order to supply the cooling fluid such as water or oil to the shaft rotating at a high speed while preventing the leakage, a special technique is required for the seal and the cost is very high. There was a problem. Therefore, the present invention has been made in view of such conventional problems, and an object thereof is to provide a gas bearing that can easily suppress a temperature rise of a movable member.

【0009】[0009]

【課題を解決するための手段】本発明は、可動部材に設
けた可動側軸受面が支持部材に設けた支持側軸受面に対
向する気体軸受に係り、可動側軸受面及び支持側軸受面
はいずれも熱放射率が0.4 以上であることを特徴とす
る。
SUMMARY OF THE INVENTION The present invention relates to a gas bearing in which a movable bearing surface provided on a movable member faces a supporting bearing surface provided on a supporting member, and the movable bearing surface and the supporting bearing surface are Both are characterized by a thermal emissivity of 0.4 or more.

【0010】[0010]

【作用】気体軸受は、可動部材の軸受面と支持部材の軸
受面とが数μmの気体膜を介して対向している部分にお
いて両部材間の熱のやりとりが行われる。この熱の授受
は主に熱伝導と熱放射による。しかし、可動部材と支持
部材とが非接触で気体を媒介として熱の授受が行われる
ことから、熱伝導の比重は比較的小さい。そこで本発明
にあっては、熱放射を積極的に利用して効率的に冷却す
る。
In the gas bearing, heat is exchanged between the two members at a portion where the bearing surface of the movable member and the bearing surface of the supporting member face each other with a gas film of several μm therebetween. The transfer of this heat is mainly due to heat conduction and heat radiation. However, since the movable member and the supporting member are in non-contact with each other to transfer heat through gas, the specific gravity of heat conduction is relatively small. Therefore, in the present invention, the heat radiation is positively utilized to cool efficiently.

【0011】気体軸受を構成する両部材の相対する軸受
面は、その軸受すき間が数μmと極めて微小なことに対
応して、両部材の寸法精度及び面粗さを最高度に仕上げ
ておく必要がある。通常、両部材ともステンレス材を使
用し、その軸受面は研削仕上げ面もしくはラップ仕上げ
面である。このような面はほぼ鏡面であり、そのため熱
放射率εは0.03〜0.1 と非常に小さい。このことは、放
射伝熱による冷却という本発明技術の立場からすると最
悪の条件といえる。本発明者等はこの悪条件の克服につ
いて鋭意研究をすすめた結果、可動側軸受面と支持側軸
受面との双方の熱放射率εが共に0.4 以上と高い値であ
れば、その熱放射による冷却能力はステンレス材のまま
のときより大幅に促進され、実用上十分な効果が得られ
ることを見いだして、本発明を完成したものである。
The opposing bearing surfaces of both members constituting the gas bearing must be finished to the highest degree of dimensional accuracy and surface roughness, corresponding to the extremely small bearing clearance of several μm. There is. Usually, both members are made of stainless steel, and the bearing surface thereof is a ground finish surface or a lap finish surface. Such a surface is almost a mirror surface, and therefore the thermal emissivity ε is very small at 0.03 to 0.1. This can be said to be the worst condition from the standpoint of the technique of the present invention of cooling by radiative heat transfer. The inventors of the present invention have conducted extensive studies on overcoming this adverse condition, and as a result, if the thermal emissivity ε of both the movable side bearing surface and the supporting side bearing surface is a high value of 0.4 or more, the thermal radiation The present invention has been completed by finding that the cooling capacity is greatly promoted as compared with the case where the stainless steel material is used as it is, and a sufficient effect is obtained in practical use.

【0012】(1)以下に図面を参照して、先ず、本発
明の放射伝熱による熱収支について詳細に検討する。図
1は、近接する二面間の放射による熱の移動の態様を示
したもので、面1aは気体軸受の可動部材としての軸
(高温側)の軸受面、面2aは支持部材としての軸受
(低温側)の軸受面である。
(1) With reference to the drawings, first, the heat balance by radiative heat transfer of the present invention will be examined in detail. FIG. 1 shows a mode of heat transfer due to radiation between two adjacent surfaces. A surface 1a is a bearing surface of a shaft (high temperature side) as a movable member of a gas bearing, and a surface 2a is a bearing as a supporting member. This is the bearing surface (on the low temperature side).

【0013】面1aは、その温度T1 及び熱放射率ε1
としたとき、式(1)で表される熱量q1 を放出する。
この熱は、面1aと面2aが近接しているためほとんど
全てが面2aに向かう。面2aに到達した熱のうち一部
は面2aに吸収される(q12)。しかし残りの大部分は
面2aで反射されて面1aに戻ってくる(q11)。この
戻ってきた熱q11についても、一部は面1aで吸収され
るが(q111 )、残りは面1aで反射されて面2aへと
向かう(q112 )。このような反射と吸収がずっと繰り
返される。
The surface 1a has a temperature T 1 and a thermal emissivity ε 1
Then, the heat quantity q 1 expressed by the equation (1) is released.
Almost all of this heat goes to the surface 2a because the surfaces 1a and 2a are close to each other. Part of the heat reaching the surface 2a is absorbed by the surface 2a (q 12 ). However, most of the rest is reflected by the surface 2a and returns to the surface 1a (q 11 ). A part of the returned heat q 11 is also absorbed by the surface 1a (q 111 ), but the rest is reflected by the surface 1 a toward the surface 2 a (q 112 ). Such reflection and absorption are repeated all the time.

【0014】一方、面2aも、その温度T2 及び熱放射
率ε2 としたとき、式(2)で表される熱量q2 を放出
する。この熱もq1 と同じように、面1aと面2aとの
間で反射・吸収が繰り返される。このように面1a,面
2aはそれぞれが同時に熱を放射放出している。また、
一方の面から放出された熱は、対向する面で吸収される
部分もあるが反射される部分もあり、熱の授受は複雑で
ある。整理すると式(3),(4)が得られる。
On the other hand, the surface 2a also radiates a heat quantity q 2 represented by the equation (2) when the temperature T 2 and the thermal emissivity ε 2 are given. Similar to q 1 , this heat is also repeatedly reflected and absorbed between the surface 1a and the surface 2a. In this way, the surfaces 1a and 2a each radiate heat at the same time. Also,
The heat radiated from one surface has a part to be absorbed by the opposite surface but also a part to be reflected, so that the heat transfer is complicated. When arranged, formulas (3) and (4) are obtained.

【0015】 q1 =σT1 4Aε1 (1) q2 =σT2 4Aε2 (2) Q12=σ(T1 4−T2 4)AFg12 (3) Fg12 =1/{(1/ε1 )+(1/ε2 )−1} (4) q1 :面1aから放出される熱量 q2 :面2aから放出される熱量 σ :ステファン・ボルツマン定数 T1 :面1aの絶対温度 T2 :面2aの絶対温度 A :面積 ε1 :面1aの熱放射率 ε2 :面2aの熱放射率 Q12:面1aから面2aに移動する熱量 Fg12 :灰色面1a,2a間の形態係数(上式は近接す
る二面間の場合) ここで、 熱放射率ε:この値が大きいほど良く熱を放射すると同
時に熱を良く吸収し、熱をあまり反射しない。
[0015] q 1 = σT 1 4 Aε 1 (1) q 2 = σT 2 4 Aε 2 (2) Q 12 = σ (T 1 4 -T 2 4) AF g12 (3) F g12 = 1 / {( 1 / ε 1 ) + (1 / ε 2 ) −1} (4) q 1 : the amount of heat emitted from the surface 1 a q 2 : the amount of heat emitted from the surface 2 a σ: the Stefan-Boltzmann constant T 1 : the amount of the surface 1 a Absolute temperature T 2 : Absolute temperature of surface 2a A: Area ε 1 : Thermal emissivity of surface 1a ε 2 : Thermal emissivity of surface 2a Q 12 : Heat quantity transferred from surface 1a to surface 2a F g12 : Gray surface 1a, Form factor between 2a (when the above formula is between two adjacent surfaces) Thermal emissivity ε: The larger this value is, the better the radiation of heat, the better the absorption of heat, and the less reflection of heat.

【0016】灰色面 :熱放射率εが0<ε<1の
面、つまり実在する物体の面(白色面はε=0の、黒色
面はε=1の架空の面) 式(3),(4)から分かるように、T1 ,T2 ,Aが
同じであればQ12はFg12 の大きさによる。すなわち、
面1と面2の面積,温度が同じであれば、両面間の放射
伝熱量は灰色面間の形態係数Fg12 に比例する。
Gray surface: A surface with a thermal emissivity ε of 0 <ε <1, that is, a surface of an actual object (a white surface is an imaginary surface with ε = 0, and a black surface is an imaginary surface with ε = 1) Equation (3), As can be seen from (4), if T 1 , T 2 , and A are the same, Q 12 depends on the size of F g12 . That is,
If the area and temperature of the surface 1 and the surface 2 are the same, the amount of radiant heat transfer between the two surfaces is proportional to the form factor F g12 between the gray surfaces.

【0017】いま、気体軸受における各面1a,2aの
材料の種類を変えて、熱放射率εに一桁の差があるステ
ンレス研磨面かグラファイト研磨面のいずれかにして組
み合わせたものにつき、式(4)から灰色面間の形態係
数Fg12 を計算した結果を表1に示す。
Now, the type of material of each surface 1a, 2a in the gas bearing is changed, and the combination is made with either a stainless steel polished surface or a graphite polished surface having a one-digit difference in thermal emissivity ε. Table 1 shows the results of calculation of the view factor F g12 between gray planes from (4).

【0018】[0018]

【表1】 [Table 1]

【0019】表から明らかなように、軸と軸受とのいず
れか一方の熱放射率εのみを増加させた場合は、灰色面
間の形態係数Fg12 の増加する効果は2倍程度が限度で
ある。これに対して、軸と軸受との両方の熱放射率εを
増すことにより10倍以上の灰色面間の形態係数増大効
果が得られた。以上の計算で、気体軸受における軸と軸
受との両方とも熱放射率の高い材料を使用すれば、伝熱
量を飛躍的に増大させることが可能なことが明らかにな
った。
As is clear from the table, when only the thermal emissivity ε of one of the shaft and the bearing is increased, the effect of increasing the form factor F g12 between the gray surfaces is about double. is there. On the other hand, by increasing the thermal emissivity ε of both the shaft and the bearing, the effect of increasing the view factor of 10 times or more between the gray surfaces was obtained. From the above calculation, it has been clarified that the heat transfer amount can be dramatically increased by using a material having a high thermal emissivity for both the shaft and the bearing of the gas bearing.

【0020】(2)次に、その場合に軸の温度がどの位
になるかを検討してみる。気体軸受の軸に入ってくる熱
としては、モータによる発熱と軸受すき間内の空気がせ
ん断されることによって発生する熱の二つが考えられ
る。軸が高速回転した場合は、空気のせん断による発熱
が支配的となるため、ここでは空気のせん断による発熱
のみを考える。一方、軸から出ていく熱は、熱伝導によ
るものと熱放射によるものが考えられるが、この場合も
熱伝導による放射は熱放射による放熱より二桁以上小さ
いので、熱放射による放熱のみを考える。
(2) Next, the temperature of the shaft in that case will be examined. The heat that enters the shaft of the gas bearing can be either heat generated by the motor or heat generated by shearing the air in the bearing gap. When the shaft rotates at high speed, heat generation due to air shearing becomes dominant, so here only heat generation due to air shearing is considered. On the other hand, the heat emanating from the shaft may be due to heat conduction or heat radiation. In this case as well, heat radiation due to heat conduction is smaller than heat radiation due to heat radiation by at least two orders of magnitude. .

【0021】実際に例えば工作機械の気体軸受スピンド
ルを運転する場合は、一定回転で運転するので軸受すき
ま内の空気の温度はTA でほぼ一定となる。この時、軸
に入ってくる熱量QINは空気膜の温度TA と軸の温度T
1 の差に比例し、 QIN=C(TA −T1 ) (5) C:係数 となる。
When a gas bearing spindle of a machine tool is actually operated, the temperature of air in the bearing clearance is substantially constant at T A because the gas bearing spindle of the machine tool is operated at constant rotation. At this time, the amount of heat Q IN entering the shaft is the temperature T A of the air film and the temperature T A of the shaft.
Proportional to the difference of 1, Q IN = C (T A -T 1) (5) C: a coefficient.

【0022】この熱により軸は次第に暖められる。軸が
暖まると両者の温度差は小さくなり、QINは次第に減少
する。一方、軸が暖まると、軸と軸受との間に温度差が
生まれ、その温度差に見合った熱量が軸から放熱される
ようになる。この軸から出ていく熱も一定ではなく、軸
が暖まるにしたがって増えていく。こうして、軸の温度
が上がり、軸に入ってくる熱量と軸から出ていく熱量と
が等しくなったところで、軸の熱収支は平衡状態とな
り、軸の温度はその温度で一定となる。
The heat gradually warms the shaft. As the shaft warms, the temperature difference between the two becomes smaller and Q IN gradually decreases. On the other hand, when the shaft warms up, a temperature difference is generated between the shaft and the bearing, and the amount of heat commensurate with the temperature difference is radiated from the shaft. The heat emanating from this axis is not constant and increases as the axis warms. Thus, when the temperature of the shaft rises and the amount of heat entering the shaft and the amount of heat exiting the shaft become equal, the heat balance of the shaft is in equilibrium, and the temperature of the shaft becomes constant at that temperature.

【0023】ここで、軸に入ってくる熱量をQINのみと
し、軸から出ていく熱量は放射による熱Q12のみとす
る。平衡状態ではQ12=QINで一定であるから、先にあ
げた式(3),(4),(5)を連立して、軸の軸受面
の温度T1 が式(6)から求められる。 σ(T1 4−T2 4)AFg12 =C(TA −T1 ) (6) いま、熱放射率ε1 =ε2 =0.05(従来のステンレス研
磨面の場合と同じ値)の時に、軸の温度が326K(5
3℃)で平衡状態になる気体軸受スピンドルについて、
熱放射率ε1 ,ε2 を変えた場合の軸の温度を試算した
例を表2に示す。
Here, the amount of heat entering the shaft is Q IN only, and the amount of heat exiting the shaft is only heat Q 12 due to radiation. Since Q 12 = Q IN is constant in the equilibrium state, the above equations (3), (4), and (5) are combined to obtain the temperature T 1 of the bearing surface of the shaft from the equation (6). To be σ (T 1 4 −T 2 4 ) AF g12 = C (T A −T 1 ) (6) Now, when the thermal emissivity ε 1 = ε 2 = 0.05 (the same value as that of the conventional polished stainless steel surface) , The shaft temperature is 326K (5
For gas bearing spindles that are in equilibrium at 3 ° C,
Table 2 shows an example of trial calculation of the shaft temperature when the thermal emissivity ε 1 and ε 2 are changed.

【0024】[0024]

【表2】 [Table 2]

【0025】また、表2をグラフ化したものを図2に示
す。図2から明らかなように、熱放射率ε1 ,ε2 が0.
4 まではε1 ,ε2 の値の増加と共に軸の温度は大きく
下がるが、ε1 ,ε2 の値が0.4 以上になると軸の温度
低下の度合いは緩やかになって、ε1 ,ε2 の値が増加
しても軸の温度T1は余り下がってはいない。すなわ
ち、従来のステンレス研磨面の熱放射率ε1 ,ε2 が0.
05の場合は軸の温度T1 は20℃から53℃になり、そ
の温度上昇分ΔTは33℃であるのに対し、ε1 ,ε2
が0.4 ではΔTは9 ℃、ε1 ,ε2 が0.7 でΔTは4℃
になっている。つまりε1 ,ε2 が0.4の値であれば、
温度上昇は従来のε=0.05の場合のおよそ1/4以下、
またε1 ,ε2 が0.7の値であれば、1/8以下にする
ことができる。一方、ε1 ,ε2 を0.8, 0.9と大きくし
てもそれ程効果は上がらない。
A graph of Table 2 is shown in FIG. As is clear from FIG. 2, the thermal emissivities ε 1 and ε 2 are 0.
Until 4 epsilon 1, but decreases significantly the temperature of the shaft with increasing epsilon 2 values, epsilon 1, the degree of temperature drop of the shaft when the value of epsilon 2 is 0.4 or more is slowed, ε 1, ε 2 The temperature T 1 of the shaft does not drop much even if the value of is increased. In other words, the thermal emissivity ε 1 , ε 2 of the conventional polished stainless steel surface is 0.
In the case of 05, the shaft temperature T 1 changes from 20 ° C to 53 ° C, and the temperature increase ΔT is 33 ° C, while ε 1 , ε 2
Is 0.4, ΔT is 9 ° C, ε 1 , ε 2 is 0.7, and ΔT is 4 ° C.
It has become. So if ε 1 and ε 2 are 0.4,
Temperature rise is about 1/4 or less of the conventional case of ε = 0.05,
If ε 1 and ε 2 have a value of 0.7, it can be reduced to ⅛ or less. On the other hand, even if ε 1 and ε 2 are increased to 0.8 and 0.9, the effect does not increase so much.

【0026】参考として、各種の材料の熱放射率ε1
ε2 の値を表3に示す。
As a reference, the thermal emissivity ε 1 of various materials,
Table 3 shows the value of ε 2 .

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【実施例】以下に、本発明の実施例を図面を参照して説
明する。図3は本発明の気体軸受の一実施例である。こ
の実施例の気体軸受は、可動部材としての軸1に二硫化
モリブデンのコーティング13を施してある。但し、こ
の二硫化モリブデンのコーティング13は、従来のよう
に給気トラブル時の軸と軸受との焼き付きを防止する目
的とは異なり、軸の軸受面1aの熱放射率ε1 ,ε2
高めることを目的としている。また、支持部材である軸
受2が、ステンレス鋼製で、その軸受2に同じく二硫化
モリブデンのコーティング15を施したものである。ま
た、支持部材として固定されている軸受2の方を、図示
しない冷却機構により強制冷却している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 3 shows an embodiment of the gas bearing of the present invention. In the gas bearing of this embodiment, a shaft 13 as a movable member is coated with a coating 13 of molybdenum disulfide. However, the coating 13 of molybdenum disulfide enhances the thermal emissivities ε 1 and ε 2 of the bearing surface 1a of the shaft, unlike the conventional purpose of preventing seizure between the shaft and the bearing during air supply trouble. Is intended. Further, the bearing 2 which is a supporting member is made of stainless steel, and the bearing 2 is also coated with molybdenum disulfide coating 15. The bearing 2 fixed as a support member is forcibly cooled by a cooling mechanism (not shown).

【0029】軸受2に形成された給気孔3から軸受すき
間4に圧縮気体5が送られて、その圧力によって軸1が
浮上支持される非接触構造である。この場合、軸1の軸
受面1aは二硫化モリブデンのコーティング13の熱放
射率ε1 ,ε2 が大きいため多くの熱量を放射放出す
る。その放射放出された熱の大部分は、軸受2の軸受面
2aの熱吸収率の大きい二硫化モリブデンのコーティン
グ13によって吸収される。この軸受面2aは熱吸収率
が大きく反射率が小さいため、軸1に戻る熱量は非常に
少ない。また、軸受2の方から軸1に伝わる放射熱量
は、軸受2が冷却されているため少ない。結果として、
軸1の熱は軸受2に大量に伝わり(従来の十倍以上)、
軸1は効率良く冷却される。
A compressed gas 5 is sent from the air supply hole 3 formed in the bearing 2 to the bearing clearance 4, and the shaft 1 is levitationally supported by the pressure of the non-contact structure. In this case, the bearing surface 1a of the shaft 1 radiates a large amount of heat because the thermal emissivity ε 1 , ε 2 of the molybdenum disulfide coating 13 is large. Most of the radiated heat is absorbed by the coating 13 of molybdenum disulfide having a high heat absorption coefficient on the bearing surface 2 a of the bearing 2. Since the bearing surface 2a has a large heat absorption coefficient and a small reflectance coefficient, the amount of heat returning to the shaft 1 is very small. Further, the amount of radiant heat transmitted from the bearing 2 to the shaft 1 is small because the bearing 2 is cooled. as a result,
A large amount of heat from the shaft 1 is transferred to the bearing 2 (more than ten times that of the conventional type),
The shaft 1 is efficiently cooled.

【0030】なお、本発明は、軸を固定して軸に嵌合す
る部材を回転させる気体軸受にも利用でき、実施例とし
てあげたような静圧気体軸受のみではなく、静圧エアス
ライド(静圧直動気体軸受)や回転形及び直動形の動圧
気体軸受にも利用できる。また、本発明は冷却効果が大
であるから、その構成部材を上記実施例のように強制冷
却しても良いが、強いて冷却しなくても良い。
The present invention can be applied to a gas bearing for fixing a shaft and rotating a member fitted to the shaft, and is not limited to the static pressure gas bearing as described in the embodiment, but a static pressure air slide ( Static pressure direct acting gas bearings) and rotary and direct acting dynamic pressure gas bearings. Further, since the present invention has a large cooling effect, its constituent members may be forcibly cooled as in the above-described embodiment, but may not be forcibly cooled.

【0031】また、コーティングは二硫化モリブデンと
は限らず、例えばグラファイト,黒色系のセラミックス
等のその他の熱放射率ε1 ,ε2 が0.4 以上の材料のな
かから適宜に選定して使用することができる。また、コ
ーティングに代えて、軸と軸受との両部材自体を熱放射
率ε1 ,ε2が0.4 以上の材料で形成しても良い。
Further, the coating is not limited to molybdenum disulfide, and may be appropriately selected and used from other materials having thermal emissivity ε 1 and ε 2 of 0.4 or more, such as graphite and black ceramics. You can Further, instead of coating, both the shaft and bearing members themselves may be formed of a material having a thermal emissivity ε 1 , ε 2 of 0.4 or more.

【0032】また、軸と軸受との一方を熱放射率ε1
ε2 が0.4 以上の材料でコーティングし、他方は部材自
体を熱放射率ε1 ,ε2 が0.4 以上の材料で形成しても
良い。また、熱放射率ε1 ,ε2 が0.4 以上の材料は、
軸側と軸受側とで異なるものを用いても良い。
Further, one of the shaft and the bearing has a thermal emissivity ε 1 ,
epsilon 2 is coated with 0.4 or more materials, other thermal emissivity epsilon 1 the member itself, epsilon 2 may be formed by 0.4 or more materials. Also, for materials with thermal emissivity ε 1 and ε 2 of 0.4 or more,
Different shaft side and bearing side may be used.

【0033】なお、熱放射率0.4 以上の材料としては、
他にアルミナ系セラミックス,マグネシア系セラミック
ス等がある。
As a material having a thermal emissivity of 0.4 or more,
Other examples include alumina-based ceramics and magnesia-based ceramics.

【0034】[0034]

【発明の効果】以上、説明したように、本発明によれ
ば、気体軸受の可動側軸受面及び支持側軸受面の両方に
熱放射率が0.4 以上の材料を使用したため、従来より遙
に多くの熱を可動部材から取り去ることができるから、
可動部材を強いて水冷または液冷しなくても良く、簡単
でかつ低コストな気体軸受を提供することができるとい
う効果を奏する。
As described above, according to the present invention, a material having a thermal emissivity of 0.4 or more is used for both the movable side bearing surface and the supporting side bearing surface of the gas bearing. Because the heat of can be removed from the movable member,
It is not necessary to force the movable member to be water-cooled or liquid-cooled, and it is possible to provide a simple and low-cost gas bearing.

【図面の簡単な説明】[Brief description of drawings]

【図1】軸と軸受との間の放射による熱移動の態様を説
明する図である。
FIG. 1 is a diagram illustrating a mode of heat transfer by radiation between a shaft and a bearing.

【図2】軸と軸受における熱放射率と軸の温度との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the thermal emissivity of the shaft and the bearing and the temperature of the shaft.

【図3】本発明の一実施例の断面図である。FIG. 3 is a sectional view of an embodiment of the present invention.

【図4】従来の気体軸受の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a conventional gas bearing.

【図5】従来の気体軸受の他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of a conventional gas bearing.

【符号の説明】[Explanation of symbols]

1 可動部材(軸) 1a 可動側軸受面 2 支持部材(軸受) 2a 支持側軸受面 1 movable member (shaft) 1a movable bearing surface 2 support member (bearing) 2a supporting bearing surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可動部材に設けた可動側軸受面が支持部
材に設けた支持側軸受面に対向する気体軸受において、 可動側軸受面及び支持側軸受面はいずれも熱放射率が0.
4 以上であることを特徴とする気体軸受。
1. A gas bearing in which a movable bearing surface provided on a movable member faces a supporting bearing surface provided on a supporting member, and both the movable bearing surface and the supporting bearing surface have a thermal emissivity of 0.
A gas bearing characterized by being 4 or more.
JP28511193A 1993-11-15 1993-11-15 Gas bearing Pending JPH07139547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28511193A JPH07139547A (en) 1993-11-15 1993-11-15 Gas bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28511193A JPH07139547A (en) 1993-11-15 1993-11-15 Gas bearing

Publications (1)

Publication Number Publication Date
JPH07139547A true JPH07139547A (en) 1995-05-30

Family

ID=17687264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28511193A Pending JPH07139547A (en) 1993-11-15 1993-11-15 Gas bearing

Country Status (1)

Country Link
JP (1) JPH07139547A (en)

Similar Documents

Publication Publication Date Title
US3311431A (en) Temperature compensating bearing assembly
JPH11179603A (en) Bearing device for machine tool spindle
TW200900602A (en) Preload adjusting method in rolling bearing assembly and device therefor
KR960015256B1 (en) Rotatable table using fluid bearing
JPH0554565B2 (en)
JPH07139547A (en) Gas bearing
JPS62148102A (en) Main spindle device
JP3113750B2 (en) Hydrostatic gas bearing
JP2510758B2 (en) Cooling method for bearings for machine spindles
JP3100916B2 (en) Rotary type hydrostatic bearing device
JP2009085354A (en) Coating roll working method, coating roll and coating apparatus
JPH0571535A (en) Static pressure fluid bearing
EP0083943B1 (en) Supporting table cooling apparatus
JPS61159377A (en) Grinding device
JPH06241222A (en) Spindle
JP2000018363A (en) Cooling device for feed screw mechanism
JPH0137610B2 (en)
JPH0587143A (en) Static pressure fluid bearing device
JPH0518001Y2 (en)
JPH0525802Y2 (en)
JP2000145663A (en) Gear pump
JPH08303476A (en) Rotary main shaft
JPH06101979A (en) Temperature control method for threaded shaft
JPH06198539A (en) Thermal deformation reduction method for static pressure main spindle for precision working machine
JP2006167822A (en) Spindle device