JPH07139341A - Reactor of denitration device for ship - Google Patents

Reactor of denitration device for ship

Info

Publication number
JPH07139341A
JPH07139341A JP5285093A JP28509393A JPH07139341A JP H07139341 A JPH07139341 A JP H07139341A JP 5285093 A JP5285093 A JP 5285093A JP 28509393 A JP28509393 A JP 28509393A JP H07139341 A JPH07139341 A JP H07139341A
Authority
JP
Japan
Prior art keywords
catalysts
catalyst
reactor
ship
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5285093A
Other languages
Japanese (ja)
Other versions
JP3547465B2 (en
Inventor
Keiichi Yaguchi
敬一 矢口
Kazuya Sato
一也 佐藤
Takeki Kobayashi
武城 小林
Hiroaki Hayashi
浩昭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niigata Engineering Co Ltd
Nippon Shokubai Co Ltd
Original Assignee
Niigata Engineering Co Ltd
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Niigata Engineering Co Ltd, Nippon Shokubai Co Ltd filed Critical Niigata Engineering Co Ltd
Priority to JP28509393A priority Critical patent/JP3547465B2/en
Publication of JPH07139341A publication Critical patent/JPH07139341A/en
Application granted granted Critical
Publication of JP3547465B2 publication Critical patent/JP3547465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a compact reactor whose catalyst has excellent vibration- resistance. CONSTITUTION:A case 3 is composed of a lower portion 4 having an inlet 6 for exhaust gas and an upper portion 5 having an outlet 7. Prismatic catalysts 1 in the lower portion, each having a right angle between a running direction of a ship and a longitudinal direction, are superposed in a dislocating manner rightward with a specified measurement in a longitudinal direction, and held by a support reticle 8. The catalysts in the upper portion are superposed in a dislocating manner leftward. Exhaust gas flowed from the inlet does into a space S2 through a space S1 and a lower catalyst. The exhaust gas reaches the outlet through the upper catalyst and a space S3. A transverse measurement of a reactor is indicated by a formula of c+a+b, which is smaller than the conventional transverse measurement indicated by the formula a+2b. The conventional measurement is obtained by the measurements (b) on both ends of the catalysts superposed in the flat manner. The catalysts are horizontally arranged, whose longitudinal direction is perpendicularly arranged to the running direction of the ship for improving vibration-resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディーゼルエンジンを
備えた船舶に備えつけられて排ガス中の窒素酸化物(N
x )を還元除去する船舶用脱硝装置の反応器に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to a ship equipped with a diesel engine and is equipped with nitrogen oxides (N) in exhaust gas.
The present invention relates to a reactor of a ship denitration device for reducing and removing O x ).

【0002】[0002]

【従来の技術】ディーゼルエンジンを備えた船舶におい
ては、排ガス中の窒素酸化物を低減除去する場合、排ガ
ス脱硝装置が搭載される。この排ガス脱硝装置において
は、NOx を含む排ガスにアンモニアを混合し、触媒を
備えた反応器内を通過させることによってNOx を還元
して窒素と水に変化させる選択接触還元法(SCR法)
が広く用いられている。
2. Description of the Related Art A ship equipped with a diesel engine is equipped with an exhaust gas denitration device for reducing and removing nitrogen oxides in exhaust gas. In this exhaust gas denitration apparatus, a selective catalytic reduction method (SCR method) is used in which exhaust gas containing NO x is mixed with ammonia and passed through a reactor equipped with a catalyst to reduce NO x and convert it into nitrogen and water.
Is widely used.

【0003】前記反応器の触媒としては、例えば一辺が
140mm〜160mmの角柱状に成形された長手方向
の両端面に微小な多数の開口が形成されたいわゆるハニ
カム状のセラミック触媒が用いられている。そして、前
記反応器は、多数の触媒をケース内に集積させた構成と
されている。
As the catalyst of the reactor, for example, a so-called honeycomb-shaped ceramic catalyst is used which is formed into a prismatic shape having one side of 140 mm to 160 mm and has a large number of minute openings formed on both end faces in the longitudinal direction. . The reactor has a structure in which a large number of catalysts are integrated in a case.

【0004】図7は、従来の反応器100の一例を示
す。ケース101の内部には、複数本の角柱状のハニカ
ム触媒1(以下、単に触媒1と呼ぶ。)が縦置きの姿勢
で集積されている。これらの触媒1は、格子状の支持材
102によって支持されている。図7は所定間隔をおい
て上下の二層にわけられている場合のものである。ケー
ス101の下方から導入された排ガスは、両層の触媒
1,1を通過して上方へ抜けていく。
FIG. 7 shows an example of a conventional reactor 100. Inside the case 101, a plurality of prismatic honeycomb catalysts 1 (hereinafter, simply referred to as catalysts 1) are vertically stacked. These catalysts 1 are supported by a lattice-shaped support member 102. FIG. 7 shows the case where the upper and lower layers are separated by a predetermined distance. Exhaust gas introduced from below the case 101 passes through the catalysts 1 and 1 in both layers and escapes upward.

【0005】図8は、従来の反応器200の他の一例を
示す。ケース201の内部には、複数の触媒1が横置き
の姿勢で両端をそろえて積み重ねられている。これらの
触媒1は、上下の二層にわけられており、下層の入口側
と上層の出口側の間にはケース内を仕切る隔壁202が
ある。ケース201の下方から導入された排ガスは、同
図中矢印で示すように下層の触媒1を通過した後、上層
の触媒1を通り、ケース201の上方へ排出される。
FIG. 8 shows another example of the conventional reactor 200. Inside the case 201, a plurality of catalysts 1 are stacked in a horizontal position with both ends aligned. These catalysts 1 are divided into upper and lower layers, and a partition wall 202 is provided between the inlet side of the lower layer and the outlet side of the upper layer to partition the inside of the case. The exhaust gas introduced from below the case 201 passes through the catalyst 1 in the lower layer as shown by the arrow in the figure, and then passes through the catalyst 1 in the upper layer and is discharged above the case 201.

【0006】[0006]

【発明が解決しようとする課題】船舶の排ガス脱硝装置
の反応器は、船内の狭い空間内に収めるようにコンパク
ト化する必要がある。特に、小型船舶においては、脱硝
反応器を新たに設置しうるスペースは船体内や甲板上に
はないのが普通であるため、前述した図7に示す縦型の
反応器を化粧煙突(ファンネル)内に設置することにな
る。
The reactor of the exhaust gas denitration device for a ship needs to be made compact so that it can be accommodated in a narrow space inside the ship. In particular, in a small vessel, there is usually no space for newly installing a denitration reactor inside the hull or on the deck, so the vertical reactor shown in FIG. 7 is used as a makeup chimney (funnel). Will be installed inside.

【0007】しかしながら、脱硝装置の反応器内に収め
るセラミックのハニカム触媒は強度的に脆く欠けやす
い。さらに反応器の部材と直接接触する場合には振動に
よる摩擦で削られ、擦り減りやすい。
However, the ceramic honeycomb catalyst contained in the reactor of the denitration device is fragile in strength and easily chipped. Further, when it comes into direct contact with the members of the reactor, it is scraped by friction due to vibration and is easily worn away.

【0008】このため、図7に示したような触媒を縦型
に配置した反応器100では、触媒1の荷重が支持材1
02との接触部分に集中してこれを破損させてしまう事
故がおこりやすい。従って、このタイプの反応器は、船
舶用には不適であり、実際にはほとんど陸上でしか用い
られなかった。
Therefore, in the reactor 100 in which the catalysts are vertically arranged as shown in FIG.
It is easy for accidents that concentrate on the contact area with 02 and damage it. Therefore, this type of reactor was unsuitable for ships and was practically only used on land.

【0009】即ち、船舶に搭載する機器は、波浪による
衝撃的振動や搭載エンジンから伝わってくる振動を受け
やすいので、優れた耐振性を有することが必要である。
そして、触媒の鉛直方向の耐振性を向上させるために
は、図8に示した反応器200のように触媒1を水平に
並べて荷重の分散を図ればよい。
That is, the equipment mounted on the ship is likely to be subjected to shock vibration due to waves and vibration transmitted from the mounted engine, and therefore it is necessary to have excellent vibration resistance.
Then, in order to improve the vertical vibration resistance of the catalyst, it is sufficient to arrange the catalysts 1 horizontally to disperse the load as in the reactor 200 shown in FIG.

【0010】しかしながら、図8に示した従来の設計思
想による反応器200によれば、設置に必要なスペース
が大きすぎるという問題があった。その横巾寸法は、触
媒1の長手方向の寸法aと、排ガスを導くために触媒1
の長手方向の両端にそれぞれ設けるケース201内の空
間の寸法b,bの合計(a+b+b)である。この大き
な寸法はむだなスペースのない船舶内では確保しにくか
った。このようなことは、触媒の長手方向を横方向に一
致させて設置した横置型の反応器を実用化する上での障
碍となっていた。
However, the reactor 200 according to the conventional design concept shown in FIG. 8 has a problem that the space required for installation is too large. The width dimension thereof is the dimension a in the longitudinal direction of the catalyst 1 and the catalyst 1 for guiding the exhaust gas.
Is the total (a + b + b) of the dimensions b and b of the space inside the case 201 provided at both ends in the longitudinal direction of the. This large size was difficult to secure in a ship with no wasted space. This has been a hindrance to practical use of a horizontal reactor in which the longitudinal direction of the catalyst is aligned with the horizontal direction.

【0011】本発明は、触媒の耐振性に優れたコンパク
トな反応器を提供することを目的としている。
An object of the present invention is to provide a compact reactor having excellent vibration resistance of the catalyst.

【0012】[0012]

【課題を解決するための手段】請求項1に記載された船
舶用脱硝装置の反応器は、長手方向に両端面が開口した
触媒をケース内に複数備えた船舶用脱硝装置の反応器に
おいて、前記触媒の長手方向の位置が同方向について順
次ずれるように各触媒を配置したことを特徴としてい
る。
A reactor of a denitration device for a ship according to claim 1 is a reactor for a denitration device for a ship, wherein a plurality of catalysts having both end faces opened in the longitudinal direction are provided in a case, It is characterized in that the catalysts are arranged such that the position of the catalyst in the longitudinal direction is sequentially displaced in the same direction.

【0013】請求項2に記載された船舶用脱硝装置の反
応器は、長手方向の両端面が開口した触媒をケース内に
複数備えた船舶用脱硝装置の反応器において、前記触媒
の長手方向の位置が同方向について順次ずれるように各
触媒を積重ねるとともに、前記触媒の長手方向と船舶の
進行方向が直角となるように各触媒を配置したことを特
徴としている。
According to a second aspect of the present invention, there is provided a reactor for a denitration device for a ship, comprising a plurality of catalysts having both longitudinal end faces opened in a case. It is characterized in that the catalysts are stacked so that the positions thereof are sequentially displaced in the same direction, and the catalysts are arranged so that the longitudinal direction of the catalysts and the traveling direction of the ship are at right angles.

【0014】[0014]

【作用】触媒は、特に船体がピッチングするときに受け
る鉛直方向の振動加速度に対して十分な耐振性を有す
る。また、各触媒はその長手方向に徐々に位置をずらし
て積まれているので、排ガスを各触媒へ均等に導きやす
く、反応器内の両端に設けるスペースが節約できる。
The catalyst has sufficient vibration resistance with respect to vertical vibration acceleration that is received when the hull is pitched. In addition, since the catalysts are stacked with their positions gradually shifted in the longitudinal direction, it is easy to uniformly guide the exhaust gas to the catalysts, and the space provided at both ends in the reactor can be saved.

【0015】[0015]

【実施例】まず図1〜図5によって、船舶で用いられる
第1実施例の反応器2を説明する。本発明の第1実施例
で用いられる触媒1は従来から用いられてきたものと同
様である。図1及び図2に示すように、この反応器2の
ケース3は、下面側方に排ガスの入口6を有する下部4
と、上面側方に同出口7を有する上部5とから成る。
EXAMPLE First, a reactor 2 of a first example used in a ship will be described with reference to FIGS. The catalyst 1 used in the first embodiment of the present invention is the same as that used conventionally. As shown in FIGS. 1 and 2, the case 3 of the reactor 2 includes a lower part 4 having an exhaust gas inlet 6 on the lower surface side.
And an upper part 5 having the outlet 7 on the side of the upper surface.

【0016】前記ケース3の下部4及び上部5内には、
1段複数本(図では5本)の触媒1がそれぞれ複数段
(図では5段)積み上げられている。各段において、各
触媒1は、その長手方向が船の進行方向Aと直交するよ
うに、端面を進行方向Aにそろえて並んでいる。換言す
れば、各触媒1は、その長手方向が船の横方向B(ロー
リングの方向)と一致するように配置されている。
In the lower part 4 and the upper part 5 of the case 3,
A plurality of catalysts 1 in a single stage (five in the figure) are stacked in a plurality of stages (five in the figure). In each stage, the catalysts 1 are arranged with their end faces aligned with the traveling direction A so that the longitudinal direction thereof is orthogonal to the traveling direction A of the ship. In other words, each catalyst 1 is arranged so that its longitudinal direction coincides with the lateral direction B (rolling direction) of the ship.

【0017】ここで積重ね段数は4段〜最大9段の間で
選択できるが、通常5〜7段とするのが好ましい。従っ
て、この時の触媒積重ね高さhは、図4及び図5に示す
セラミックフェルト12の分を省略すると、角柱状触媒
の一辺の寸法が150mmの場合、150mm×5段=
750mmから150mm×7段=1050mmの範囲
にある。
Here, the number of stacking stages can be selected from 4 stages to a maximum of 9 stages, but normally 5 to 7 stages are preferred. Therefore, if the ceramic felt 12 shown in FIGS. 4 and 5 is omitted, the catalyst stacking height h at this time is 150 mm × 5 steps = when the dimension of one side of the prismatic catalyst is 150 mm.
It is in the range of 750 mm to 150 mm × 7 steps = 1050 mm.

【0018】前記ケース3の下部4内の触媒1は、最上
段の触媒1が横方向の右方に向けて後退した位置にくる
ように、各段ごとに所定寸法づつ位置をずらしながら積
み重ねられている。また、上部5内の最下段の触媒1の
位置は、下部4内の最上段の触媒1の位置と同じであ
る。そして、上部5内の触媒1は、その最上段の触媒1
が前記下部の最下段の触媒1と同じ位置にくるように、
各段ごとに所定寸法づつ位置をずらしながら積み重ねら
れている。
The catalysts 1 in the lower portion 4 of the case 3 are stacked while shifting the position by a predetermined dimension for each stage so that the catalyst 1 at the uppermost stage is located at the position retracted rightward in the lateral direction. ing. The position of the lowermost catalyst 1 in the upper part 5 is the same as the position of the uppermost catalyst 1 in the lower part 4. The catalyst 1 in the upper part 5 is the catalyst 1 in the uppermost stage.
So that it comes to the same position as the lowermost catalyst 1 in the lower part,
Each stage is stacked while shifting the position by a predetermined size.

【0019】前記ケース3内において、階段状に積み上
げられた触媒1は、図3に示す支持格子8によってその
両端を押さえられている。支持格子8は、触媒1の端面
に合致した寸法形状の複数の保持板9を基板10と連結
棒11で一体化したもので、互いに上下逆向きにして一
対で各段の触媒1の両端を保持する。
In the case 3, the catalysts 1 stacked in a stepwise manner are supported at both ends by the support grid 8 shown in FIG. The support grid 8 is formed by integrating a plurality of holding plates 9 each having a size and shape matching the end surface of the catalyst 1 with a substrate 10 and a connecting rod 11, which are turned upside down to form a pair of both ends of the catalyst 1 at each stage. Hold.

【0020】図4に示すように、この支持格子8の保持
板9の厚さをtとすると、同じ段で隣接する触媒1,1
の間隔はこれよりも小さく、同じ段の各触媒1は保持板
9の端面で支持されている。
As shown in FIG. 4, assuming that the thickness of the holding plate 9 of the support grid 8 is t, the catalysts 1 and 1 adjacent in the same stage are
Is smaller than this, and each catalyst 1 in the same stage is supported by the end surface of the holding plate 9.

【0021】図4及び図5に示すように、各触媒1の外
周面には厚さ数mm程度のセラミックフェルト12が貼
付けられている。セラミックフェルト12の機能は、隣
接させ又は積重ねた触媒1の集合体に衝撃が加わった場
合の緩衝のためである。また、隣接する触媒1,1間を
シールしてケース3内に導入された排ガスを確実に触媒
1内に通させる機能もある。さらに、隣同志の触媒1,
1が直接接触することによって割れるのを防いでいる。
なお、本実施例では上下の各触媒1,1は長手方向の位
置が少しづつずれているので、セラミックフェルト12
の貼付位置もこれに合わせて適宜にずらしておく。
As shown in FIGS. 4 and 5, a ceramic felt 12 having a thickness of about several mm is attached to the outer peripheral surface of each catalyst 1. The function of the ceramic felt 12 is to cushion the assembly of adjacent or stacked catalysts 1 when impacted. It also has a function of sealing the space between the adjacent catalysts 1 and 1 so that the exhaust gas introduced into the case 3 can be surely passed through the catalyst 1. In addition, the neighbor's catalyst 1,
It prevents the 1 from breaking due to direct contact.
In this embodiment, the upper and lower catalysts 1 and 1 are slightly displaced from each other in the longitudinal direction.
The sticking position of is also shifted accordingly.

【0022】上述したように構成された触媒1がケース
3内に収められると、ケース3内は、入口6に続く空間
S1と、上部5及び下部4をつなぐ空間S2と、出口7
に続く空間S3とに分かれる。そして、空間S1,S3
はシールされており、これによって図2中矢印で示す排
ガスの流通経路が構成される。
When the catalyst 1 constructed as described above is housed in the case 3, the space S 1 following the inlet 6, the space S 2 connecting the upper part 5 and the lower part 4 and the outlet 7 are provided in the case 3.
It is divided into a space S3 following. And the spaces S1 and S3
Are sealed, which constitutes the exhaust gas flow path indicated by the arrow in FIG.

【0023】本実施例の反応器2における入口6の空間
S1の寸法を従来と同じbとし、上下をつなぐ空間S2
の寸法をcとすれば、触媒1の長さは同じaであるか
ら、本実施例の反応器2の横巾寸法はa+b+cとな
る。ここで、本実施例の反応器2は触媒1を階段状にず
らして積み上げているので、寸法cは寸法bよりも相当
に小さくできる。寸法Cは、角柱状の触媒の一辺が14
0mm〜160mmであるからC=180mm〜240
mmあれば十分である。本反応器2の横巾寸法a+b+
c<従来の横巾寸法a+2bであり、本実施例の反応器
2は従来よりも狭いスペースで設置することができる。
In the reactor 2 of this embodiment, the size of the space S1 of the inlet 6 is the same as that of the conventional space b, and the space S2 connecting the upper and lower sides is used.
Since the length of the catalyst 1 is the same as that of c, the width of the reactor 2 of this example is a + b + c. Here, in the reactor 2 of this embodiment, the catalyst 1 is stacked in a staggered manner, so that the dimension c can be made considerably smaller than the dimension b. The dimension C is such that one side of the prismatic catalyst is 14
Since it is 0 mm to 160 mm, C = 180 mm to 240
mm is sufficient. Width dimension of this reactor 2 a + b +
c <the conventional width dimension a + 2b, and the reactor 2 of the present embodiment can be installed in a narrower space than the conventional one.

【0024】例えば、各段のずらした寸法の合計をdと
すれば、dを触媒長さaの20〜40%とするのが効果
的である。20%以下ではスペース削減効果が小さく、
40%以上では下積になっている触媒が局部的荷重集中
の影響で壊れやすくなる。
For example, assuming that the total of the shifted sizes of each step is d, it is effective to set d to 20 to 40% of the catalyst length a. Below 20%, the space saving effect is small,
If it is 40% or more, the catalyst in the lower product is easily broken due to the influence of local load concentration.

【0025】触媒の配置は、触媒の長手方向の位置が同
方向について順次ずれるようになっているので、触媒が
相互間の摩擦によって削られること等が防止できる。さ
らに船舶の進行方向と触媒の長手方向が直角となるよう
に配置されているので、各触媒1に加わる荷重は分散さ
れ、特にピッチング時には1〜2Gにもなる鉛直方向の
振動加速度に対して、本実施例の反応器2は十分な耐振
性を有している。また、船のローリングにより触媒が長
手方向にずれるのは、左右両端の支持格子8でおさえる
ことができる。
As for the arrangement of the catalysts, the longitudinal positions of the catalysts are sequentially displaced in the same direction, so that the catalysts can be prevented from being scraped by friction between them. Further, since the traveling direction of the ship and the longitudinal direction of the catalyst are arranged at a right angle, the load applied to each catalyst 1 is dispersed, and especially for the vertical vibration acceleration of 1 to 2 G during pitching, The reactor 2 of this example has sufficient vibration resistance. Further, the displacement of the catalyst in the longitudinal direction due to the rolling of the ship can be suppressed by the support grids 8 at the left and right ends.

【0026】また、脱硝装置の作動時には、排ガスが出
入りする触媒1の端面の位置が段ごとにずれているの
で、排ガスの流れが全体的に円滑になる。即ち、下部4
の各触媒1への排ガスの流入が均等化し、同様に下部4
の触媒から上部5の触媒1への流入が均等化し、さらに
上部5の触媒1からの流出も均等化する。
Further, when the denitration device is operating, the position of the end face of the catalyst 1 through which the exhaust gas flows in and out is shifted step by step, so that the flow of the exhaust gas becomes smooth as a whole. That is, the lower part 4
The inflow of exhaust gas into each catalyst 1 of the
The inflow from the catalyst to the catalyst 1 in the upper part 5 is equalized, and the outflow from the catalyst 1 in the upper part 5 is also equalized.

【0027】従って、触媒全体が有効に使われ、脱硝性
能が向上する。また、各触媒1への排ガスの流入が均等
化することによって、低速で流入する部分がなくなり、
ダストの付着が防げ、耐久性が向上する。
Therefore, the entire catalyst is effectively used and the denitration performance is improved. Further, by equalizing the inflow of the exhaust gas into each catalyst 1, there is no part that flows in at a low speed,
Dust adhesion can be prevented and durability can be improved.

【0028】図6は第2実施例の反応器22を示す。本
実施例では、角柱形の両端を互いに平行な斜面で切断し
た形状の触媒21を用いている。これらの触媒21を、
第1実施例と同様の態様で、かつ各端面が略同一面内に
揃うように、1段複数本(図では5本)で上下複数段
(図では5段)積み重ねている。
FIG. 6 shows the reactor 22 of the second embodiment. In this embodiment, the catalyst 21 is used in the shape of a prism having both ends cut by slant surfaces parallel to each other. These catalysts 21 are
In the same manner as in the first embodiment, the upper and lower stages (five in the figure) are stacked in a plurality of one stage (five in the figure) so that the end faces are aligned in substantially the same plane.

【0029】ここで、ケース3の上部5及び下部4内に
それぞれ5段づつ集積された触媒21の端面は、それぞ
れ略同一面内に揃う。従って、触媒21を保持する支持
格子28の保持板9は第1実施例のような階段状ではな
く、触媒21の端面に沿って傾斜した端面を有してい
る。第1実施例と同様のその他の構成については、図2
と同一の符号を付してその説明を省略する。本実施例に
よれば第1実施例と同様の作用効果が得られる。
Here, the end faces of the catalysts 21 which are respectively accumulated in the upper portion 5 and the lower portion 4 of the case 3 in five stages are aligned in substantially the same plane. Therefore, the holding plate 9 of the support grid 28 that holds the catalyst 21 does not have the stepped shape as in the first embodiment, but has an end face inclined along the end face of the catalyst 21. For other configurations similar to those of the first embodiment, FIG.
The same reference numerals are given and their explanations are omitted. According to this embodiment, the same effect as that of the first embodiment can be obtained.

【0030】[0030]

【発明の効果】本発明に係る船舶用脱硝装置の反応器に
よれば、ケース内に設けられた触媒の長手方向が船の進
行方向と直角で、かつ各触媒は長手方向に少しづつずれ
て積み重ねられている。このため、ケース内における排
ガスの円滑な流れを犠牲にすることなく、反応器全体の
横巾寸法を小さくすることができる。従って、船の化粧
煙突内にも設置しやすい。
According to the reactor of the denitration apparatus for ships according to the present invention, the longitudinal direction of the catalyst provided in the case is perpendicular to the traveling direction of the ship, and the catalysts are slightly displaced in the longitudinal direction. Are stacked. Therefore, the width of the entire reactor can be reduced without sacrificing the smooth flow of the exhaust gas in the case. Therefore, it can be easily installed in the decorative chimney of a ship.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の一部切欠き斜視図であ
る。
FIG. 1 is a partially cutaway perspective view of a first embodiment of the present invention.

【図2】本発明の第1実施例の断面図である。FIG. 2 is a sectional view of the first embodiment of the present invention.

【図3】本発明の第1実施例における支持格子の斜視図
である。
FIG. 3 is a perspective view of a support grid according to the first embodiment of the present invention.

【図4】本発明の第1実施例における触媒の端面と支持
格子の位置関係を示す図である。
FIG. 4 is a diagram showing a positional relationship between an end face of a catalyst and a support grid in the first embodiment of the present invention.

【図5】本発明の第1実施例で用いられる触媒の斜視図
である。
FIG. 5 is a perspective view of a catalyst used in the first embodiment of the present invention.

【図6】本発明の第2実施例の断面図である。FIG. 6 is a sectional view of a second embodiment of the present invention.

【図7】従来の縦型反応器の断面図である。FIG. 7 is a cross-sectional view of a conventional vertical reactor.

【図8】従来の横型反応器の断面図である。FIG. 8 is a cross-sectional view of a conventional horizontal reactor.

【符号の説明】[Explanation of symbols]

1 触媒 2 反応器 3 ケース A 船舶の進行方向 1 Catalyst 2 Reactor 3 Case A Ship's traveling direction

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B63H 21/32 Z (72)発明者 小林 武城 群馬県太田市西新町125−1 株式会社新 潟鉄工所原動機事業部内 (72)発明者 林 浩昭 東京都千代田区内幸町1−2−2 株式会 社日本触媒内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B63H 21/32 Z (72) Inventor Takeshi Kobayashi 125-1, Nishishinmachi, Ota-shi Gunma Shin (72) Inventor Hiroaki Hayashi 1-2-2 Uchisaiwaicho, Chiyoda-ku, Tokyo Incorporated by Nippon Shokubai Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】長手方向に両端面が開口した触媒をケース
内に複数備えた船舶用脱硝装置の反応器において、 前記触媒の長手方向の位置が同方向について順次ずれる
ように各触媒を配置したことを特徴とする船舶用脱硝装
置の反応器。
1. A reactor of a denitration device for a ship, comprising a plurality of catalysts having both ends open in the longitudinal direction in a case, wherein the catalysts are arranged such that the longitudinal positions of the catalysts are sequentially displaced in the same direction. A reactor for a denitration device for ships, which is characterized in that
【請求項2】長手方向の両端面が開口した触媒をケース
内に複数備えた船舶用脱硝装置の反応器において、 前記触媒の長手方向の位置が同方向について順次ずれる
ように各触媒を積重ねるとともに、前記触媒の長手方向
と船舶の進行方向が直角となるように各触媒を配置した
ことを特徴とする船舶用脱硝装置の反応器。
2. A reactor of a denitration device for a ship, comprising a plurality of catalysts having both longitudinal end faces opened in a case, wherein the catalysts are stacked so that the longitudinal positions of the catalysts are sequentially displaced in the same direction. At the same time, each of the catalysts is arranged such that the longitudinal direction of the catalyst and the traveling direction of the ship are at a right angle, and the reactor of the denitration apparatus for ships.
JP28509393A 1993-11-15 1993-11-15 Reactor for denitration equipment for ships Expired - Fee Related JP3547465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28509393A JP3547465B2 (en) 1993-11-15 1993-11-15 Reactor for denitration equipment for ships

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28509393A JP3547465B2 (en) 1993-11-15 1993-11-15 Reactor for denitration equipment for ships

Publications (2)

Publication Number Publication Date
JPH07139341A true JPH07139341A (en) 1995-05-30
JP3547465B2 JP3547465B2 (en) 2004-07-28

Family

ID=17687043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28509393A Expired - Fee Related JP3547465B2 (en) 1993-11-15 1993-11-15 Reactor for denitration equipment for ships

Country Status (1)

Country Link
JP (1) JP3547465B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220172A (en) * 2010-04-07 2011-11-04 Yanmar Co Ltd Catalytic reactor for ship
WO2014157287A1 (en) * 2013-03-29 2014-10-02 ヤンマー株式会社 Exhaust gas purification system for ships
JP2014194193A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Exhaust emission control system in ship
JP2014194192A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Exhaust emission control system in ship
JP6440918B1 (en) * 2017-03-28 2018-12-19 三菱日立パワーシステムズ株式会社 Ship hull-integrated desulfurization apparatus, ship, and method for assembling hull-integrated desulfurization apparatus to ship

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102010876B1 (en) * 2013-03-13 2019-08-14 대우조선해양 주식회사 Gas Exhausting System And Installation Method Thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220172A (en) * 2010-04-07 2011-11-04 Yanmar Co Ltd Catalytic reactor for ship
WO2014157287A1 (en) * 2013-03-29 2014-10-02 ヤンマー株式会社 Exhaust gas purification system for ships
JP2014194193A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Exhaust emission control system in ship
JP2014194192A (en) * 2013-03-29 2014-10-09 Yanmar Co Ltd Exhaust emission control system in ship
JP6440918B1 (en) * 2017-03-28 2018-12-19 三菱日立パワーシステムズ株式会社 Ship hull-integrated desulfurization apparatus, ship, and method for assembling hull-integrated desulfurization apparatus to ship

Also Published As

Publication number Publication date
JP3547465B2 (en) 2004-07-28

Similar Documents

Publication Publication Date Title
US4818746A (en) Metal catalyst carrier or support body rolled or laminated from metal sheets and having a double or multiple corrugated or wave structure
JP3336035B2 (en) Metal honeycomb carrier
JPH07139341A (en) Reactor of denitration device for ship
KR20180091038A (en) Improved frame elements containing monoliths
US5651946A (en) Exhaust gas catalytic converter, particularly for motor cars
US5820832A (en) Plate-type catalytic converter
US6287524B1 (en) Plate-type catalytic converter
US20080113209A1 (en) Metal reactor cell and manufacturing method thereof
JPS6318123A (en) Catalytic converter
TW302420B (en)
JP2830524B2 (en) Catalyst carrier structure of catalytic converter for internal combustion engine
JP3216509B2 (en) Ship denitration reactor
JPH0437225Y2 (en)
JPH06154555A (en) Nox removal catalyst bed
JPH0137700Y2 (en)
US11867110B2 (en) Element frame assemblies containing monoliths
JP3510590B2 (en) Wound metal carrier
JPH11290699A (en) Honeycomb catalyst
JP2008104918A (en) Metal catalyst carrier and its manufacturing method
JPS607784Y2 (en) Packaged catalyst
JPH0437224Y2 (en)
JPH0780322A (en) Catalyst unit
JP2542898Y2 (en) Manifold converter
SU1162463A1 (en) Regular packing
JPS5813215B2 (en) catalytic reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees