JPH07138859A - Nonwoven fabric produced by using thermocompression-bonding polyvinl alcohol-based fiber - Google Patents
Nonwoven fabric produced by using thermocompression-bonding polyvinl alcohol-based fiberInfo
- Publication number
- JPH07138859A JPH07138859A JP28814093A JP28814093A JPH07138859A JP H07138859 A JPH07138859 A JP H07138859A JP 28814093 A JP28814093 A JP 28814093A JP 28814093 A JP28814093 A JP 28814093A JP H07138859 A JPH07138859 A JP H07138859A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- melting point
- polymer
- pva
- warp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、熱圧着性ポリビニルア
ルコール(以下PVAと略記)系繊維を用いた不織布に
関するものであって、更に詳しくは、セメント、プラス
チック、紙などの複合成形体を補強するための不織布
(以下不織基布と称す)であって、熱圧着性PVA系繊
維を用いて熱圧着法により製造した不織基布に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-woven fabric using thermocompression-bonding polyvinyl alcohol (hereinafter abbreviated as PVA) fibers, and more specifically, it reinforces a composite molded article such as cement, plastic or paper. The present invention relates to a non-woven fabric (hereinafter referred to as a non-woven base fabric) for producing a non-woven base fabric produced by a thermocompression bonding method using thermocompression-bonding PVA-based fibers.
【0002】[0002]
【従来の技術】PVA系繊維は、汎用繊維の中では強
度、弾性率、耐アルカリ性、耐候性、耐熱性が良好であ
り、コストパフォーマンスの優れた産業資材用繊維とし
て多用されている。PVA系繊維よりなる不織基布は、
このPVA系繊維の特長をいかし、さらにPVA系繊維
が被補強物との接着性において他の繊維よりもはるかに
優れている特性を活かし、セメントやアスファルト等の
建築資材の補強用基布として、またターポリン等の補強
用基布として用いられている。補強用基布としては繊維
を織物状にしたもの、繊維を一方向に平行に引き揃えた
一方向プリプレグ、基布を構成することとなる緯糸に接
着剤を含浸させて経糸と接着させた不織基布、経糸に少
量の接着剤を含浸させた後緯糸に疎水性の熱融着性繊維
を用い経糸との交点で熱接着した不織基布、経糸および
緯糸に融着糸を捲きつけて熱接着し、経糸と緯糸の交点
を融着糸を介して接着した不織基布などが知られてい
る。2. Description of the Related Art PVA-based fibers have good strength, elastic modulus, alkali resistance, weather resistance and heat resistance among general-purpose fibers, and are widely used as fibers for industrial materials with excellent cost performance. The non-woven base fabric made of PVA fiber is
Taking advantage of the features of this PVA-based fiber, and further taking advantage of the fact that the PVA-based fiber is far superior to other fibers in terms of adhesion to the object to be reinforced, as a base fabric for reinforcing building materials such as cement and asphalt, It is also used as a reinforcing base fabric for tarpaulins and the like. The reinforcing base cloth is a woven fabric of fibers, a unidirectional prepreg in which the fibers are aligned in parallel in one direction, and a weft yarn that constitutes the base fabric is impregnated with an adhesive and is bonded to a warp yarn. Woven base cloth and warp are impregnated with a small amount of adhesive, and then hydrophobic heat-fusible fibers are used for the weft, and the non-woven base cloth, the warp and the weft are heat-bonded at the intersection with the warp. There is known a non-woven base fabric in which the intersections of the warp yarns and the weft yarns are heat-bonded to each other and bonded to each other via fusion-bonding yarns.
【0003】織物状の補強用基布は、経糸と緯糸の交点
において繊維が上下に屈曲することとなり、繊維本来の
長さ方向の強度をいかすことができない。特に高強度高
弾性率の繊維は低伸度となりその傾向が強い。また織物
は経緯とも構成密度を大きくしないと目づれを起し、形
状が不安定となるので、高密度のものとせざるを得な
い。補強用基布としてはマトリックス材料の含浸性の点
より目の荒い粗な材料が望まれるが、織物では目づれ防
止を行なわないと目の荒いものを得ることは困難であ
る。In the woven reinforcing base cloth, the fibers bend up and down at the intersections of the warp yarns and the weft yarns, and the original strength of the fibers in the longitudinal direction cannot be utilized. In particular, fibers having high strength and high elastic modulus have a low elongation, and this tendency is strong. In addition, if the fabric density does not increase with respect to the background, the fabric becomes unsightly and the shape becomes unstable. Therefore, the fabric must be of high density. As the reinforcing base cloth, a coarse material having a coarse mesh is desired from the viewpoint of the impregnating property of the matrix material, but it is difficult to obtain a coarse mesh with a woven fabric without preventing the stitches.
【0004】多数の繊維を平行に引き揃えた一方向プリ
プレグは高強度高弾性率の繊維の本来の補強性能をいか
す補強材としての性能は優れているが、繊維間の接着強
度が低く、裂け易いので慎重に取り扱う必要があるばか
りでなく、比較的低温で保存しなければならず、しかも
保存寿命が通常15℃以下でも6ケ月未満であるなど保
存流通段階での管理に問題がある。A unidirectional prepreg in which a large number of fibers are aligned in parallel is excellent as a reinforcing material that takes advantage of the original reinforcing performance of high-strength and high-modulus fibers, but the adhesive strength between the fibers is low and tearing occurs. Since it is easy to handle, not only must it be handled carefully, but it must be stored at a relatively low temperature, and even if it has a shelf life of usually less than 6 months even at 15 ° C or less, there is a problem in management at the storage and distribution stage.
【0005】実公昭56−1747号公報には炭素繊維
などの高弾性率フィラメントを経糸として平行接触関係
に並べたシートに、その直角方向に単一成分の疎水性熱
融着繊維を置き、融着させた積層複合材料用フィラメン
トシートが記載されているが、経糸のフィラメントは相
互に接触するよう隙間なく配列されており、マトリック
ス樹脂の含浸性がわるい。またこの技術の緯糸に用いら
れている疎水性熱接着性繊維は強度が3〜4g/d台と
低く、しかも溶融しており、このシートは横方向には極
端に低強度である。Japanese Utility Model Publication No. 56-1747 discloses a sheet in which high modulus filaments such as carbon fibers are arranged in parallel contact as warp yarns, and a single component hydrophobic thermal fusion bonding fiber is placed in a direction perpendicular to the sheet to fuse the sheets. Although the laminated filament sheet for laminated composite material is described, the filaments of the warp are arranged without any gap so as to be in contact with each other, and the impregnability of the matrix resin is poor. Further, the hydrophobic heat-adhesive fiber used for the weft of this technique has a low strength of 3 to 4 g / d level and is melted, and this sheet has extremely low strength in the transverse direction.
【0006】また、特公平1−38904号公報には、
高強度高弾性率のマルチフィラメントを経糸とし、緯糸
に接着剤の溶液又は分散液あるいは熱硬化性の接着剤を
付与し、経糸との交点を接着剤により接着した不織基布
が記載されている。この発明においては、接着処理に使
用するローラーなどの設備に接着剤やその変質物が固着
し、設備に固着滞留したものが時折基布側に付着し、基
布品質を悪化させる。この防止のため運転を停止して固
着物の除去を行なう必要がある。また接着剤の溶液又は
分散液を乾燥あるいは/及び熱硬化させるためのキュア
リングを要するために高温で長時間滞留させる必要があ
り、したがって高速生産ができないなどの問題点を有し
ている。Japanese Patent Publication No. 1-39044 discloses that
A non-woven base fabric in which a multifilament having high strength and high elastic modulus is used as a warp, a solution or dispersion of an adhesive or a thermosetting adhesive is applied to a weft, and the intersection point with the warp is bonded with the adhesive is described. There is. In the present invention, the adhesive or its altered material is fixed to equipment such as a roller used for the adhesion treatment, and what is fixedly retained in the equipment is sometimes adhered to the base cloth side to deteriorate the quality of the base cloth. To prevent this, it is necessary to stop the operation and remove the adhered substances. Further, since curing or curing of the adhesive solution or dispersion is required for drying and / or heat curing, it is necessary to allow the adhesive solution or dispersion to stay at a high temperature for a long time.
【0007】特開昭63−66362号公報には、マル
チフィラメントの無撚あるいは甘撚糸の経糸および緯糸
の双方に融着糸を巻きつけ、熱接着し、経糸と緯糸の交
点を融着糸を介して接着した不織基布が記載されている
が、融着糸をマルチフィラメントに巻き付ける工程が増
えるばかりでなく、経糸と緯糸の交点の接着性及び安定
性を確保するためにマルチフィラメントに融着糸を20
0〜800回/mの捲数で均一に捲きつける必要がある
が、操業的に実施するには高度の技術を要する。また融
着糸とマトリックスとの親和性は完全ではなく、接着力
不足のため補強効果が低下し易い。In Japanese Patent Laid-Open No. 63-66362, a fusion yarn is wound around both warp yarns and weft yarns of a multifilament untwisted or sweet twisted yarn and heat-bonded to each other so that the intersections of the warp yarns and the weft yarns are fused. Although the non-woven base fabric adhered via the multi-filament is described, not only the number of steps for winding the fusion yarn around the multi-filament is increased, but also the multi-filament is fused to secure the adhesiveness and stability of the intersection point of the warp and the weft. 20 yarns
Although it is necessary to wind it uniformly at a winding number of 0 to 800 turns / m, a high level of technology is required to carry out operationally. In addition, the affinity between the fusible yarn and the matrix is not perfect, and the reinforcing effect is likely to decrease due to insufficient adhesive strength.
【0008】[0008]
【発明が解決しようとする課題】以上、従来の技術で得
られる不織基布は、樹脂含浸性や強度等の性能の点にお
いて、さらに生産速度や複雑な工程を要する点において
大きな問題を有している。さらに従来の技術では、高強
度、高弾性率、高耐候性、高耐アルカリ性でかつコスト
パフォーマンスに優れ、しかもマトリックスとの親和性
がよいため、接着力が優れるPVA系繊維を用いて工程
通過性の優れたノーバインダー方式の熱接着法により製
造したPVA系繊維の不織基布は得られていない。従来
の技術を鑑みて、本発明の課題は、PVA系繊維を用い
て、経糸と緯糸の各配列面を重ねた交点を熱圧着法によ
り接着させ、強度、取扱い性に優れた不織基布を提供す
ることにある。As described above, the non-woven base fabric obtained by the conventional technique has major problems in terms of performance such as resin impregnation property and strength, and in that it requires a production speed and complicated steps. is doing. Further, in the conventional technique, PVA fiber having excellent adhesiveness is used because it has high strength, high elastic modulus, high weather resistance, high alkali resistance, excellent cost performance, and good affinity with the matrix. No non-woven base fabric of PVA-based fibers produced by the excellent no-binder type thermal bonding method of US Pat. In view of the conventional technique, an object of the present invention is to use a PVA-based fiber to bond the intersections of the warp yarns and the weft yarns, which are aligned with each other, by a thermocompression bonding method to obtain a non-woven base fabric excellent in strength and handleability. To provide.
【0009】[0009]
【課題を解決するための手段】上記課題に対し、本発明
者らは鋭意検討を重ねた結果、本発明を完成した。すな
わち本発明は、糸を平面状に一方向に並べた面が糸が交
差するように複数枚重ね合わされており、かつ該糸の交
点が接着されている不織基布において、該糸を構成する
繊維の少なくとも10重量%が、融点220℃以上のP
VA系ポリマーを海成分とし融点あるいは融着温度が2
10℃未満のポリマーを島成分とする強度7g/dr以
上のPVA系海島繊維であり、かつ該交点が熱圧着で接
着されている不織基布である。[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive studies on the above problems. That is, the present invention provides a non-woven base fabric in which a plurality of yarns are stacked so that the faces of the yarns arranged in one direction in a plane cross each other and the intersections of the yarns are bonded to each other. At least 10% by weight of the fibers to be melted have a melting point of 220 ° C or higher.
The melting point or fusion temperature is 2 with VA polymer as the sea component.
A non-woven base fabric comprising a PVA-based sea-island fiber having a strength of 7 g / dr or more and having a polymer of less than 10 ° C. as an island component, and the intersections of which are bonded by thermocompression bonding.
【0010】本発明不織基布は、糸を平面的に一方向に
並べた面が糸が交差するように複数枚重ね合わされてい
る不織基布であって、通常は、不織基布の長さ方向(経
方向)に糸を平面状に平行に並べた面(経糸配列面)と
不織基布の幅方向(緯方向)に糸を平行に並べた面(緯
糸配列面)が重ね合わされている。重ね合わされている
順序としては、緯糸配列面の片面又は両面に経糸配列面
が重ね合わされている構造のもの、経糸配列面の両面に
緯糸配列面が重ね合わされている構造のものが製造しや
すさの点で好ましい。もちろん経糸配列面と緯糸配列面
が直交している必要はなく、バイヤス方向に重ね合わさ
れていてもよい。The non-woven base fabric of the present invention is a non-woven base fabric in which a plurality of yarns are superposed so that the surfaces of the yarns arranged in one direction in a plane cross each other. The surface in which the threads are arranged in a plane parallel to the length direction (the warp direction) (the warp arrangement surface) and the surface in which the threads are arranged in the width direction (the weft direction) of the non-woven fabric (the weft arrangement surface) are Overlaid. As for the order of overlapping, the structure in which the warp array surface is overlapped on one side or both sides of the weft array surface and the structure in which the weft array surface is overlapped on both sides of the warp array surface are easy to manufacture. In terms of Of course, the warp yarn arrangement surface and the weft yarn arrangement surface do not have to be orthogonal to each other, and may be superposed in the bias direction.
【0011】本発明の不織基布において緯糸と経糸は単
に重ね合わされているだけであり、繊維の有している強
度を十分に発揮できるが、従来の織物のように経糸と緯
糸が上下関係の逆転を繰り返すことにより形態を保って
いる場合には、繊維が上下に大きく屈曲するため経糸あ
るいは緯糸の本来の強度を発揮することができず、不都
合である。また複合成形材料において補強用基布がマト
リックス材を補強するには投錨効果が上がるよう、補強
基布を貫通してマトリックス材料を存在させることが好
ましく、目の荒い基布が望まれるが、織物では目が荒く
なると組織が不安定となり目づれを惹起するので、目づ
れ防止処理が必要となるので不都合である。本発明にお
いて経糸の配列面と緯糸配列面の重ねかたに特別な限定
はないが、経糸の配列を緯糸の上下2段とし、上下が交
互に緯糸に重ねることが好ましい。また経糸と緯糸の交
点のみでの接着では不十分な場合、経糸の配列を緯糸の
上下でぴったり重ね合わせ経糸を接着すると経糸と緯糸
の交点だけでなく、経糸の全面において接着され、不織
基布の組織が安定となるので、より好ましい態様である
場合がある。In the non-woven base fabric of the present invention, the weft yarn and the warp yarn are simply superposed, and the strength possessed by the fiber can be sufficiently exhibited. When the shape is maintained by repeating the above-mentioned reversal, the fibers are largely bent up and down, so that the original strength of the warp or the weft cannot be exhibited, which is inconvenient. Further, in the composite molding material, it is preferable that the reinforcing base cloth penetrates through the reinforcing base cloth so that the matrix material is present so that the anchoring effect is increased in order to reinforce the matrix material. However, when the eyes become rough, the tissue becomes unstable and causes the blurring, which is inconvenient because the treatment for preventing the blurring is required. In the present invention, there is no particular limitation on how to arrange the warp arranging surface and the weft arranging surface, but it is preferable that the warp arranging is arranged in two steps above and below the weft, and the upper and lower sides are alternately overlapped with each other. If it is not enough to bond only the intersections of the warp and the wefts, the warp arrangements should be aligned above and below the weft, and the warp should be adhered not only at the intersections of the warp and the weft but also on the entire surface of the warp. It may be a more preferable embodiment because the fabric structure becomes stable.
【0012】本発明不織基布においては、海成分は融点
が220℃以上のPVA系ポリマーよりなり、島成分は
融点あるいは融着温度が210℃未満のポリマーよりな
り、強度が7g/dr以上である熱圧着性PVA系海島
繊維を経糸および/または緯糸のうち少なくとも10%
は含有することがポイントである。本発明に用いる熱圧
着性PVA系繊維は、海島構造を有する多成分繊維であ
って、融点220℃以上であるPVA系ポリマーが海成
分である。PVA系ポリマーは、前記したように他の繊
維形成性汎用ポリマーと比べて高強力な繊維が得られる
こと、さらにセメント、プラスチックス、ゴム、紙等と
の接着性に優れていることより本発明に用いられる。マ
トリックスとなる海成分PVA系ポリマーの融点が22
0℃未満では本発明繊維の耐熱性、耐水性が不十分とな
り実用に耐える繊維を得ることが出来ない。また高強度
繊維を得ることができない。海成分PVA系ポリマーの
で融点が225℃以上であるとさらに好ましい。海成分
ポリマーの融点の上限に特別な限定はないが、融点が2
60℃以上であるPVA系ポリマーは一般的ではない。In the non-woven base fabric of the present invention, the sea component is made of a PVA polymer having a melting point of 220 ° C. or higher, the island component is made of a polymer having a melting point or a fusion temperature of less than 210 ° C., and a strength of 7 g / dr or more. The thermocompression-bondable PVA sea-island fiber is at least 10% of the warp and / or the weft.
Is the point to contain. The thermocompression-bonding PVA-based fiber used in the present invention is a multi-component fiber having a sea-island structure, and a PVA-based polymer having a melting point of 220 ° C. or higher is a sea component. The PVA-based polymer of the present invention has high strength fibers as compared with other general-purpose fiber-forming polymers as described above, and further has excellent adhesiveness to cement, plastics, rubber, paper, etc. Used for. The melting point of the PVA polymer of the sea component that is the matrix is 22.
If the temperature is lower than 0 ° C, the heat resistance and water resistance of the fiber of the present invention are insufficient, and a fiber that can be practically used cannot be obtained. Also, high strength fibers cannot be obtained. It is more preferable that the melting point of the sea component PVA-based polymer is 225 ° C. or higher. There is no particular upper limit to the melting point of the sea component polymer, but the melting point is 2
PVA-based polymers having a temperature of 60 ° C. or higher are not common.
【0013】海成分PVA系ポリマーの具体例をあげる
と、重合度500〜24,000でケン化度が95〜1
00モル%の高ケン化度PVAである。耐水性及び熱圧
着性の点で重合度が1500〜4000、ケン化度が9
8〜100モル%であるとさらに好ましく、ケン化度が
99.5〜100モル%であるともっと好ましい。また
エチレン、アリルアルコール、イタコン酸、アクリル
酸、無水マレイン酸とその開環物、アリールスルホン
酸、ピバリン酸ビニルの如く炭素数が4以上の脂肪酸ビ
ニルエステル、ビニルピロリドン及び上記イオン性基の
一部また全量中和物などの変性ユニットにより変性した
PVAも包含される。変性ユニットの量は1モル%未
満、好ましくは0.5モル%以下である。変性ユニット
の導入法は、共重合でも後反応でも特別な限定はない。
変性ユニットの分布はランダムでも、ブロックでも限定
はない。ブロック的に分布させると結晶化阻害効果が小
さく、ランダムより多く変性しても高融点を保ちうる。
高ケン化度の高融点PVA系ポリマーを連続相とするこ
とにより高融点ポリマー単独繊維に近い性能を得ること
ができ、また繊維の最表層を高融点ポリマーとすること
により、繊維製造工程における硬着を防止することが可
能となる。Specific examples of the sea component PVA-based polymer include a polymerization degree of 500 to 24,000 and a saponification degree of 95 to 1.
Highly saponified PVA of 00 mol%. In terms of water resistance and thermocompression bonding, the degree of polymerization is 1500 to 4000, and the degree of saponification is 9
It is more preferably 8 to 100 mol%, and even more preferably 99.5 to 100 mol%. In addition, ethylene, allyl alcohol, itaconic acid, acrylic acid, maleic anhydride and ring-opened products thereof, arylsulfonic acid, fatty acid vinyl esters having 4 or more carbon atoms such as vinyl pivalate, vinylpyrrolidone and a part of the above ionic groups. In addition, PVA modified with a modification unit such as a neutralized product is also included. The amount of modifying unit is less than 1 mol%, preferably 0.5 mol% or less. The method of introducing the modifying unit is not particularly limited, whether it is copolymerization or a post reaction.
The distribution of the denaturing unit is not limited to random or block. When distributed in blocks, the crystallization-inhibiting effect is small, and the high melting point can be maintained even if it is modified more than randomly.
By using a high melting point PVA-based polymer having a high degree of saponification as a continuous phase, it is possible to obtain a performance close to that of a single fiber having a high melting point, and by using a high melting point polymer as the outermost layer of the fiber, it becomes It is possible to prevent wearing.
【0014】本発明海島繊維の島成分は融点または融着
温度が210℃未満のポリマーを用いる。融点が210
℃以上であると熱圧着温度が高くなり過ぎ、熱圧着時海
成分のPVA系ポリマーの配向性・結晶性を破壊し易い
ので好ましくない。また融点を持たない非晶ポリマーで
あっても、その非晶性ポリマーチップを所定温度に加熱
し、0.1kg/cm2の圧力を10分間印加した際チ
ップ同志が融着する最低温度を融着温度とした時、融着
温度が210℃未満の非晶ポリマーは本発明の島成分ポ
リマーとして有効に用いることができる。島成分ポリマ
ーの融点、あるいは融着温度(以下この温度も融点とい
う語に含めて使用する)が200℃以下であるとより好
ましく、190℃以下であるとさらに好ましい。さらに
海成分と島成分の融点差が15℃以上であると、熱圧着
時の繊維寸法変化が小さくなるので好ましい。融点差が
30℃以上であるとより好ましく、50℃以上であると
さらに好ましい。融点が210℃未満のポリマーは低配
向、低結晶性であるため、繊維のマトリックスである海
成分に用いると、低強度、低耐熱性となるので不都合で
ある。また低融点ポリマーが繊維最表面に存在すると繊
維製造工程において硬着し易く、この点からも低融点ポ
リマーは島成分とすることが必要である。As the island component of the sea-island fiber of the present invention, a polymer having a melting point or a fusion temperature of less than 210 ° C. is used. Melting point 210
If the temperature is higher than 0 ° C, the thermocompression bonding temperature becomes too high and the orientation and crystallinity of the PVA-based polymer of the sea component are easily destroyed during thermocompression bonding, which is not preferable. Even if the amorphous polymer has no melting point, when the amorphous polymer chip is heated to a predetermined temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes, the minimum temperature at which the chips fuse together is melted. An amorphous polymer having a fusion temperature of less than 210 ° C. can be effectively used as the island component polymer of the present invention. The island component polymer preferably has a melting point or a fusion temperature (hereinafter, this temperature is also included in the term "melting point") of 200 ° C. or lower, and more preferably 190 ° C. or lower. Furthermore, it is preferable that the difference in melting point between the sea component and the island component is 15 ° C. or more because the fiber dimensional change during thermocompression bonding becomes small. The difference in melting point is more preferably 30 ° C. or higher, and further preferably 50 ° C. or higher. A polymer having a melting point of less than 210 ° C. has low orientation and low crystallinity, and thus is disadvantageous when it is used in a sea component that is a fiber matrix because it has low strength and low heat resistance. Further, when the low melting point polymer is present on the outermost surface of the fiber, it is likely to be hard-bonded in the fiber manufacturing process, and from this point as well, it is necessary that the low melting point polymer is an island component.
【0015】本発明にいう融点210℃未満のポリマー
の具体例としては、エチレン/ビニルアルコールコポリ
マー(モル組成比=50/50〜20/80)、エチレ
ン/酢ビコポリマー(モル組成比=92/8〜20/8
0)、ケン化度が50〜88モル%のPVA、イオン性
基を有するモノマーにより2〜10モル%変性されたP
VA、ポリビニルブチラール、ポリビニルホルマール、
炭素数3〜20の脂肪酸のビニルエステルで変性された
PVA、変性アクリル樹脂、ポリイソプレンなどの炭化
水素系エラストマー、ポリウレタン系エラストマーなど
があげられる。就中、熱接着性、性能再現制(安定
性)、コストの点で、エチレン/ビニルアルコールコポ
リマー(モル組成比=50/50〜20/8)、エチレ
ン/酢ビコポリマー(モル組成比=92/8〜20/8
0)のPVA系ポリマーは本発明に用いる熱圧着性PV
A系繊維の島成分として有用である。島成分ポリマーの
重合度に特別な限定はないが、島成分は、繊維強度に寄
与せず、接着性に寄与することが重要であるから、熱圧
着時流動性のよい低重合度、例えば100〜1000が
好ましい。Specific examples of the polymer having a melting point of less than 210 ° C. in the present invention include ethylene / vinyl alcohol copolymer (molar composition ratio = 50/50 to 20/80) and ethylene / vinyl acetate copolymer (molar composition ratio = 92 / 8-20 / 8
0), PVA having a saponification degree of 50 to 88 mol%, and P modified by 2 to 10 mol% with a monomer having an ionic group.
VA, polyvinyl butyral, polyvinyl formal,
Examples thereof include PVA modified with a vinyl ester of a fatty acid having 3 to 20 carbon atoms, a modified acrylic resin, a hydrocarbon elastomer such as polyisoprene, and a polyurethane elastomer. Above all, in terms of heat adhesion, performance reproduction (stability), and cost, ethylene / vinyl alcohol copolymer (molar composition ratio = 50/50 to 20/8), ethylene / vinyl acetate copolymer (molar composition ratio = 92). / 8 to 20/8
The PVA-based polymer of 0) is a thermocompression-bondable PV used in the present invention.
It is useful as an island component of A-based fibers. There is no particular limitation on the degree of polymerization of the island component polymer, but it is important that the island component does not contribute to the fiber strength but to the adhesiveness. ~ 1000 is preferred.
【0016】本発明に用いる熱圧着性PVA系海島繊維
の海成分/島成分のブレンド比は重量比で98/2〜5
5/45の範囲である。海成分の高融点PVA系ポリマ
ーが55%より少ないと高強度繊維が得られない。また
この高融点PVA系ポリマーが55%より少なくなり、
低融点ポリマーが45%より多くなると、低融点ポリマ
ーが海成分となる傾向になり、硬着の点で好ましくな
い。一方、低融点ポリマーが2%より少ないと、実用に
耐える熱圧着性能を得ることができない。強度と熱圧着
性のバランスより、海/島ブレンド比が95/5〜60
/40であるとより好ましく、92/8〜70/30で
あるとさらに好ましい。The blending ratio of the sea component / island component of the thermocompression-bonding PVA-based sea-island fiber used in the present invention is 98/2 to 5 by weight.
The range is 5/45. If the content of the high melting point PVA polymer of the sea component is less than 55%, high strength fibers cannot be obtained. In addition, the high melting point PVA-based polymer is less than 55%,
When the content of the low melting point polymer is more than 45%, the low melting point polymer tends to become a sea component, which is not preferable from the viewpoint of hardening. On the other hand, if the content of the low melting point polymer is less than 2%, the thermocompression bonding performance that can withstand practical use cannot be obtained. Due to the balance between strength and thermocompression bonding, the sea / island blend ratio is 95/5 to 60
/ 40 is more preferable, and 92/8 to 70/30 is further preferable.
【0017】また本発明に用いる熱圧着性PVA系繊維
において島成分の低融点ポリマーは繊維の最表層に存在
することは好ましくないが、最表層近くに存在すること
が好ましい。最表層近辺での海成分の最小厚み(島成分
の低融点ポリマーの繊維最表面までの最近接距離)は、
熱圧着時最表層の高融点PVA系ポリマーが破れ、島成
分の低融点耐水性ポリマーが表面に押し出され接着力を
得るために重要である。島成分の少なくとも一部は最表
層より0.01〜2μの内側に存在させることが好まし
い。島成分は繊維断面方向に均一に分布させてもよい
が、表面側により集中して分布させることがより好まし
い。また島成分は繊維軸方向に連続であってもよいが、
必ずしも連続である必要はなく、むしろ熱圧着時の寸法
変化を少なくするためには球状或いは断続した棒状ある
いはラグビーボール状であることが好ましい場合があ
る。In the thermocompression-bonding PVA-based fiber used in the present invention, the low melting point polymer of the island component is not preferably present in the outermost layer of the fiber, but is preferably present near the outermost layer. The minimum thickness of the sea component near the outermost layer (the closest distance to the fiber outermost surface of the low melting point polymer of the island component) is
It is important for the high melting point PVA-based polymer of the outermost layer to be broken during thermocompression bonding, and the low melting point water resistant polymer of the island component to be extruded onto the surface to obtain an adhesive force. It is preferable that at least a part of the island component is present within 0.01 to 2 μm from the outermost surface layer. The island component may be uniformly distributed in the fiber cross-sectional direction, but it is more preferable to distribute the island component more concentratedly on the surface side. Further, the island component may be continuous in the fiber axis direction,
It is not always necessary to be continuous, but rather spherical shape, intermittent rod shape or rugby ball shape may be preferable in order to reduce dimensional change during thermocompression bonding.
【0018】本発明に用いる熱圧着性PVA系繊維は7
g/dr以上の強度を有する。7g/dr未満の強度で
は、低強度の不織基布しか得られず充分な補強効果をあ
げることができない。本発明に用いる熱圧着性PVA系
繊維は熱圧着することによりその機能を発揮する。熱圧
着により多少強度が低下しても十分な強度を有すること
が重要であり、このためには熱圧着前の強度が大きいこ
とが必要である。強度が8g/dr以上であるともっと
好ましく、10g/dr以上であるとさらに好ましい。The thermocompression bonding PVA fiber used in the present invention is 7
It has a strength of g / dr or more. If the strength is less than 7 g / dr, only a low-strength non-woven base fabric can be obtained, and a sufficient reinforcing effect cannot be obtained. The thermocompression-bonding PVA fiber used in the present invention exerts its function by thermocompression bonding. It is important to have sufficient strength even if the strength is slightly lowered by thermocompression bonding, and for this purpose, the strength before thermocompression bonding is required to be high. The strength is more preferably 8 g / dr or more, further preferably 10 g / dr or more.
【0019】本発明で用いる海島繊維の各繊維断面にお
ける島数は1個以上である。島数が4個以下の場合繊維
表層近くに低融点ポリマー相を存在させることが困難で
あるという欠点を有しているが、島成分が繊維表層近く
に存在させるような複合紡糸口金を用いることにより得
ることができる。例えば、島数が1個の場合、島成分を
繊維表層近くに存在させたような偏心芯鞘複合繊維や島
数が4個でそのうちの少なくとも1個を繊維表層近くに
存在させたような多芯芯鞘複合繊維は本発明に好適に使
用できる。しかしながら特殊な複合紡糸装置を用いるこ
となく、単に海成分ポリマー液中に島成分ポリマー液を
配合することにより得られる混合紡糸繊維が好ましい。
熱圧着時の島成分の押し出され易さの点で島数は50個
以上が好ましく100個以上であると一層好ましく、原
液での海成分ポリマーと島成分ポリマーの相分離状態で
制御することにより容易に島数を100個以上とするこ
とができる。The number of islands in each fiber cross section of the sea-island fiber used in the present invention is 1 or more. When the number of islands is 4 or less, it has a drawback that it is difficult to allow the low-melting point polymer phase to exist near the fiber surface layer, but use of a composite spinneret that allows the island component to exist near the fiber surface layer Can be obtained by For example, when the number of islands is one, there are many eccentric core-sheath composite fibers in which the island component is present near the fiber surface layer, and when there are four islands and at least one of them is near the fiber surface layer. The core-sheath composite fiber can be preferably used in the present invention. However, a mixed spun fiber obtained by simply blending the island component polymer liquid in the sea component polymer liquid without using a special composite spinning device is preferable.
The number of islands is preferably 50 or more, more preferably 100 or more from the viewpoint of ease of extruding the island component during thermocompression bonding. By controlling the phase separation state of the sea component polymer and the island component polymer in the undiluted solution, The number of islands can easily be 100 or more.
【0020】次に本発明の不織基布に用いる繊維を製造
する方法について記載する。上記の高融点PVA系ポリ
マーと低融点ポリマーを98/2〜55/45の割合で
溶媒に溶解して紡糸原液を得る。ここにいう溶媒とは少
なくとも高融点PVA系ポリマーを溶解する溶媒でなけ
ればならない。低融点ポリマーをも溶解する共通溶媒で
あることがより好ましいが、必ずしも溶解しなくとも、
高融点PVA系ポリマー溶液中で10μ以下に分散する
よう粉砕分散が可能であれば使用可能である。分散粒径
が5μ以下であると好ましく、1μ以下であるとさらに
好ましい。両ポリマーの共通溶媒に溶解しても両ポリマ
ーの相溶性如何によっては均一透明溶液とはならない。
むしろ紡糸原液状態で、高融点PVA系ポリマーがマト
リックス(海)相、低融点ポリマーの液滴が島相に微分
散したポリマーブレンド溶液となって、濁りにある均一
微分散相分離液となることが好ましい。勿論、両ポリマ
ーの相溶性が良好である場合は均一透明溶液となり、繊
維化時、高融点ポリマーが海成分となるよう原液・紡糸
条件をとれば、製造しうる。Next, a method for producing fibers used in the non-woven base fabric of the present invention will be described. The above-mentioned high melting point PVA-based polymer and low melting point polymer are dissolved in a solvent at a ratio of 98/2 to 55/45 to obtain a spinning dope. The solvent mentioned here must be a solvent that dissolves at least the high melting point PVA polymer. More preferably, it is a common solvent that also dissolves the low melting point polymer, but it does not always dissolve,
It can be used if it can be pulverized and dispersed so as to be dispersed in a high melting point PVA polymer solution to 10 μm or less. The dispersed particle size is preferably 5 μm or less, more preferably 1 μm or less. Even if dissolved in a common solvent for both polymers, a homogeneous transparent solution cannot be obtained depending on the compatibility of both polymers.
Rather, in the spinning stock solution, the high melting point PVA-based polymer becomes a matrix (sea) phase, and the low melting point polymer droplets become a finely dispersed polymer blend solution in an island phase, resulting in a turbid homogeneous finely dispersed phase separation liquid. Is preferred. As a matter of course, when both polymers have good compatibility, a homogeneous transparent solution can be obtained, and it can be produced by preparing the undiluted solution and the spinning conditions so that the high melting point polymer becomes the sea component during fiber formation.
【0021】本発明不織基布の製造に用いる繊維の製造
法に用いる溶媒の具体例として、ジメチルスルホキシド
(以下DMSOと略記)、ジメチルアセトアミド、N−
メチルピロリドン、ジメチルイミダゾリジノンなどの極
性溶媒やグリセリン、エチレングリコールなどの多価ア
ルコール類、硝酸、硫酸などの強酸、ロダン塩、塩化亜
鉛などの濃厚水溶液、及びこれらの溶媒の混合液などが
あげられる。とりわけDMSOが低温溶解性、低毒性、
低腐蝕性などの点で好ましい。溶媒に両ポリマーを添加
し、撹拌溶解するか、特に相分離液となる場合溶解時微
分散するよう撹拌を強力に行なうとともに脱泡放置時凝
集沈降しないよう泡が咬み込まぬ程度に低速撹拌を続け
るなどの配慮が好ましい。Specific examples of the solvent used in the method for producing the fiber used for producing the nonwoven base fabric of the present invention include dimethyl sulfoxide (hereinafter abbreviated as DMSO), dimethylacetamide, N-
Examples include polar solvents such as methylpyrrolidone and dimethylimidazolidinone; polyhydric alcohols such as glycerin and ethylene glycol; strong acids such as nitric acid and sulfuric acid; concentrated aqueous solutions such as rhodanate and zinc chloride; and mixtures of these solvents. To be DMSO is especially low temperature solubility, low toxicity,
It is preferable in terms of low corrosion. Add both polymers to the solvent and stir to dissolve, or strongly stir to finely disperse when dissolving, especially when it becomes a phase-separated liquid, and also perform low-speed stirring to the extent that bubbles do not bite so as not to coagulate and settle while leaving degassing. Consideration such as continuing is preferable.
【0022】次に、紡糸原液の粘度については、紡糸法
により異なるが、紡糸時ノズル近辺の温度で5〜500
0ポイズが好ましい。例えば乾式紡糸では500〜50
00ポイズ、乾湿式紡糸では80〜800ポイズ、湿式
紡糸では5〜200ポイズになるようにポイズ濃度及び
原液温度を調整する。両ポリマー以外に両ポリマーの紡
糸原液状態及び繊維状態での海島構造制御のため相溶化
剤や相分離促進剤などを適宜添加してもよい。原液には
その他特定の目的のために種々の添加剤を添加してもよ
い。例えば、ポリマーの劣化防止のための酸化防止剤、
光安定剤、紫外線吸収剤、繊維着色のための顔料や染
料、界面張力制御のための界面活性剤、pH調整のため
の酸あるいはアリカリなどである。Next, the viscosity of the spinning dope varies depending on the spinning method, but is 5 to 500 at the temperature near the nozzle during spinning.
0 poise is preferred. For example, in dry spinning, 500 to 50
The poise concentration and the undiluted solution temperature are adjusted so as to be 00 poise, 80-800 poise for dry-wet spinning, and 5-200 poise for wet spinning. In addition to both polymers, a compatibilizer, a phase separation accelerator, etc. may be appropriately added for controlling the sea-island structure of both polymers in the spinning stock solution state and the fiber state. Various additives may be added to the stock solution for other specific purposes. For example, an antioxidant for preventing deterioration of the polymer,
Examples thereof include light stabilizers, ultraviolet absorbers, pigments and dyes for coloring fibers, surfactants for controlling interfacial tension, acids for adjusting pH and alkaline.
【0023】次に得られた原液を乾式紡糸、乾湿式紡糸
あるいは湿式紡糸する。乾式紡糸においては、溶媒が蒸
発する間に高融点ポリマーがマトリックス(海成分)、
低融点ポリマーが島となるよう紡糸延伸条件を選定し、
得られた繊維を捲き取る。乾湿式紡糸においては、原液
をノズルより一旦不活性気体層(例えば空気層)に吐出
し、次いで固化液に通し、固化と原液溶媒の抽出を行
い、湿延伸、乾熱延伸を施こし捲き取る。または湿式紡
糸においては、原液をノズルより直接固化液に吐出し、
固化、抽出を行ない、湿延伸、乾熱延伸を施こし捲き取
る。いずれの紡糸法においても高融点ポリマーが海成分
に低融点ポリマーが島成分になるように原液及び紡糸条
件を配慮する必要がある。具体的には海成分となるべき
高融点ポリマーのブレンド比を多くすることが有効であ
る。また原液及び紡糸条件を相分離し易い方向にするこ
とが有効である。Next, the obtained stock solution is subjected to dry spinning, dry wet spinning or wet spinning. In dry spinning, the high melting point polymer is a matrix (sea component) while the solvent evaporates.
Select the spinning and drawing conditions so that the low melting point polymer becomes islands,
The obtained fiber is wound up. In dry-wet spinning, the stock solution is once discharged from a nozzle into an inert gas layer (for example, an air layer), then passed through a solidification solution, solidification and extraction of the stock solution solvent are performed, wet drawing and dry heat drawing are performed, and the film is wound up. . Or in wet spinning, the stock solution is directly discharged from the nozzle to the solidifying solution,
After solidification and extraction, wet stretching and dry heat stretching are applied and wound up. In either spinning method, it is necessary to consider the stock solution and spinning conditions so that the high melting point polymer becomes the sea component and the low melting point polymer becomes the island component. Specifically, it is effective to increase the blending ratio of the high melting point polymer to be the sea component. In addition, it is effective to set the stock solution and the spinning conditions so as to facilitate phase separation.
【0024】また本発明に用いる繊維の製造法において
は、強度を7g/dr以上とするため、固化過程におい
て均一な固化糸篠とする。均一な固化が行なわれたこと
の確認は延伸後の繊維断面を光学顕微鏡で観察し、ほぼ
円型の断面の繊維が得られた場合には、均一な固化が行
なわれたと判断できる。従来、PVAの紡糸に一般的に
用いられている濃厚芒硝水溶液を固化浴に用いると、不
均一固化となるため、断面がまゆ型となり、延伸配向が
十分行なえず7g/dr以上の強度を得ることができな
い。また原液に硼酸を添加し、アルカリ性脱水塩類浴に
固化する場合、濃厚芒硝水溶液を固化浴に用いた場合に
比べると、均一固化に近付くため、断面が偏平となる
が、円型とはならず不十分である。一方メタノールやエ
タノールなどのアルコール類、アセトン、メチルエチル
ケトンなどのケトン類、酢酸メチルや酢酸エチルなどの
脂肪族エステル類、及びこれらと原液溶媒との混合溶媒
などの海成分となる高融点PVA系ポリマーに対して固
化能を有する有機溶剤を固化浴に用いると、均一な固化
となるため、断面がほぼ円型となり、その後の湿延伸及
び乾熱延伸により十分な配向結晶化を行なうことがで
き、強度7g/dr以上の達成が可能となる。なお本発
明で言う繊維の横断面形状は、通常の光学顕微鏡を用い
て観測されるものである。Further, in the method for producing the fiber used in the present invention, since the strength is set to 7 g / dr or more, a uniform solidified yarn is obtained in the solidifying process. To confirm that uniform solidification was performed, the cross section of the fiber after stretching was observed with an optical microscope, and when a fiber having a substantially circular cross section was obtained, it can be determined that uniform solidification was performed. Conventionally, when a concentrated Glauber's salt aqueous solution generally used for spinning PVA is used in the solidifying bath, it becomes nonuniformly solidified, so that the cross section becomes an eyebrow type and the stretch orientation cannot be sufficiently performed, and a strength of 7 g / dr or more is obtained. I can't. In addition, when boric acid is added to the stock solution and solidified in an alkaline dehydration salt bath, compared to the case where a concentrated aqueous solution of Glauber's salt is used in the solidification bath, the solidification approaches uniform solidification, resulting in a flat cross section, but not a circular shape. Is insufficient. On the other hand, for alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic esters such as methyl acetate and ethyl acetate, and high melting point PVA-based polymers that are sea components such as mixed solvents of these and undiluted solvents. On the other hand, when an organic solvent having a solidifying ability is used in the solidifying bath, the solidification is uniform, so that the cross section becomes substantially circular and sufficient oriented crystallization can be performed by the subsequent wet drawing and dry heat drawing. It is possible to achieve 7 g / dr or more. The cross-sectional shape of the fiber referred to in the present invention can be observed by using an ordinary optical microscope.
【0025】より均一なゲル糸篠を得るためには、固化
浴の温度を0〜10℃の低温とすることが好ましい。な
お、これら固化浴は島成分となる低融点ポリマー対して
は必ずしも固化能を有する必要はない。極端には低融点
ポリマーには固化浴に対して可溶であっても、紡糸可能
である。但しこの場合高融点ポリマー/低融点ポリマー
のブレンド比が6/4より低融点ポリマーが多いと固化
浴中に溶出したり、繊維が硬着するので好ましくない。
7/3より低融点ポリマーが少ないとより好ましい。低
融点ポリマーが固化浴に可溶の場合、固化時低融点ポリ
マーが原液溶媒とともに固化糸篠の表面方向に移動する
傾向にあり、繊維中央部より表層部により多く分布する
傾向にあるので、低融点ポリマーのブレンド量が少なく
ても本発明の目的である熱圧着性の低下が少ないという
予想外の好ましい傾向を見出した。低融点ポリマーのブ
レンド量が少ないと高強度繊維が得られる利点もある。In order to obtain a more uniform gel yarn, it is preferable to set the temperature of the solidifying bath to a low temperature of 0 to 10 ° C. It should be noted that these solidifying baths do not necessarily have to have solidifying ability with respect to the low melting point polymer which becomes the island component. Extremely low-melting polymers can be spun even if they are soluble in the solidifying bath. In this case, however, if the blending ratio of the high melting point polymer / low melting point polymer is more than 6/4, the amount of the low melting point polymer is too large, it will be eluted in the solidifying bath and the fibers will be hardened, which is not preferable.
It is more preferable that the low melting point polymer is less than 7/3. When the low-melting point polymer is soluble in the solidifying bath, the low-melting point polymer tends to move in the surface direction of the solidified thread with the stock solution solvent during solidification, and tends to be distributed more in the surface layer than in the central part of the fiber. It has been found that an unexpected preferable tendency is that the decrease in the thermocompression bonding property, which is the object of the present invention, is small even if the blending amount of the melting point polymer is small. If the blending amount of the low melting point polymer is small, there is also an advantage that high strength fibers can be obtained.
【0026】以上のように、本発明に用いる熱圧着性P
VA系繊維は、従来の疎水性ポリマーにおける芯鞘複合
熱接着性繊維では芯を高融点ポリマーとして、鞘を低融
点ポリマーとしているのとは逆に、海成分を高融点ポリ
マーとし、島成分を低融点ポリマーとし、通常は高配
向、高結晶性の高融点PVA系ポリマーによる優れた繊
維性能を発揮し、熱圧着(高温かつ高圧印加)時繊維最
表層の高融点PVA系ポリマー相が破れ、表層近くの島
を形成している熱接着性の低融点ポリマーが、繊維表面
に押し出され、別の繊維の島成分ポリマー同志と接着し
たり、或いは海成分の高融点ポリマーと接着することに
より、熱圧着性を確保したものである。高配向、高結晶
化した高融点PVA系ポリマーがマトリックス相を形成
するため、島成分が低配向、低結晶の低融点ポリマーで
あっても強度や寸法安定性が優れており、しかも熱圧着
時においてもマトリックス相は大きな影響を受けないた
め、熱圧着時寸法変化が小さくかつ熱圧着後でも高い強
度を得ることができる特徴がある。As described above, the thermocompression bonding property P used in the present invention.
In contrast to the core-sheath composite heat-adhesive fiber in the conventional hydrophobic polymer in which the core is a high melting point polymer and the sheath is a low melting point polymer, the VA fiber has a sea component as a high melting point polymer and an island component as a high melting point polymer. As a low-melting point polymer, it usually exhibits excellent fiber performance with a high-orientation, highly crystalline high-melting point PVA-based polymer, and the high-melting point PVA-based polymer phase of the fiber outermost layer is broken during thermocompression bonding (high temperature and high pressure application), The heat-adhesive low-melting point polymer that forms islands near the surface layer is extruded on the fiber surface and adheres to the island component polymer of another fiber, or by adhering to the high component polymer of the sea component, It ensures thermocompression bonding. Highly oriented and highly crystallized high melting point PVA-based polymer forms a matrix phase, so even if the island component is low oriented and low crystalline low melting point polymer, it has excellent strength and dimensional stability. Also, since the matrix phase is not greatly affected by this, the dimensional change during thermocompression bonding is small and high strength can be obtained even after thermocompression bonding.
【0027】本発明不織基布において経糸および/また
は緯糸は、フィラメント(マルチまたはモノ)であろう
と紡績糸であろうと特別な限定はないが、少なくとも1
0%は上記熱圧着性PVA系繊維を含有しなければなら
ない。経糸と緯糸のいずれの含有率も10%未満である
と、経糸と緯糸の交点における熱圧着後の接着力が不十
分であり、不織基布の組織が不安定となり、取扱い性が
わるくなる。経糸および/または緯糸の熱圧着性PVA
系繊維の含有率が20%以上であるともっと好ましく、
40%以上であるとさらに好ましい。交点における接着
力が特に必要な場合は熱圧着性PVA系繊維を単独使用
することがより好ましい。上記熱圧着性PVA系繊維は
強度が7g/dr以上と高強度であり、経糸および/ま
たは緯糸において単独使いも可能であることが、特徴で
ある。一方、高強力フィラメントのみ、あるいは上記熱
圧着性PVA系フィラメントと交撚したマルチフィラメ
ントや、高強力ステープルのみよりなる紡績糸や上記熱
圧着性PVA系ステープルを混紡した紡績糸を例えば経
糸に用いると、経糸方向がより高強力の不織基布が得ら
れる。また高強力フィラメントに上記熱圧着性PVA系
繊維よりなる紡績糸を交撚したり、高強力紡績糸に上記
熱圧着性PVA繊維よりなるフィラメントを交撚したコ
ードを経糸および/または緯糸に用いることもできる。In the non-woven base fabric of the present invention, the warp yarn and / or the weft yarn is not particularly limited whether it is a filament (multi or mono) or a spun yarn, but at least 1
0% must contain the thermocompression-bondable PVA-based fiber. If the content of both warp and weft is less than 10%, the adhesive strength after thermocompression bonding at the intersection of the warp and the weft is insufficient, the texture of the nonwoven base fabric becomes unstable, and the handleability becomes poor. . Thermocompression bonding PVA of warp and / or weft
It is more preferable that the content of the system fibers is 20% or more,
It is more preferably 40% or more. When the adhesive strength at the intersection is particularly required, it is more preferable to use the thermocompression-bonding PVA-based fiber alone. The thermocompression-bondable PVA-based fiber has a high strength of 7 g / dr or more, and is characterized in that it can be used alone in the warp and / or the weft. On the other hand, when a high-strength filament alone, a multifilament twisted with the thermocompression-bonding PVA-based filament, a spun yarn consisting of only high-strength staple, or a spun yarn obtained by mixing the thermocompression-bonding PVA-based staple is used as a warp, for example. A non-woven base fabric having a higher strength in the warp direction can be obtained. Further, a spun yarn composed of the thermocompression bonding PVA-based fiber is intertwisted with a high-strength filament, or a cord in which a filament composed of the thermocompression-bondable PVA fiber is interlaced with a high-strength spun yarn is used as a warp and / or a weft. You can also
【0028】熱圧着性PVA系繊維以外に本発明で用い
ることができる繊維としては、例えば、通常タイプある
いは高強力タイプのビニロン、セルロース系繊維、アラ
ミド繊維、炭素繊維、ガラス繊維などがあげられる。経
糸および/または緯糸にマルチフィラメントを用いる場
合の撚糸は0〜20t/mの撚数が好ましい。さらに、
無撚が交点での接着面積増大とマトリックス樹脂が含浸
し易い点で好ましい。経糸及び緯糸の太さは50〜20
00drが好ましく、150〜1500drであるとも
っと好ましい。また経糸の配列密度は0.3〜30本/
cmが好ましく、0.5〜15本/cmであるともっと
好ましく、1〜10本/cmであるとさらに好ましい。
緯糸の配列密度は0.3〜20本/cmが好ましく、
0.5〜10本/cmであるともっと好ましく、1〜5
本/cmであるとさらに好ましい。Examples of fibers that can be used in the present invention other than thermocompression-bonding PVA-based fibers include ordinary type or high-strength type vinylon, cellulosic fibers, aramid fibers, carbon fibers, glass fibers and the like. When a multifilament is used for the warp and / or the weft, the twist number is preferably 0 to 20 t / m. further,
Non-twisting is preferable because it increases the adhesion area at the intersection and facilitates impregnation with the matrix resin. The thickness of the warp and weft is 50 to 20
00 dr is preferable, and 150 to 1500 dr is more preferable. The warp yarn array density is 0.3 to 30 yarns /
cm is preferable, 0.5 to 15 lines / cm is more preferable, and 1 to 10 lines / cm is further preferable.
The arrangement density of the wefts is preferably 0.3 to 20 yarns / cm,
It is more preferably 0.5 to 10 fibers / cm, and 1 to 5
It is more preferable that the number is books / cm.
【0029】本発明不織基布においては、上記繊維より
なる経糸と緯糸の交点を熱圧着法により接着されてなる
ことがもう1つの本発明のポイントである。本発明にお
いて熱圧着とは、80℃以上の温度で1kg/cm以上
の線圧または2kg/cm2以上の面圧を印加すること
により基布を接着することをいう。温度が80℃未満、
線圧1kg/cm未満、あるいは面圧2kg/cm2未
満では熱圧着性PVA系繊維の最表層の高融点PVA系
ポリマー相が破れず、島成分の低融点ポリマーが繊維表
面に押し出されてこないので接着力が低い。最表層の高
融点ポリマーを昇温し柔らかくなった状態で圧力を加え
ることにより最表層のポリマー相を破り、表層近くにあ
る接着成分の低融点ポリマーが押し出され接着すること
が可能となる。熱圧着温度が高過ぎると、海成分の分子
配向や結晶までこわれる可能性があるので、230℃以
上とすべきではない。海/島のポリマー仕様、分布状態
及び印加圧力などにより、適正圧着温度は変わるが、1
00〜210℃が好ましく、120〜200℃であると
もっと好ましく、130〜190℃であるとさらに好ま
しい。Another point of the present invention is that the non-woven base fabric of the present invention is formed by adhering the intersections of the warp and the weft made of the above fibers by a thermocompression bonding method. In the present invention, thermocompression bonding means that the base cloth is adhered by applying a linear pressure of 1 kg / cm or more or a surface pressure of 2 kg / cm 2 or more at a temperature of 80 ° C. or more. Temperature is less than 80 ℃,
When the linear pressure is less than 1 kg / cm or the surface pressure is less than 2 kg / cm 2 , the high-melting point PVA-based polymer phase in the outermost layer of the thermocompression-bonding PVA-based fiber is not broken and the low-melting point polymer of the island component is not extruded on the fiber surface. Therefore, the adhesive strength is low. By heating the high melting point polymer of the outermost layer and applying pressure in a softened state, the polymer phase of the outermost layer is broken, and the low melting point polymer of the adhesive component near the surface layer can be extruded and adhered. If the thermocompression bonding temperature is too high, the molecular orientation of the sea component and the crystals may be broken, so the temperature should not be higher than 230 ° C. The appropriate pressure bonding temperature changes depending on the sea / island polymer specifications, distribution state and applied pressure, etc.
The temperature is preferably from 00 to 210 ° C, more preferably from 120 to 200 ° C, even more preferably from 130 to 190 ° C.
【0030】また印加圧力があまり高いと海成分の繊維
構造や混合している熱圧着性PVA系繊維以外の繊維の
構造をこわしてしまい、熱圧着後の繊維強力が低下する
ので好ましくない。熱カレンダーローラーなどによる線
圧は500kg/cm以下が好ましい。線圧が200k
g/cm以下であるともっと好ましく、100kg/c
m以下であるとさらに好ましい、熱プレスなどによる面
圧は1000kg/cm2以下が好ましい。面圧が40
0kg/cm2以下であるともっと好ましく、200k
g/cm2以下であるとさらに好ましい。通常は5〜5
0kg/cmの線圧あるいは10〜100kg/cm2
の面圧が使用される。熱圧着時間は0.01〜10秒程
度の短い時間で熱圧着可能である。短時間処理で接着し
うることが熱圧着法の極めて重要な特性である。本発明
基布の場合熱圧着時間を10分以上とすると却って接着
力が低下する傾向にある。この原因は不明であるが、ポ
リマーの結晶化に関係すると推測される。このため、処
理時間の長い面圧印加タイプの熱プレス法により処理時
間の短かい線圧印加タイプの熱カレンダーロール法がよ
り好ましく熱圧着に使用しうる。If the applied pressure is too high, the fiber structure of the sea component and the structure of fibers other than the thermocompression-bonding PVA-based fibers that are mixed will be broken, and the fiber strength after thermocompression bonding will decrease, which is not preferable. The linear pressure applied by a thermal calendar roller or the like is preferably 500 kg / cm or less. Linear pressure is 200k
More preferably g / cm or less, 100 kg / c
It is more preferable that the thickness is m or less, and the surface pressure by hot pressing or the like is preferably 1000 kg / cm 2 or less. Surface pressure is 40
More preferably 0 kg / cm 2 or less, 200 k
It is more preferably g / cm 2 or less. Usually 5-5
Linear pressure of 0 kg / cm or 10 to 100 kg / cm 2
Surface pressure is used. Thermocompression bonding can be performed in a short time of about 0.01 to 10 seconds. The ability to bond in a short time is a very important property of the thermocompression bonding method. In the case of the base fabric of the present invention, if the thermocompression bonding time is set to 10 minutes or longer, the adhesive force tends to decrease. The cause of this is unknown, but it is presumed to be related to crystallization of the polymer. Therefore, the hot pressing method of the surface pressure application type having a long processing time and the thermal calender roll method of the linear pressure application type having a short processing time can be more preferably used for thermocompression bonding.
【0031】従来の不織基布の製造は、製造工程中に接
着剤を付与する工程と接着力発現のための乾燥やキュア
リング工程が必要であり、しかも乾燥やキュアリングに
1分以上を要するため高額の設備投資が必要であるとと
もに、高速生産が困難である。また接着剤やその変質物
が製造工程のローラーなどの設備に固着し、それが原因
で不織基布の欠点が発生したり、設備の運転を停止して
固着物を除去洗篠の必要がある。また従来の不織基布に
用いられている融点繊維は、熱接着ポリマー単独であっ
たり、鞘が熱接着性ポリマーの芯鞘複合繊維であり、熱
融着ポリマーが繊維表面に露出しているタイプが多く、
上記の接着剤ほど顕著ではないにしても、熱ローラーな
どの製造工程中のローラーなどへの融着繊維の固着がみ
られる。これに対して、本発明で用いる熱圧着性PVA
系繊維では、繊維表面は高融点PVA系ポリマーで被覆
されており、熱圧着した時のみ繊維表面近くの融着成分
が繊維表面ににじみ出てきて接着されるので、熱ローラ
ーなどの汚れは、従来の熱接着性繊維に比べて、さらに
少なくすることができる。The conventional production of a non-woven base fabric requires a step of applying an adhesive and a drying and curing step for expressing the adhesive force during the production step, and more than 1 minute is required for the drying and curing. Therefore, a large amount of capital investment is required and high-speed production is difficult. In addition, the adhesive and its degenerated substances stick to the equipment such as rollers in the manufacturing process, which causes defects in the non-woven fabric, and it is necessary to stop the equipment and remove the adhered substances. is there. Further, the melting point fiber used in the conventional non-woven base fabric is a heat-adhesive polymer alone, or a sheath is a core-sheath composite fiber of a heat-adhesive polymer, and the heat-fusion polymer is exposed on the fiber surface. There are many types,
Although less prominent than the adhesives described above, there is sticking of the fused fibers to rollers such as hot rollers during the manufacturing process. On the other hand, thermocompression bonding PVA used in the present invention
In the case of system fibers, the fiber surface is coated with a high melting point PVA polymer, and the fusion component near the fiber surface oozes out and adheres to the fiber surface only when thermocompression bonding is applied. It can be further reduced as compared with the heat-adhesive fiber.
【0032】本発明におけるパラメーターの定義とその
測定法は次の如くである。 1.融点 結晶性ポリマーの場合、メトラー社示差走査熱量測定装
置(DSC−20)を用い、試料ポリマーを窒素下20
℃/minの速度で昇温した際、吸熱ピークを示す温度
を測定する。The definition of parameters and the measuring method thereof in the present invention are as follows. 1. Melting point In the case of a crystalline polymer, a differential scanning calorimeter (DSC-20) manufactured by METTLER CORPORATION was used, and the sample polymer was placed under nitrogen at 20
When the temperature is raised at a rate of ° C / min, the temperature showing an endothermic peak is measured.
【0033】2.融着温度 非晶性ポリマーの場合、ポリマーチップを所定温度の熱
風乾燥機にいれ、0.1kg/cm2の圧力を10分間
印加した際、チップ間の境界が判定できない程度にチッ
プ同志が融着する最低の温度を測定する。2. Fusing temperature In the case of an amorphous polymer, when the polymer chips are placed in a hot air dryer at a specified temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes, the chips melt to the extent that the boundaries between the chips cannot be determined. Measure the lowest temperature to wear.
【0034】3.繊維強度 JIS−1015に準じ、単繊維強度を試長20mm、
引張速度50%/分で引張試験を行なう。3. Fiber strength In accordance with JIS-1015, the single fiber strength is a test length of 20 mm,
A tensile test is performed at a tensile rate of 50% / min.
【0035】[0035]
【実施例】以下実施例により、本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。実施例中、ブレンド比、%は特にことわりがない限
り重量に基く値である。 実施例1 重合度3800、ケン化度99.9モル%で融点が23
6℃のPVAと、エチレン/ビニルアルコールコポリマ
ー=47〜53(モル比)、重合度750で融点が16
2℃のポリマーを各々90℃のDMSOに窒素下混合撹
拌し、溶解した。高融点PVA系ポリマー/低融点ポリ
マーのブレンド比は90/10であった。この紡糸原液
を孔径0.06mm、孔数200のノズルを通し、メタ
ノール70%とDMSO30%よりなる3℃の固化液中
に湿式紡糸した。得られた固化糸篠は白濁状であり、両
ポリマーが相分離していることが推定された。またこの
時固化液には特別な濁りは発生しなかった。この固化糸
に5.0倍の湿延伸を施こし、メタノール液に浸漬して
固化糸篠中のDMSOを抽出洗浄し、鉱物油系油剤を付
与し、100℃で乾燥し、次いで225℃で全延伸倍率
が15倍となるよう乾熱延伸し、500dr/200f
のマルチフィラメントを得た。単糸強度は15g/dr
あった。また断面観察より、円型断面であり、高融点の
PVAが海成分で、低融点のポリマーが島成分となって
おり、その島数は少なくとも100ケは存在しており、
最表面より1μ以内に島成分が多数存在していることが
わかった。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples, blend ratios and% are values based on weight unless otherwise specified. Example 1 Polymerization degree 3800, saponification degree 99.9 mol%, melting point 23
PVA of 6 ° C., ethylene / vinyl alcohol copolymer = 47 to 53 (molar ratio), polymerization degree of 750 and melting point of 16
The polymers at 2 ° C. were dissolved in 90 ° C. DMSO by mixing and stirring under nitrogen. The high melting point PVA polymer / low melting point blend ratio was 90/10. The spinning solution was passed through a nozzle having a hole diameter of 0.06 mm and a number of holes of 200, and wet-spun in a solidified solution of 70% methanol and 30% DMSO at 3 ° C. The obtained solidified Itoshino was cloudy, and it was presumed that both polymers were phase-separated. At this time, no special turbidity was generated in the solidified liquid. The solidified yarn is subjected to a 5.0-fold wet drawing, immersed in a methanol solution to extract and wash DMSO in the solidified yarn, add a mineral oil-based oil agent, dry at 100 ° C., and then at 225 ° C. Dry heat stretched to a total draw ratio of 15 times, 500 dr / 200f
A multifilament of Single yarn strength is 15g / dr
there were. Further, from the cross-sectional observation, it is a circular cross-section, the high melting point PVA is the sea component, the low melting point polymer is the island component, there are at least 100 islands,
It was found that many island components were present within 1 μ of the outermost surface.
【0036】このマルチフィラメントを撚りをかけず
に、経糸として1本/cmの間隔で配列した。この経糸
配列面の上に、経糸と同じマルチフィラメントを緯糸と
して2本/cmの間隔で配列した。さらにその上に、先
と同じ経糸を1本/cmの間隔で配列し、緯糸配列面の
上に重ねた。この際下の経糸配列面とは0.5cmずら
して配列した。得られた0.5cm間隔で経糸と緯糸が
格子状に配列したものを、温度210℃、線圧60kg
/cmの条件で熱カレンダー処理を行ない、熱圧着し
た。得られた不織基布は、経糸と緯糸の交点接着力が8
0gであり、手で取扱い中に交点が外れてくることはな
かった。また熱圧着後の基布を構成するマルチフィラメ
ントは強度が13g/drであり、補強用不織基布に十
分な性能を有していた。The multifilaments were arranged as warps at an interval of 1 / cm without twisting. On this warp arranging surface, the same multifilaments as the warp were arranged as wefts at an interval of 2 / cm. Further, the same warp as that described above was arranged at an interval of 1 thread / cm, and was superposed on the weft arrangement surface. At this time, they were arranged with a 0.5 cm offset from the lower warp arrangement surface. The obtained warp and weft arranged in a lattice at intervals of 0.5 cm at a temperature of 210 ° C and a linear pressure of 60 kg.
Thermal calendering was performed under the condition of / cm and thermocompression bonding was performed. The resulting non-woven base fabric has an adhesive strength at the intersection of the warp and the weft of 8
It was 0 g, and the intersection did not come off during handling by hand. Further, the multifilament constituting the base cloth after thermocompression bonding had a strength of 13 g / dr, and had sufficient performance as a reinforcing non-woven base cloth.
【0037】比較例1 重合度が1750、ケン化度が99.9モル%で、融点
が233℃のPVAのみからなるPVA系繊維で強度が
14g/drである500d/200fのマルチフィラ
メントを用い実施例1と同様に経糸と緯糸が格子状に配
列したものを実施例1と同様に熱圧着した。得られた不
織基布は接着力が10g以下で単糸がばらけてしまい、
基布として取り扱うことは出来なかった。Comparative Example 1 A multi-filament of 500d / 200f having a degree of polymerization of 1750, a degree of saponification of 99.9 mol% and a melting point of 233 ° C. and made of only PVA and made of PVA only and having a strength of 14 g / dr was used. Similar to Example 1, a warp and a weft arranged in a lattice were thermocompression bonded in the same manner as in Example 1. The obtained non-woven base fabric has an adhesive force of 10 g or less, and the single yarn is separated,
It could not be handled as a base cloth.
【0038】実施例2 実施例1と同様にして、海成分が、重合度1750、ケ
ン化度99.9モル%で融点が233℃のPVAであ
り、島成分が、重合度1100、共重合モル比が32/
68で融着温度が50℃以下のエチレン/酢酸ビニルコ
ポリマーであり、海/島のブレンド比が80/20であ
り、強度が11g/drであり、円形断面を有し、島数
が100個以上で、最表面から0.5μ以内に島成分が
多数存在している1000d/400fのPVA系海島
繊維のマルチフィラメントを得た。このマルチフィラメ
ントを強度17g/drである100d/500fのビ
ニロンフィラメントと1/1で交撚した。経糸として強
度が14g/drで1000d/500fのビニロンフ
ィラメントを無撚で1本/cmの間隔で配列し、この経
糸配列面の上に、上記PVA系海島繊維の含有率が50
%である1/1交撚フィラメントを緯糸として2本/c
mの間隔で配列した。さらにその上に先と同じ経糸を1
本/cmの間隔で配列し、緯糸配列面の上に重ねた。こ
の際下の経糸配列面とは0.5cmずらして配列した。
得られた0.5cm間隔で経糸と緯糸が格子状に配列し
たものを、温度200℃、線圧40kg/cm、処理時
間1秒以下の条件で熱カレンダー処理を行ない、熱圧着
した。得られた不織基布は、経糸と緯糸の交点の接着力
は最大60gであった。Example 2 In the same manner as in Example 1, the sea component was PVA having a polymerization degree of 1750, a saponification degree of 99.9 mol% and a melting point of 233 ° C., and the island component was a polymerization degree of 1100 and a copolymerization. Molar ratio 32 /
It is an ethylene / vinyl acetate copolymer with a fusion temperature of 68 or less at 50 ° C., a sea / island blend ratio of 80/20, a strength of 11 g / dr, a circular cross section, and 100 islands. As described above, a multifilament of 1000d / 400f PVA-based sea-island fiber having a large number of island components within 0.5 μm from the outermost surface was obtained. This multifilament was twisted 1/1 with a 100d / 500f vinylon filament having a strength of 17g / dr. As warp, vinylon filaments having a strength of 14 g / dr and 1000 d / 500 f were arranged without twisting at an interval of 1 filament / cm, and the content of the PVA-based sea-island fiber was 50 on the warp arrangement surface.
% 1/1 twisted filament as weft yarn 2 / c
Arrayed at m intervals. On top of that, add the same warp 1
They were arranged at an interval of books / cm and were stacked on the weft arrangement surface. At this time, they were arranged with a 0.5 cm offset from the lower warp arrangement surface.
The obtained warp yarns and weft yarns arranged in a lattice at intervals of 0.5 cm were subjected to thermal calendaring under the conditions of a temperature of 200 ° C., a linear pressure of 40 kg / cm and a treatment time of 1 second or less, and thermocompression bonding was performed. The resulting non-woven base fabric had a maximum adhesive force of 60 g at the intersection of the warp and the weft.
【0039】なお本不織基布に経糸と緯糸の交点におい
て緯糸に含まれるPVA系海島繊維が経糸と全く接触し
てない交点では接着力はなかったが、手で取扱い中、経
糸または緯糸が連続的に外れてばらけることはなく、取
扱い性に問題はなかった。また熱圧着後の基布を構成す
る経糸及び緯糸の強度は11g/dr以上を有してお
り、高強力であった。またこの基布を180℃で15分
間自由収縮させた時の収縮率は3%以下であり、高温で
の寸法安定性に優れていた。At the intersection of the warp and the weft in the non-woven fabric, there was no adhesive force at the intersection where the PVA-based sea-island fiber contained in the weft did not come into contact with the warp at all, but during handling by hand, the warp or the weft was There was no continuous disengagement and there was no problem in handling. The warp yarn and the weft yarn constituting the base fabric after thermocompression bonding had a strength of 11 g / dr or more, which was high strength. Further, the shrinkage factor when this base fabric was freely shrunk at 180 ° C. for 15 minutes was 3% or less, and the dimensional stability at high temperature was excellent.
【0040】実施例3 実施例1と同様の方法を用いて製造した実施例2と同じ
ポリマーの海島繊維であり、海/島のブレンド比が90
/10、断面が円形、島数100個以上、島成分の最表
面からの距離0.5μ以内、強度12g/dであるステ
ープルを用い、このステープルを20番手の紡績糸とし
て、これを経糸として5本/cmの間隔で配列し、経糸
と同じポリマー組成よりなる10番手の紡績糸を緯糸と
して5本/cmの間隔で配列し、20番手紡績糸の経糸
配列面の上に重ねた。さらに同じ20番手紡績糸を経糸
として5本/cmの間隔で配列し、緯糸配列面の上に重
ねた。この際、緯糸の上下の経糸は緯糸を挟み込むよう
重ね合わせた。このように5本/cmの間隔で、経糸と
緯糸が格子状に配列したものを、温度190℃、線圧4
0kg/cm、処理時間1秒以下の条件で熱カレンダー
処理を行ない、熱圧着した。得られた不織基布の接着力
は10gであり、この不織基布を取扱い中経糸または緯
糸が外れてくることはなかった。また不織基布を構成し
ている紡績糸の強度(単繊維強度)は10g/drであ
った。Example 3 A sea-island fiber of the same polymer as in Example 2, prepared using a method similar to that of Example 1, with a sea / island blend ratio of 90.
/ 10, circular cross section, 100 or more islands, a distance of 0.5 μ or less from the outermost surface of the island component, and a strength of 12 g / d. This staple is used as a 20th spun yarn and as a warp. The yarns were arranged at an interval of 5 yarns / cm, and 10-spun spun yarns having the same polymer composition as the warp yarns were arranged at an interval of 5 yarns / cm as weft yarns and were superposed on the warp yarn arranging surface of the 20th yarn spun yarns. Further, the same 20th spun yarn was arranged as a warp at an interval of 5 threads / cm, and was superposed on the weft arrangement surface. At this time, the upper and lower warp yarns were superposed so as to sandwich the weft yarn. In this way, the warp yarns and the weft yarns are arranged in a lattice pattern at an interval of 5 threads / cm, and the temperature is 190 ° C.
Thermal calendering was performed under the conditions of 0 kg / cm and a treatment time of 1 second or less, and thermocompression bonding was performed. The adhesive strength of the obtained non-woven base fabric was 10 g, and the warp or weft did not come off during the handling of this non-woven base fabric. The strength (single fiber strength) of the spun yarn constituting the non-woven base fabric was 10 g / dr.
【0041】比較例2 市販のビニロンステープルに実施例3で使用の海島繊維
のステープルを5%混合して得た20番手と10番手の
紡績糸を実施例3と同様に経糸と緯糸を重ねて得た格子
状に配列したものを実施例3と同様に熱圧着した。得ら
れた不織基布は経糸と緯糸の接着力が小さく、ばらけて
基布として取り扱うことはできなかった。COMPARATIVE EXAMPLE 2 The commercially available vinylon staple was mixed with 5% of the sea-island fiber staple used in Example 3 and spun yarns of No. 20 and No. 10 yarns were piled with warp and weft in the same manner as in Example 3. The obtained array of grids was thermocompression bonded in the same manner as in Example 3. The resulting non-woven base fabric had a small adhesive force between the warp and the weft, and could not be handled as a base fabric because it was loose.
【0042】[0042]
【発明の効果】本発明は、高強度、熱圧着性PVA系海
島繊維を経糸および/または緯糸に少なくとも10%含
有させ、経糸の配列面に緯糸を重ねた交点を熱圧着法に
より接着させた不織基布である。従来得られなかった高
強度熱圧着性PVA系海島繊維を不織基布に用いること
により、PVA系繊維の特徴である高強度、高弾性率、
耐アルカリ性、耐熱性、耐候性を生かした不織基布を、
従来問題のあった接着剤による接着法より効率的合理化
プロセスである接着剤なしの熱接着法により連続的に製
造することが本発明により可能となった。EFFECTS OF THE INVENTION According to the present invention, at least 10% of high-strength, thermocompression-bonding PVA-based sea-island fiber is contained in the warp and / or the weft, and the intersections of the warp yarns are laminated by the thermocompression bonding method. It is a non-woven base cloth. By using the high-strength thermocompression-bonding PVA-based sea-island fiber, which has not been obtained in the past, in a non-woven base fabric, the high strength, high elastic modulus, which is a characteristic of PVA-based fibers,
A non-woven base fabric that takes advantage of alkali resistance, heat resistance, and weather resistance.
The present invention enables continuous production by a heat-bonding method without an adhesive, which is a more efficient and rationalized process than an adhesive method using an adhesive, which has been problematic in the past.
【0043】また従来の熱融着繊維は、熱融着成分が単
独であったり、繊維表面に熱融着成分を有する芯鞘複合
繊維であるため、熱接着時カレンダーロール表面に熱融
着成分あるいはその変質物が固着するため長期にわたっ
て連続運転することは出来なかった。本発明に用いる熱
圧着性PVA系海島繊維は、熱圧着時の熱ロール温度で
は繊維表面にあるPVA系ポリマーは融着せず、温度と
圧力を同時に加えて初めて熱融着成分が表面ににじみだ
してくるため、熱ロール表面への固着をきわめて少なく
することができる。また本発明に用いる熱圧着性PVA
系繊維はマトリックス相である海成分が高融点で高結晶
性のPVA系ポリマーであるため、従来の熱融着性繊維
より高寸法安定性であるため、熱圧着時の寸法変化が小
さく、かつ得られた不織基布は高温での寸法安定性が良
好である。さらに熱圧着性PVA系繊維が従来の熱融着
性繊維より高強度であるので、得られた不織基布は経糸
方向は勿論緯糸方向にも高強力であり、セメント、アス
ファルト、紙、プラスチックなどの補強用基布として低
目付化が可能となる。特に、高強度と耐アルカリ性を兼
ね備えた不織基布としてセメント補強材に使用すると、
得られた複合成形物が、高強度となるため、重量に軽く
することが可能となり建築資材として有用である。The conventional heat-sealing fiber is a core-sheath composite fiber having a single heat-sealing component or having a heat-sealing component on the fiber surface. Alternatively, the deteriorated substance adhered to the surface, and continuous operation could not be performed for a long time. In the thermocompression-bonding PVA-based sea-island fiber used in the present invention, the PVA-based polymer on the fiber surface does not fuse at the temperature of the heat roll during thermocompression bonding, and the heat-fusion component oozes out on the surface only when temperature and pressure are applied simultaneously. Therefore, the sticking to the surface of the hot roll can be extremely reduced. The thermocompression bonding PVA used in the present invention
Since the sea-based fiber is a PVA-based polymer having a high melting point and high crystallinity in the sea component that is the matrix phase, it has higher dimensional stability than the conventional heat-fusible fiber, and therefore the dimensional change during thermocompression bonding is small, and The obtained nonwoven base fabric has good dimensional stability at high temperatures. Further, since the thermocompression-bonding PVA-based fiber has higher strength than the conventional heat-fusible fiber, the obtained non-woven base fabric has high tenacity not only in the warp direction but also in the weft direction, and is used for cement, asphalt, paper and plastic. It is possible to reduce the basis weight as a reinforcing base fabric. Especially when used as a cement reinforcement material as a non-woven base fabric that has both high strength and alkali resistance,
Since the obtained composite molded article has high strength, it can be reduced in weight and is useful as a building material.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 楢村 俊平 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 小林 悟 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Shunpei Naramura, 1621 Sakazu, Kurashiki, Okayama Prefecture, Kuraray Co., Ltd. (72) Inventor, Satoru Kobayashi, 1621, Satsuki, Kurashiki, Okayama, Kuraray Co., Ltd.
Claims (1)
差するように複数枚重ね合わされ、かつ該糸の交点が接
着されている不織布において、該糸を構成する繊維の少
なくとも10重量%が、融点220℃以上のポリビニル
アルコール系ポリマーを海成分とし融点あるいは融着温
度が210℃未満のポリマーを島成分とする強度7g/
dr以上のポリビニルアルコール系海島繊維であり、か
つ該交点が熱圧着で接着されていることを特徴とする不
織布。1. A non-woven fabric in which a plurality of yarns are superposed so that the faces of the yarns arranged in one direction in a plane intersect and the intersections of the yarns are adhered to each other. 7% strength by weight of polyvinyl alcohol polymer having a melting point of 220 ° C. or higher as a sea component and a polymer having a melting point or a fusion temperature of less than 210 ° C. as an island component
A non-woven fabric, which is a polyvinyl alcohol-based sea-island fiber of dr or more, and the intersections are bonded by thermocompression bonding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28814093A JP3235924B2 (en) | 1993-11-17 | 1993-11-17 | Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28814093A JP3235924B2 (en) | 1993-11-17 | 1993-11-17 | Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07138859A true JPH07138859A (en) | 1995-05-30 |
JP3235924B2 JP3235924B2 (en) | 2001-12-04 |
Family
ID=17726332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28814093A Expired - Fee Related JP3235924B2 (en) | 1993-11-17 | 1993-11-17 | Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3235924B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114014969A (en) * | 2021-11-15 | 2022-02-08 | 上海华峰新材料研发科技有限公司 | Water-soluble polymer and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5228983B2 (en) * | 2009-02-19 | 2013-07-03 | 東レ株式会社 | Polyamide multifilament for thermal bonding |
-
1993
- 1993-11-17 JP JP28814093A patent/JP3235924B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114014969A (en) * | 2021-11-15 | 2022-02-08 | 上海华峰新材料研发科技有限公司 | Water-soluble polymer and preparation method and application thereof |
CN114014969B (en) * | 2021-11-15 | 2023-08-11 | 上海华峰新材料研发科技有限公司 | Water-soluble polymer and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3235924B2 (en) | 2001-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0185438B1 (en) | Water-soluble heat-press-bonding polyvinyl alcohol type binder fiber, nonwoven fabric containing said fiber, and processes for production of said fiber and said non-woven fabric | |
CN101495687A (en) | Reinforcement fiber cord excellent in adhesiveness and process for production of the same | |
WO2007112665A1 (en) | A process of producing sea-island composite industrial filaments | |
US3499822A (en) | Extruded,expanded mat-like or web-like fibrillar sheet assembly and method for its production | |
WO2001007693A1 (en) | Discontinuous polyethylene terephthalate fibres and method for producing the same | |
JP3235924B2 (en) | Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber | |
WO2005024102A1 (en) | Moulded bodies, in particular fibres and the structures thereof exhibiting thermoregulation properties | |
JP5277077B2 (en) | Fabric manufacturing method | |
JP3345191B2 (en) | Water-soluble and thermocompressible polyvinyl alcohol-based binder fiber | |
WO2015151220A1 (en) | Polyamide latent crimped yarn and method for manufacturing same | |
JPH07173724A (en) | Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber | |
JP2002235236A (en) | Polyvinyl alcohol-based water-soluble fiber | |
JPWO2008044721A1 (en) | Embroidery base fabric and manufacturing method thereof | |
JP3057449B2 (en) | Mall yarn | |
JP3254315B2 (en) | Water-resistant and thermo-compressible polyvinyl alcohol fiber | |
JP2004149971A (en) | Hot melt-type adhesive fiber and method for producing the same | |
JP2882651B2 (en) | Polyester based yarn | |
JPS6059121A (en) | Heat-bondable conjugate fiber and production thereof | |
JPH07278962A (en) | Heat-bondable polyacrylonitrile fiber | |
JPH07126918A (en) | Heat-bondable and water-soluble polyvinyl alcohol fiber and heat-bonding method therefor | |
JPH03113016A (en) | Conjugate aramid yarn and production thereof | |
JPH06184824A (en) | Thermally fusable cnjugate fiber | |
JPH07279025A (en) | Thermally contact bonded water-resistant polyvinyl alcohol-based continuous filament nonwoven fabric and its production | |
JPH0881868A (en) | Water-resistant polyvinyl alcohol-based nonwoven fabric and its production | |
AT200331B (en) | Multi-layer film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |