JPH07138692A - Shaft or the like cutting tool and sintered hard alloy for the same - Google Patents

Shaft or the like cutting tool and sintered hard alloy for the same

Info

Publication number
JPH07138692A
JPH07138692A JP5281491A JP28149193A JPH07138692A JP H07138692 A JPH07138692 A JP H07138692A JP 5281491 A JP5281491 A JP 5281491A JP 28149193 A JP28149193 A JP 28149193A JP H07138692 A JPH07138692 A JP H07138692A
Authority
JP
Japan
Prior art keywords
powder
cutting tool
cemented carbide
carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5281491A
Other languages
Japanese (ja)
Other versions
JP3606527B2 (en
Inventor
Tsutomu Yoshida
勉 吉田
Masahiro Machida
正弘 町田
Masaru Ishii
勝 石井
Minoru Fukunaga
稔 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28149193A priority Critical patent/JP3606527B2/en
Publication of JPH07138692A publication Critical patent/JPH07138692A/en
Application granted granted Critical
Publication of JP3606527B2 publication Critical patent/JP3606527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain a sintered hard alloy for shaft or the like cutting tool, excellent in wear resistance and chipping resistance and having superior properties by mixing a metal carbide powder, a Co or Ni powder, and a WC powder of specific grain size in specific ratio and sintering the resulting powder mixture. CONSTITUTION:The sintered hard alloy composed essentially of WC is obtained by sintering a powder mixture of raw materials consisting of, by weight, 0.2-30% of powder of the carbides of the group IVa, Va, and VIa metals excluding W, 4-20% of Co and/or Ni powder to be binding phase, and the balance WC powder of 0.3-0.7mum average grain size with inevitable impurities. In this case, a part of the above carbide powder can be substituted for TC-TaC-WC powder, and further, it is preferable to use VC powder by the amount in the range of 0.2-0.5% and average grain size and the difference of average grain size are regulated, preferably, to 0.1-1.0mum and <=0.5mum, respectively. By joining the cutting part of this sintered hard alloy to a shank part of prescribed length, the wear resistance and chipping resistance can be improved and the occurrence of breakage, etc., can be prevented, thus the shaft or the like cutting tool improved in properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ドリル,エンドミルお
よびリーマ等の軸物切削工具の素材として有用な超硬合
金、およびその様な軸物切削工具に関し、殊に軸物切削
工具の刃部の耐摩耗性および耐ピッチング性を向上させ
る技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cemented carbide which is useful as a material for a shaft cutting tool such as a drill, an end mill and a reamer, and a shaft cutting tool such as this, and more particularly to wear resistance of a blade portion of the shaft cutting tool. And a technique for improving pitting resistance.

【0002】[0002]

【従来の技術】粉末冶金法で製造されるWC系超硬合金
やTiC系サーメット等の硬質合金は、その優れた耐摩
耗性を利用して旋削用チップ等として以前より広く利用
されてきたが、これら材料の特性は、一般に高硬度にな
るほど脆くなる傾向にあると言われている。従って、こ
れら硬質材料は切削・耐摩工具として一般に広く使用さ
れている高速度工具鋼(以下、「ハイス」と略称する)
に比べて靭性の面で難点を背負っていた。
2. Description of the Related Art Hard alloys such as WC-based cemented carbide and TiC-based cermet produced by powder metallurgy have been widely used as turning chips and the like due to their excellent wear resistance. It is generally said that the properties of these materials tend to become brittle as the hardness increases. Therefore, these hard materials are high-speed tool steels (hereinafter abbreviated as "high speed steel") that are generally widely used as cutting and wear resistant tools.
Compared to, it had a toughness problem.

【0003】しかしながら、近年に至り超微粒子超硬合
金が発明されたことや粉末冶金法の難点であるポアーの
発生を完全消滅できる熱間静水圧加圧処理(以下、「H
IP処理」と呼ぶ)が積極的に採用される等、製造法の
進歩によってハイスに近い靭性を持つ硬質材料が開発さ
れつつある。
However, in recent years, the invention of ultrafine particle cemented carbide and the hot hydrostatic pressure treatment (hereinafter referred to as "H", which can completely eliminate the generation of pores, which is a difficulty of the powder metallurgy method).
A hard material having a toughness close to that of high-speed steel is being developed due to the progress of manufacturing methods, such as the positive adoption of "IP treatment").

【0004】一方、ドリルやエンドミル等の軸物切削工
具の素材としては、ハイスが主に採用されているが、最
近の高能率加工のニーズから日増しに高速加工の要求が
高まっている。これらの軸物切削工具は、高速切削で広
く使用されて理論面での解明が進んでいる旋削チップに
比べ切削機構が複雑であり、切屑排出の問題と相俟って
工具に加わる負荷も大きいので、折損,チッピング等の
問題が容易に解決できず、これらの工具の高速切削への
道が閉ざされていた。ところが、上述の如く超硬合金の
関連技術が改良されるにつれて、軸物切削工具において
もWC系超硬合金材料が普及する様になっており、その
優れた硬さ、耐熱性、剛性を活かし、高速切削や高精度
加工が一応可能になったと思われた。
On the other hand, although high speed steel is mainly used as a material for shaft cutting tools such as drills and end mills, demand for high speed machining is increasing day by day due to recent needs for high efficiency machining. These shaft cutting tools have a more complicated cutting mechanism than turning chips, which are widely used in high-speed cutting and whose theoretical aspects have been elucidated, and the load on the tool is large due to the problem of chip discharge. However, problems such as breakage and chipping could not be solved easily, and the road to high-speed cutting of these tools was blocked. However, as the technologies related to cemented carbide have been improved as described above, WC-based cemented carbide materials have come into widespread use in shaft cutting tools as well, making use of their excellent hardness, heat resistance, and rigidity. It seems that high-speed cutting and high-precision machining have become possible.

【0005】しかしながら、使用条件によっては、突発
的な折れ,欠けが発生することが指摘されている。この
原因として、切削中に刃先先端に発生する切削熱による
熱伝導性の悪さや摩耗劣化による切削抵抗の増加による
ものと考えられる。従って、これら問題を解決しさらに
信頼性を高めた超硬合金素材の開発が望まれているのが
現状である。
However, it has been pointed out that sudden breakage or chipping may occur depending on the conditions of use. It is considered that this is due to poor thermal conductivity due to the cutting heat generated at the tip of the cutting edge during cutting and an increase in cutting resistance due to wear deterioration. Therefore, under the present circumstances, it is desired to develop a cemented carbide material that solves these problems and further improves reliability.

【0006】[0006]

【発明が解決しようとする課題】例えばドリルによる切
削は、旋削チップと異なって円周方向で切削条件が異な
る複雑な機構を示す。即ち、基本的には軸中心に近づく
ほどスラストが増大する一方で、切削速度,トルクは急
激に減少する傾向を示す。従って、軸中心のチゼル部で
は軸方向の押しつけ力が支配的に作用し、材質面からは
この力に抗する強度が要求される。一方外周部では切削
速度が大となることから、耐熱性や耐摩耗性と耐チッピ
ング性が要求される。しかしながら、現在使用されてい
る超硬合金製ドリルのほとんどは、WCを1.5〜2.
5μmの粗粒子をベースにして耐熱元素を添加した合金
組成となっている。即ち、一般鋼材や鋳鉄などの穿孔加
工に使用される超硬合金製ドリルは、穿孔加工中に発生
する熱によってドリル寿命が大きく左右されると言われ
ており、その対策として耐熱性を向上させる元素を多く
添加した超硬合金を使用しているが、この様なドリル素
材は耐熱元素の添加によって若干の熱伝導性が悪くなる
ことから、一般的にP,M種といわれる超硬合金はWC
を意識して粗粒化(1.5〜2.5μm程度)し、熱伝
導性を向上させているのが現状である。
Cutting by a drill, for example, shows a complicated mechanism in which cutting conditions are different in the circumferential direction unlike turning chips. That is, basically, the thrust increases as it approaches the center of the shaft, while the cutting speed and torque tend to decrease sharply. Therefore, the pressing force in the axial direction predominantly acts on the chisel portion at the center of the shaft, and the material surface requires strength to withstand this force. On the other hand, since the cutting speed is high in the outer peripheral portion, heat resistance, wear resistance and chipping resistance are required. However, most of the cemented carbide drills currently in use have a WC of 1.5-2.
The alloy composition is based on coarse particles of 5 μm and to which a heat-resistant element is added. That is, it is said that a cemented carbide drill used for drilling of general steel materials and cast iron greatly affects the drill life due to the heat generated during drilling, and as a countermeasure against that, improve heat resistance. Cemented carbide with many elements added is used. However, since the thermal conductivity of such drill materials deteriorates slightly due to the addition of heat-resistant elements, cemented carbides generally called P and M types are WC
Under the present circumstances, the thermal conductivity is improved by coarsening (about 1.5 to 2.5 μm) in consideration.

【0007】しかしながら、粗粒子のWCを用いると硬
度が当然の如く低くなって耐摩耗性が低下し、刃先先端
のマージン摩耗による切削性能の短寿命化につながるこ
とになる。またWCと結合相の不均一組織からくる耐チ
ッピング性の面でも、従来使用されているドリルはまだ
完全に解決されておらず、信頼性の面で問題点を残して
いる。
However, when WC of coarse particles is used, the hardness is naturally lowered, the wear resistance is lowered, and the life of the cutting performance is shortened by the margin wear of the tip of the cutting edge. Further, in terms of chipping resistance due to the non-uniform structure of WC and binder phase, the conventional drills have not yet been completely solved, leaving a problem in terms of reliability.

【0008】ところでドリル等の軸物切削工具における
欠けや折れの原因としては、材料面および形状面の双方
からの影響があると思われる。そこで形状面でのドリル
の具体例としては、ミラクルドリル(商品名:株式会社
神戸製鋼所製)、ニューポイントドリル(商品名:三菱
マテリアル株式会社製)、マルチドリル(商品名:住友
金属株式会社製)、更には細井ドリル(商品名)の様
に、チゼル部等の形状を工夫することによって欠けの問
題を解消しようとした各種ドリルが商品化されている。
またエンドミルにおいても、すくい角をポジにした刃先
にして刃部にかかる負荷を減少したものや、加工仕上げ
面を良くするために切れ刃をピン角にした工具等も提案
されている。しかしながら、刃先部の局部摩耗やチッピ
ング等により欠けや折れなどの折損による切削寿命のバ
ラツキは完全には解消していないのが現状である。
By the way, it is considered that the cause of chipping or breaking in a shaft cutting tool such as a drill is influenced by both the material surface and the shape surface. Therefore, specific examples of drills in terms of shape include Miracle drill (trade name: Kobe Steel, Ltd.), New Point drill (trade name: Mitsubishi Materials Co., Ltd.), multi-drill (trade name: Sumitomo Metals Co., Ltd.). Various types of drills have been commercialized, such as Hosoi Drill (trade name), which is designed to solve the problem of chipping by devising the shape of the chisel part.
Also for the end mill, there has been proposed a tool having a positive rake angle to reduce the load applied to the blade, and a tool having a cutting edge with a pin angle for improving the finished surface. However, the present situation is that the variation in cutting life due to breakage such as chipping or breaking due to local wear or chipping of the cutting edge has not been completely eliminated.

【0009】一方、材料面から機能的特徴を生かした工
具の開発も行なわれており、欠けや折れ等を防止するた
めには、一般的に抗折力を上げて靭性を向上することが
有効な手段であると言われている。しかしながら、摩耗
性と靭性とは相反する性質であり、靭性の優れた超微粒
子合金においても例外ではない。その対策として、刃先
に耐摩耗性の良い硬質物をコーティング(膜質はTiC
が主体)したドリルやエンドミル等が実用化・市販され
ているが、スローアウエイチップに比べ刃先形状が複雑
なことから、コーティングが剥離しやすいという問題も
ある。また超微粒子合金を使用している超硬合金製エン
ドミルにおいても、より長い寿命を達成すべくコーティ
ングを施した工具が出現しているが、寿命のバラツキや
精度上で依然として問題がある。尚コーティング膜は、
耐摩耗性と耐熱性に主眼をおいたものであり、欠けや折
れの問題とは基本的には無縁である。
On the other hand, tools that utilize functional characteristics from the viewpoint of materials have been developed, and it is generally effective to increase the transverse rupture force and improve the toughness in order to prevent chipping or breaking. It is said to be a means. However, wearability and toughness are contradictory properties, and even ultrafine particle alloys with excellent toughness are no exception. As a countermeasure, the blade edge is coated with a hard material with good wear resistance (film quality is TiC
However, there is also a problem that the coating is easily peeled off because the shape of the cutting edge is more complicated than that of the throwaway tip. Further, in cemented carbide end mills that use ultrafine particle alloys, tools coated to achieve a longer life have appeared, but there are still problems with variations in life and accuracy. The coating film is
It focuses on wear resistance and heat resistance, and is basically free from problems such as chipping and breaking.

【0010】このような技術背景において、摩耗性と靭
性を同時に改善しさらに切削性を向上する手段として、
工具の複合化も有効である(例えば、特開平2−269
515号)。この様な技術においては、複合化はろう付
けによって達成されているのが一般的であり、例えば先
ムクドリルなどの軸物切削工具では刃部が超硬合金製チ
ップ、シャンク部が鋼材とする接合体となっているが、
接合強度の不安やろう付け時の熱応力による接合部の折
損剥離の問題を内在しており、工具使用の際の突発的折
れ問題はまだ解決しないまま今日に至っている。また真
空ろう付け技術も採用されてきているが、上述した熱応
力や接合強度の問題は依然として残されている。
In such a technical background, as means for simultaneously improving wear resistance and toughness and further improving machinability,
It is also effective to combine tools (for example, Japanese Patent Laid-Open No. 2-269).
No. 515). In such technology, compounding is generally achieved by brazing.For example, in a shaft cutting tool such as a tip muk drill, a cemented carbide chip is used for the blade part and a steel material is used for the shank part. However,
There are inherent problems of bond strength and breakage and peeling of joints due to thermal stress during brazing, and the problem of sudden breakage when using tools is still unsolved. Vacuum brazing technology has also been adopted, but the problems of thermal stress and joint strength described above still remain.

【0011】本発明はこうした状況の下になされたもの
であって、その目的は、耐摩耗性や耐チッピング性の向
上を図ると共に、折損などの発生を防止し、性能を高め
た軸物切削工具、およびその様な軸物切削工具を実現す
るのに有用な超硬合金を提供することにある。
The present invention has been made under these circumstances, and an object thereof is to improve wear resistance and chipping resistance, prevent breakage and the like, and improve the performance of a shaft cutting tool. , And a cemented carbide useful for realizing such a shaft cutting tool.

【0012】[0012]

【課題を解決するための手段】上記目的を達成し得た本
発明の軸物切削工具用超硬合金とは、WCを主体とする
超硬合金であって、Wを除く周期律表4A,5A,6A
族元素よりなる群から選ばれる1種以上の金属元素の炭
化物粉末が0.2〜30重量%であると共に、結合相と
なるCoおよび/またはNiの粉末が4〜20重量%の
割合で配合され、残部が平均粒径:0.3〜0.7μm
のWC粉と不可避不純物である原料混合粉末を焼結した
ものである点に要旨を有するものである。
The cemented carbide for a shaft cutting tool of the present invention which has achieved the above object is a cemented carbide mainly composed of WC, and the periodic table 4A and 5A excluding W. , 6A
0.2 to 30% by weight of carbide powder of one or more metal elements selected from the group consisting of group elements, and 4 to 20% by weight of Co and / or Ni powder as a binder phase. And the balance is average particle size: 0.3 to 0.7 μm
The point is that the WC powder and the raw material mixed powder that is an unavoidable impurity are sintered.

【0013】また上記目的を達成し得た本発明の軸物切
削工具とは、上記の様な超硬合金を刃部の素材として用
いると共に、シャンク部として、Wを除く周期律表4
A,5A,6A族元素よりなる群から選ばれる1種以上
の金属元素の炭化物粉末が0.1〜5重量%、結合相と
してのCoおよび/またはNiの粉末が4〜8重量%の
割合で配合され、残部が平均粒径:1〜3μmのWC粉
と不可避不純物である原料混合粉末を焼結したものを用
いる点に要旨を有するものである。
The shaft cutting tool of the present invention which has achieved the above object uses the cemented carbide as described above as a material for the blade portion, and as the shank portion, periodic table 4 excluding W.
Proportion of 0.1 to 5% by weight of carbide powder of one or more metal elements selected from the group consisting of A, 5A and 6A group elements, and 4 to 8% by weight of Co and / or Ni powder as a binder phase. The essence is that a WC powder having an average particle diameter of 1 to 3 μm and the remaining raw material mixed powder which is an unavoidable impurity is mixed.

【0014】[0014]

【作用】本発明は、基本的には出発原料混合粉末の構成
を規定したものであるが、この原料混合粉末のうち、W
を除く周期律表4A,5A,6A族元素よりなる群から
選ばれる1種以上の金属元素の炭化物(以下、「耐熱性
化合物」と呼ぶことがある)粉末の配合量は0.2〜3
0重量%とする必要がある。即ち、この配合量が0.2
重量%未満であると、これら化合物を配合する基本的作
用である耐熱性向上が発揮されず、一方30重量%を超
えると急激な靭性低下を生じる。尚上記耐熱性化合物
は、周期律表4A,5A,6A族元素のうちWを除く金
属元素を基本的に想定したものであり、それにはいわゆ
るダブルカーバイドと呼ばれるTiC−TaC系炭化物
粉末も含む趣旨であるが、必要によってその一部をTi
C−TaC−WC(いわゆるトリプルカーバイド)の様
にWを含む炭化物粉末で代替しても良い。この様な粉末
に含まれるWCは、超硬合金の主体となって硬質相をな
すWCと異なり、耐熱性化合物として作用する。
The present invention basically defines the constitution of the starting raw material mixed powder.
Except the above, the compounding amount of carbide (hereinafter sometimes referred to as “heat resistant compound”) powder of one or more metal elements selected from the group consisting of elements of 4A, 5A, and 6A groups in the periodic table is 0.2 to 3
It should be 0% by weight. That is, this blending amount is 0.2
If it is less than 30% by weight, heat resistance improvement, which is a basic action of compounding these compounds, will not be exhibited. On the other hand, if it exceeds 30% by weight, a sharp decrease in toughness will occur. The above-mentioned heat-resistant compound basically assumes a metal element other than W among the elements of Groups 4A, 5A, and 6A of the Periodic Table, and it also includes a TiC-TaC-based carbide powder called so-called double carbide. However, if necessary, part of it may be Ti
A carbide powder containing W, such as C-TaC-WC (so-called triple carbide), may be used instead. WC contained in such a powder acts as a heat-resistant compound, unlike WC which forms a hard phase mainly as a cemented carbide.

【0015】上記耐熱性化合物粉末の平均粒径は、0.
5〜1.0μmであることが好ましく、この様な微細な
粒子を用いることによって超硬合金の耐摩耗性を更に向
上することができる。また耐熱性化合物のうち、TiC
やTaCなどの化合物も粒成長抑制剤として効果はある
が、それ以上にVCは0.2〜0.5重量%程度のわず
かな添加量でも粒成長抑制剤としての効果を発揮する。
即ち、VCの添加量が0.2重量%未満ではその効果は
少なく、0.5重量%を超えると靭性の面で悪くなる傾
向を示す。
The average particle size of the heat-resistant compound powder is 0.
The thickness is preferably 5 to 1.0 μm, and the wear resistance of the cemented carbide can be further improved by using such fine particles. Among the heat resistant compounds, TiC
Compounds such as Ta and TaC are also effective as grain growth inhibitors, but VC is more effective as a grain growth inhibitor even with a small addition amount of about 0.2 to 0.5% by weight.
That is, if the added amount of VC is less than 0.2% by weight, its effect is small, and if it exceeds 0.5% by weight, the toughness tends to be deteriorated.

【0016】一方、結合相となるCoおよび/またはN
iの粉末混合量は4〜20重量%とする必要があるが、
これは4重量%未満では靭性の面で悪くなる傾向にあ
り、20重量%を超えると摩耗性の面で劣る傾向にあ
る。
On the other hand, Co and / or N serving as a binding phase
The powder mixture amount of i must be 4 to 20% by weight,
If it is less than 4% by weight, the toughness tends to deteriorate, and if it exceeds 20% by weight, the abrasion resistance tends to deteriorate.

【0017】本発明で用いる原料混合粉末は、上記の
他、残部がWC粉および不可避不純物からなるものであ
るが、WC粉の平均粒径は0.3〜0.7μm範囲の超
微粒子を使用する必要がある。即ち、WC粉の平均粒径
が0.7μm超えると硬さでH RA:91.8以上の値が
得られず耐摩耗性の点で劣り、局部摩耗による寿命低下
が生じることになり、本発明の目的が達成されない。
The raw material mixed powder used in the present invention is as described above.
In addition, the balance consists of WC powder and inevitable impurities.
However, the average particle size of WC powder exceeds 0.3-0.7 μm
It is necessary to use fine particles. That is, the average particle size of the WC powder
Is 0.7 μm, the hardness is H RA: A value of 91.8 or higher
Not obtained, inferior in wear resistance, shortened life due to local wear
Occurs, and the object of the present invention is not achieved.

【0018】尚平均粒径0.3〜0.7μmのWC粉
と、耐熱性化合物粉末の平均粒子径の差を0.1〜0.
5μm以内に抑えた均一組織にすることで、耐摩耗性,
耐チッピング性が更に優れたものとなる。
The difference in average particle size between the WC powder having an average particle size of 0.3 to 0.7 μm and the heat resistant compound powder is 0.1 to 0.
Wear resistance is improved by making the uniform structure within 5 μm.
The chipping resistance is further improved.

【0019】上記原料粉末を調製するときの配合・混合
処理法は、従来の粉末冶金法で行なわれる通常の混合法
を採用すれば良く、例えばアトライターにて適量な有機
溶剤(アセトン、エタノール、ヘキサン等)と配合粉お
よび成形助剤を添加して撹拌を行ない、スラリー状にな
った原料混合粉末を乾燥・造粒処理する。尚本発明で用
いる原料混合粉末には、必要に応じてHf,Zr,B等
の元素の炭・窒化物を0.1〜5重量%の割合で混合し
ても良く、これらは耐酸化性,耐熱性に寄与する。
As the mixing and mixing treatment method for preparing the above-mentioned raw material powder, a usual mixing method carried out by a conventional powder metallurgy method may be adopted. For example, an appropriate amount of an organic solvent (acetone, ethanol, Hexane, etc.), compounded powder and a molding aid are added and stirred, and the slurry-like raw material mixed powder is dried and granulated. If necessary, the raw material mixed powder used in the present invention may be mixed with carbon / nitride of elements such as Hf, Zr, and B at a ratio of 0.1 to 5% by weight. , Contributes to heat resistance.

【0020】本発明の超硬合金は、上記の様な原料混合
粉末を焼結することによって得られるが、その手順・手
段については特に限定されず、例えば下記の方法に従え
ばよい。その一つとしては、金型若しくはゴム型に充填
したのち、加圧または静水圧圧力で加圧し成形体を作る
方法と、もう一つは乾燥された混合粉に成形助剤やバイ
ンダー(熱可塑性樹脂,潤滑剤等)を投入し、粘土状に
した後、射出成形機にて押出し成形体を作る方法であ
り、本発明材はどちらの成形法にも適用される。また成
形後は上記成形助剤やバインダーを取り除き、適当な強
度を持たせる為に、半焼結処理(700〜1000℃)
を施し、そのまま焼結処理(1250〜1500℃)し
たり、加工を加えて所定の形状に仕上げて前記と同じ様
に焼結処理をする。この際の焼結は、上記温度範囲で真
空中(1×10〜1×105 Torr)で処理する。焼
結処理したものは不活性ガス(Ar,N2 等)を圧力媒
体として1200〜1400℃の温度で100〜200
0kg/cmm2 の圧力でHIP処理を施すのが好まし
い。
The cemented carbide of the present invention is obtained by sintering the above raw material mixed powder, but the procedure and means thereof are not particularly limited, and the following method may be followed, for example. One of them is to fill a mold or a rubber mold and then pressurize or hydrostatically press to make a molded body, and the other is to mix dried powder with a molding aid or binder (thermoplastic A resin, a lubricant, etc.) are added to make a clay, and then an extrusion molded product is produced by an injection molding machine. The material of the present invention is applicable to both molding methods. In addition, after molding, the above-mentioned molding aids and binders are removed, and semi-sintering treatment (700 to 1000 ° C) is carried out in order to provide appropriate strength.
Then, it is sintered as it is (1250 to 1500 ° C.), or it is processed to finish it into a predetermined shape and sintered in the same manner as described above. The sintering at this time is performed in a vacuum (1 × 10 to 1 × 10 5 Torr) within the above temperature range. The sintered product is 100 to 200 at a temperature of 1200 to 1400 ° C. using an inert gas (Ar, N 2 etc.) as a pressure medium.
It is preferable to perform the HIP treatment at a pressure of 0 kg / cmm 2 .

【0021】焼結・HIP処理後の組織は、WC,耐熱
性化合物(TiC,TaC,Cr32 等)とも微細で
均一な組織を呈することが本発明では重要である。即
ち、粗粒を使用すると、図2に示す様な組織となり、結
合相にCoリッチな相が形成され、局部摩耗の発生によ
るチッピングによる損傷や硬度低下による耐摩耗性劣
化,熱伝導度の低下等が生じ易くなる。
In the present invention, it is important that the structure after sintering and HIP treatment has a fine and uniform structure with WC and heat-resistant compounds (TiC, TaC, Cr 3 C 2, etc.). That is, when coarse grains are used, a structure as shown in FIG. 2 is formed, a Co-rich phase is formed in the binder phase, damage due to chipping due to occurrence of local wear, wear resistance deterioration due to hardness decrease, and thermal conductivity decrease. Etc. are likely to occur.

【0022】従って、従来使用される粗粒系のP,M種
素材では上記の様な損傷現象が起き易いのに比べ、本発
明材は出発原料から微粒子を使用した原料混合粉末を用
い、且つ粒成長しない処理方法で製造するため、図1に
示す様な均一な組織となり、そのことより優れた耐摩耗
性および耐チッピング性を有する超硬ドリル素材(特に
刃部の素材)を製造することができる。
Therefore, in the conventional coarse-grain type P and M type materials, the above-mentioned damage phenomenon is likely to occur, whereas the material of the present invention uses a raw material mixed powder using fine particles as a starting material, and Since it is produced by a treatment method that does not cause grain growth, a cemented carbide drill material (especially the material for the blade) that has a uniform structure as shown in Fig. 1 and that has superior wear resistance and chipping resistance is produced. You can

【0023】上記の様な超硬合金を刃部の素材とし、組
成の異なる超硬合金をシャンク部として用い、これらを
接合することによって軸物切削工具を構成することも本
発明の技術的範囲に含まれるものであるが、シャンク部
で用いる超硬合金の構成は下記の通りである。
It is also within the technical scope of the present invention to construct a shaft cutting tool by using the above-described cemented carbide as a material for the blade portion and cemented carbides having different compositions as the shank portion and joining these. Although included, the composition of the cemented carbide used in the shank portion is as follows.

【0024】シャンク部に用いる素材は、刃部で発生す
る切削熱を吸収し易い組成にすることが重要であり、そ
の為熱伝導性の良好な組成を採用することで切削寿命を
伸ばすようにする。熱伝導度の向上には、低Co化を図
り、WCなどの炭化物粒子を粗粒にするのが良い。こう
した観点から、WC粉末は平均粒径が1〜3μmの粗粒
のものを用い、且つ結合相となるCoおよび/またはN
iを3重量%未満では靭性の点で不足し、また9重量%
を超えると熱伝導性の面で劣るので、4〜8%の範囲の
組成が最も有効である。
It is important that the material used for the shank portion has a composition that easily absorbs the cutting heat generated at the blade portion. Therefore, by adopting a composition having good thermal conductivity, the cutting life can be extended. To do. In order to improve the thermal conductivity, it is preferable to reduce Co and coarsen carbide particles such as WC. From this point of view, as the WC powder, coarse particles having an average particle diameter of 1 to 3 μm are used, and Co and / or N serving as a binder phase.
If i is less than 3% by weight, the toughness is insufficient, and 9% by weight
If it exceeds, the composition is inferior in terms of thermal conductivity, so a composition in the range of 4 to 8% is most effective.

【0025】軸物切削工具において、刃部とシャンク部
は前記の様な組成で構成され、その長さ比率は刃部:シ
ャンク部=2〜3×d(外周径):全長−(2〜3×d
(外周径))が最適である。これは被削材の板厚から考
えて、切削性能に直接影響しない長さを選んだものであ
る。すなわち刃部が2d未満の長さでは接合界面がワー
クに直接接触する領域となり、境界摩耗などの損傷が生
じることになり、また3dを超える長さでは刃部で発生
する切削熱を伝導する機能が発揮できないことになり、
従ってその接合体の刃先とシャンク部の比率範囲を上記
の様に規定した。
In the shaft cutting tool, the blade portion and the shank portion are constituted by the above-mentioned composition, and the length ratio thereof is blade portion: shank portion = 2 to 3 × d (outer peripheral diameter): total length− (2 to 3). × d
(Peripheral diameter)) is optimal. This is based on the thickness of the work material and is selected to have a length that does not directly affect the cutting performance. That is, if the length of the blade is less than 2d, the joint interface becomes a region in direct contact with the work, causing damage such as boundary wear, and if the length of the blade exceeds 3d, the cutting heat generated at the blade is transferred. Will not be exhibited,
Therefore, the ratio range of the cutting edge and the shank portion of the joined body is defined as described above.

【0026】刃部とシャンク部の接合界面は平面状では
なく、相互に嵌合する複数の凹溝および凸条とするのが
効果的であり、そのピッチ間隔は0.1〜0.3mmで
あるのが最も好ましい。このピッチが0.1mm未満で
は熱伝導性の面での効果が薄く、0.3mmを超えると
接合強度が低下する。即ち、本発明では、刃部に発生す
る切削熱をシャンク部側へ逃しやすいようにして、その
機能が発揮できるようにピッチ間隔を規定したのであ
る。尚前記複数の凹溝および凸条の具体的な形状につい
ては特に限定するものではなく、凹溝および凸条が延び
る方向に対して垂直な面での形状が波状,鋸歯状等、い
ずれも含む趣旨である。
The joint interface between the blade portion and the shank portion is not flat, but it is effective to form a plurality of recessed grooves and ridges that fit with each other, and the pitch interval is 0.1 to 0.3 mm. Most preferably. If this pitch is less than 0.1 mm, the effect in terms of heat conductivity is small, and if it exceeds 0.3 mm, the bonding strength decreases. That is, according to the present invention, the cutting heat generated in the blade portion is easily released to the shank portion side, and the pitch interval is defined so that the function can be exerted. The specific shapes of the plurality of concave grooves and the convex stripes are not particularly limited, and the shape in the plane perpendicular to the direction in which the concave grooves and the convex stripes extend includes both a wavy shape and a sawtooth shape. It is the purpose.

【0027】以上述べた様に、刃部に超微粒子の合金組
成材を採用することにより、耐摩耗性および耐チッピン
グ性に優れた性能を発揮すると共に、刃部で発生した切
削熱をシャンク部側で吸収し易い、即ち熱伝導性の良い
超硬合金素材からなるシャンク部に伝達することによっ
て切削性能を更に向上させることができる。
As described above, by adopting an ultrafine particle alloy composition material for the blade portion, excellent performance in abrasion resistance and chipping resistance is exhibited, and cutting heat generated in the blade portion is transferred to the shank portion. The cutting performance can be further improved by transmitting to the shank portion made of a cemented carbide material that is easily absorbed on the side, that is, has good thermal conductivity.

【0028】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0029】[0029]

【実施例】【Example】

実施例1 平均粒径が0.5μmのWC粉末、平均粒径が1.5μ
mのCo粉末および/またはNi粉末、TiC,Ta
C,VC,Cr32 ,NbC等のWを除く周期律表4
A,5A,6A族金属の炭化物(耐熱性化合物)、ある
いはトリプルカーバイド(TiC−TaC−WC)やダ
ブルカーバイド(TiC−TaC)の粉末で平均粒径が
0.7μmのもの、または振動ミルやアトライターによ
って粉砕した粒径が1.0μm以下で平均粒径が0.8
μmの耐熱性化合物粉末等の出発原料を用いて表1およ
び表2に示す配合組成を作った。
Example 1 WC powder with an average particle size of 0.5 μm, average particle size of 1.5 μm
m Co powder and / or Ni powder, TiC, Ta
Periodic table 4 excluding W such as C, VC, Cr 3 C 2 and NbC
Carbide (heat resistant compound) of Group A, 5A, 6A metal, or powder of triple carbide (TiC-TaC-WC) or double carbide (TiC-TaC) having an average particle size of 0.7 μm, or a vibration mill or Particle size crushed by attritor is less than 1.0μm and average particle size is 0.8
Using the starting materials such as μm heat-resistant compound powder, the compounding compositions shown in Table 1 and Table 2 were prepared.

【0030】これら配合粉末をそれぞれアトライターに
投入し、有機溶剤(アセトンかヘキサン)と成形助剤を
同時に撹拌し、5時間後に回収し、乾燥・造粒処理を行
なった。その後、所定の金型にて1000kg/cm2
以上の圧力で成形体を成形し、半焼結処理(450℃×
4時間+850℃×2時間)を施した。その後ドリル形
状に加工し、1×104 Torrの真空中で1380℃
×0.5時間の焼結処理を施したものを、さらに135
0℃で1500気圧の不活性ガス(Ar)中でHIP処
理した。焼結およびHIP処理後の素材特性(硬さ,抗
折力)を表1および表2に併記する。
Each of these blended powders was placed in an attritor, the organic solvent (acetone or hexane) and the molding aid were simultaneously stirred, and after 5 hours, they were collected and dried and granulated. Then, 1000 kg / cm 2 with a predetermined mold
The molded body is molded under the above pressure and subjected to semi-sintering treatment (450 ° C ×
4 hours + 850 ° C. × 2 hours). After that, it is processed into a drill shape, and 1380 ° C in a vacuum of 1 × 10 4 Torr
× After 0.5 hour sintering treatment, add 135
HIP treatment was performed at 0 ° C. in an inert gas (Ar) at 1500 atm. The material properties (hardness, transverse rupture strength) after sintering and HIP treatment are also shown in Table 1 and Table 2.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】得られた超硬合金の切削性能の評価を行な
うために、直径:10mmの超硬合金製ドリルに加工
し、下記の条件にて穿孔加工を行なった。 被削材 :S50C 切削速度 :120mm/min 送り :0.25mm/rev 切削油 :エマルジョン ドリル直径:10.0mm 板厚 :1.6×D(ドリル直径) 切削寿命は、切粉の形状変化と切削音の発生および刃先
の異常摩耗から最終寿命を判断した。その結果、表3に
示すように、本発明材は従来材の約2〜3倍の寿命が得
られ、また図3および図4に示すように、WC粒径と切
削寿命との関係、硬度と切削寿命とが明確に関係付けら
れることが明らかにされた。
In order to evaluate the cutting performance of the obtained cemented carbide, it was processed into a cemented carbide drill having a diameter of 10 mm and punched under the following conditions. Work Material: S50C Cutting Speed: 120mm / min Feed: 0.25mm / rev Cutting Oil: Emulsion Drill Diameter: 10.0mm Plate Thickness: 1.6 × D (Drill Diameter) Cutting life is different from the shape change of cutting chips. The final life was judged from the generation of cutting noise and abnormal wear of the cutting edge. As a result, as shown in Table 3, the material of the present invention has a life of about 2 to 3 times that of the conventional material, and as shown in FIGS. 3 and 4, the relationship between the WC grain size and the cutting life and the hardness. It was clarified that and cutting life are clearly related.

【0034】[0034]

【表3】 [Table 3]

【0035】実施例2 表4は、刃部とシャンク部で構成される本発明の軸物切
削工具を製造する際の原料混合粉末の組成および特性を
示す。また表5には従来使用されている原料混合粉末の
組成と特性を示す。刃部の組成は超微粒子の粉末を出発
原料として、WCは0.5μmをベースに、Wを除く周
期律表の4A,5A,6A族の粒子径が1.0μm以下
の炭化物を0.2〜30重量%添加し、結合相となるC
oおよび/またはNiは4〜20重量%の範囲となって
いる。また粒成長を抑える元素として、VCも添加して
おり、以上のことにより耐摩耗性と関係が深い硬度の値
が従来材に比べ、高い値を示しているのが分かる。一方
シャンク部に適用される組成はWCの粒径が1〜3μm
の粗粒を使用し、Wを除く周期律表4A,5A,6A族
の炭化物を0.1〜5重量%添加し、もしくは無添加
で、結合相となるCoおよび/またはNiは4〜8重量
%の範囲としているものである。このことより熱伝導性
も良く、本発明のねらいである刃部の発生した切削熱を
シャンク側へ伝えやすくなっている。
Example 2 Table 4 shows the composition and characteristics of the raw material mixed powder when manufacturing the shaft cutting tool of the present invention composed of the blade portion and the shank portion. In addition, Table 5 shows the composition and characteristics of the conventionally used raw material mixed powder. The composition of the blade is based on ultrafine powder as a starting material, WC is 0.5 μm as a base, and carbides of 4A, 5A, and 6A groups in the periodic table excluding W having a particle size of 1.0 μm or less are 0.2 Add 30% by weight to form a binder phase C
O and / or Ni is in the range of 4 to 20% by weight. Further, VC is also added as an element for suppressing grain growth, and as a result of the above, it can be seen that the value of hardness, which is closely related to wear resistance, is higher than that of conventional materials. On the other hand, the composition applied to the shank has a WC particle size of 1 to 3 μm.
Coarse particles are used, and 0.1 to 5% by weight of carbides of Groups 4A, 5A, and 6A of the periodic table excluding W is added or not added, and Co and / or Ni serving as a binder phase has 4 to 8%. It is in the range of% by weight. As a result, the thermal conductivity is good, and the cutting heat generated by the blade, which is the aim of the present invention, is easily transmitted to the shank side.

【0036】[0036]

【表4】 [Table 4]

【0037】[0037]

【表5】 [Table 5]

【0038】表4および5に示した原料粉末を秤量,配
合し、有機溶剤中アトライターにて混合・分散後、乾燥
・造粒を行なった。そして得られた造粒粉は成形を行な
う際、まずホッパーに蓄積された刃部に用いる造粒粉を
所定の成形金型に投入、その後所定量のシャンク部で用
いる造粒粉を振動を与えながら投入し、1000kg/
cm2 以上の圧力で成形処理を行なった。この場合刃先
部の長さは2〜3×d(外周径)寸法に、すなわち刃
先:シャンク=(2〜3×d(外周径)):全長−(2
〜3×d(外周径))になるように造粒粉を夫々個別に
投入し、目的とする成形体を製作した。この成形体を脱
ろう・半焼したのち、半焼加工にて目的の素材形状に仕
上げ、真空炉にて1×10〜1×10-5Torrの真空
下、1280〜1500℃の温度で焼結処理を行なっ
た。その後Ar等の不活性ガスを圧力媒体として100
〜2000kg/cm2 の圧力で1200〜1400℃
高温処理を行なう熱間静水圧加圧処理(HIP処理)を
施し、本発明合金の素材を得た。
The raw material powders shown in Tables 4 and 5 were weighed and blended, mixed and dispersed in an organic solvent with an attritor, and then dried and granulated. When molding the obtained granulated powder, first insert the granulated powder used for the blade portion accumulated in the hopper into a predetermined molding die, and then vibrate the predetermined amount of granulated powder used in the shank portion. While throwing in, 1000kg /
The molding process was performed at a pressure of cm 2 or more. In this case, the length of the cutting edge portion is 2 to 3 x d (outer peripheral diameter), that is, the cutting edge: shank = (2 to 3 x d (outer peripheral diameter)): total length- (2
Granulated powders were individually added so as to have a diameter of ˜3 × d (outer peripheral diameter), and a desired molded body was manufactured. After dewaxing and half-baking this molded body, finish it into the target material shape by half-baking, and sinter at a temperature of 1280 to 1500 ° C under a vacuum of 1 x 10 to 1 x 10 -5 Torr. Was done. After that, an inert gas such as Ar is used as a pressure medium for 100
1200 to 1400 ° C at a pressure of up to 2000 kg / cm 2.
A hot isostatic pressing process (HIP process) for high-temperature treatment was performed to obtain a material of the alloy of the present invention.

【0039】本発明材および比較材を用い、切削テスト
を行なった。尚切削テストはドリル(10mmφ)とエ
ンドミル(直径:10mm,2枚刃)を用い、夫々下記
の条件で行なった。また同一条件で比較するために、本
発明材,比較材とも同一コーティング(Al,Ti)N
処理したもので切削評価した。 (ドリルの切削条件) 切削速度 :120mm/min 送り :0.25mm/rev 板厚 :16mm 被削材 :S50C,50C 切削油 :エマルジョン油 (エンドミルの切削条件) 回転数 :1910rpm 被削材 :SKD11 送り :306mm/m(0.08mm/刃) 切込み :1.0mm(R)×15mm(L) 切削方法 :ダウンカット,エアーブロー 切削長 :6m
A cutting test was conducted using the material of the present invention and the comparative material. The cutting test was performed using a drill (10 mmφ) and an end mill (diameter: 10 mm, 2 blades) under the following conditions. Further, in order to compare under the same conditions, the same coating (Al, Ti) N was used for the material of the present invention and the comparative material.
Cutting was evaluated by the processed one. (Drill cutting conditions) Cutting speed: 120 mm / min Feed: 0.25 mm / rev Plate thickness: 16 mm Work material: S50C, 50C Cutting oil: Emulsion oil (End mill cutting conditions) Rotation speed: 1910 rpm Work material: SKD11 Feed: 306 mm / m (0.08 mm / blade) Depth of cut: 1.0 mm (R) x 15 mm (L) Cutting method: Down cut, air blow Cutting length: 6 m

【0040】その結果を一括して表6に示すが、ドリル
による切削試験においては、本発明材は2000穴以上
の高寿命を示しているが、従来使用されている粗粒系ド
リルでは、300〜400穴の寿命しか得られていな
い。これは同一被膜コーティング下でも超硬母材の摩耗
性は切削性能に影響しており、本発明材は刃部の耐摩耗
性の優れた組成で、且つシャンク部が刃部に発生する切
削熱を軽減化する方向に作用したことによる効果と思わ
れる。またエンドミルにおいても、減径摩耗量で本発明
材は比較材の1/2の値となっており、上記と同様の効
果によって優れた切削性能を発揮していることが分か
る。
The results are collectively shown in Table 6. In the cutting test by the drill, the material of the present invention shows a long life of 2000 holes or more, but the conventional coarse grain type drill has a long life of 300. Only a life of 400 holes is obtained. This is because the wear resistance of the cemented carbide base material has an effect on the cutting performance even under the same film coating, the material of the present invention has a composition with excellent wear resistance of the blade portion, and the shank portion has a cutting heat generated at the blade portion. It seems that the effect is due to the action to reduce the. Further, also in the end mill, the material of the present invention has a value of 1/2 of the comparative material in terms of the amount of wear due to reduced diameter, and it can be seen that excellent cutting performance is exhibited by the same effect as above.

【0041】[0041]

【表6】 [Table 6]

【0042】表7は本発明材(No.25)の抗折強度
を調べた結果を示したものである。尚比較材として、エ
ンドミル素材(刃部:4A)の焼結体同士を接合したも
の(図5(b))の抗折強度についても調査した結果に
ついても示す。またA部(接合強度)およびB部は、図
5(a)に示す位置で測定した値である。本発明材にお
ける接合界面はポアーやクラック等の欠陥は全く認めら
れず、刃部母材あるいはシャンク部母材とほぼ同じ値が
得られており、このことは接合による強度低下はないと
いうことを証明していた。
Table 7 shows the results of examining the bending strength of the material of the present invention (No. 25). In addition, as a comparative material, the results obtained by investigating the transverse rupture strength of the one obtained by joining the sintered bodies of the end mill material (blade portion: 4A) (FIG. 5B) are also shown. Further, the A portion (bonding strength) and the B portion are values measured at the positions shown in FIG. No defects such as pores and cracks were observed at the joining interface in the material of the present invention, and almost the same values as those of the blade base material or the shank base material were obtained, which means that there is no strength reduction due to bonding. Had proved.

【0043】[0043]

【表7】 [Table 7]

【0044】[0044]

【発明の効果】本発明は以上の様に構成されており、従
来のものより穿孔加工等の寿命が高寿命化された軸物切
削工具、およびその様な軸物切削工具を実現するための
有用な超硬合金が実現できた。
The present invention is constituted as described above, and is useful for realizing a shaft cutting tool which has a longer life such as perforation processing than the conventional one, and a shaft cutting tool such as this. Cemented carbide was realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超硬合金の組織を模式的に示す説明図
である。
FIG. 1 is an explanatory view schematically showing the structure of a cemented carbide of the present invention.

【図2】従来の超硬合金の組織を模式的に示す説明図で
ある。
FIG. 2 is an explanatory view schematically showing the structure of a conventional cemented carbide.

【図3】各超硬合金の硬度と切削寿命の関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between hardness and cutting life of each cemented carbide.

【図4】各超硬合金のWC粉平均粒径と切削寿命の関係
を示すグラフである。
FIG. 4 is a graph showing the relationship between WC powder average particle diameter and cutting life of each cemented carbide.

【図5】抗折試験片を示す説明図である。FIG. 5 is an explanatory view showing a bending test piece.

フロントページの続き (72)発明者 福永 稔 兵庫県明石市魚住町金ケ崎西大池179番1 株式会社神戸製鋼所明石工場内Continued Front Page (72) Minoru Fukunaga 179-1 Kanegasaki Nishi-Oike, Uozumi-cho, Akashi-shi, Hyogo Kobe Steel Works Akashi Plant

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 WCを主体とする超硬合金であって、W
を除く周期律表4A,5A,6A族元素よりなる群から
選ばれる1種以上の金属元素の炭化物粉末が0.2〜3
0重量%であると共に、結合相となるCoおよび/また
はNiの粉末が4〜20重量%の割合で配合され、残部
が平均粒径:0.3〜0.7μmのWC粉と不可避不純
物である原料混合粉末を焼結したものであることを特徴
とする軸物切削工具用超硬合金。
1. A cemented carbide mainly composed of WC, comprising:
0.2 to 3 of carbide powder of one or more kinds of metal elements selected from the group consisting of elements of 4A, 5A and 6A groups in the periodic table excluding
In addition to 0% by weight, Co and / or Ni powder serving as a binder phase was mixed in a ratio of 4 to 20% by weight, and the balance was WC powder having an average particle size of 0.3 to 0.7 μm and unavoidable impurities. A cemented carbide for a shaft cutting tool, which is obtained by sintering a raw material mixed powder.
【請求項2】 周期律表4A,5A,6A族元素よりな
る群から選ばれる1種以上の金属元素の炭化物粉末の一
部を、TiC−TaC−WC粉末で代替した原料混合粉
末を用いたものである請求項1に記載の軸物切削工具用
超硬合金。
2. A raw material mixed powder in which a part of the carbide powder of one or more metal elements selected from the group consisting of elements of groups 4A, 5A and 6A of the periodic table is replaced with TiC-TaC-WC powder is used. A cemented carbide for a shaft cutting tool according to claim 1.
【請求項3】 周期律表4A,5A,6A族元素よりな
る群から選ばれる1種以上の金属元素の炭化物粉末とし
て、VC粉末が0.2〜0.5重量%含有された原料混
合粉末を用いたものである請求項1または2に記載の軸
物切削工具用超硬合金。
3. A raw material mixed powder containing 0.2 to 0.5% by weight of VC powder as a carbide powder of at least one metal element selected from the group consisting of elements of groups 4A, 5A and 6A of the periodic table. The cemented carbide for a shaft cutting tool according to claim 1 or 2, wherein the cemented carbide is used.
【請求項4】 周期律表4A,5A,6A族元素よりな
る群から選ばれる1種以上の金属元素の炭化物粉末の平
均粒径が0.5〜1.0μmである原料混合粉末を用い
たものである請求項1〜3のいずれかに記載の軸物切削
工具用超硬合金。
4. A raw material mixed powder having an average particle size of 0.5 to 1.0 μm of a carbide powder of one or more metal elements selected from the group consisting of elements of Groups 4A, 5A and 6A of the periodic table is used. A cemented carbide for a shaft cutting tool according to any one of claims 1 to 3.
【請求項5】 主体となるWC粉末の平均粒径と、周期
律表4A,5A,6A族元素よりなる群から選ばれる1
種以上の金属元素の炭化物粉末の平均粒径の差が0.5
μm以下である原料混合粉末を用いたものである請求項
1〜4のいずれかに記載の軸物切削工具用超硬合金。
5. The average particle size of the main WC powder and 1 selected from the group consisting of elements of Groups 4A, 5A and 6A of the periodic table.
Difference in average particle size of carbide powders of at least one kind of metal element is 0.5
The cemented carbide for a shaft cutting tool according to any one of claims 1 to 4, wherein a raw material mixed powder having a particle size of not more than μm is used.
【請求項6】 刃部とシャンク部が接合されて構成され
る軸物切削工具において、刃部として、請求項1〜5の
いずれかに記載の超硬合金を用いると共に、シャンク部
として、Wを除く周期律表4A,5A,6A族元素より
なる群から選ばれる1種以上の金属元素の炭化物粉末が
0.1〜5重量%、結合相としてのCoおよび/または
Niの粉末が4〜8重量%の割合で配合され、残部が平
均粒径:1〜3μmのWC粉と不可避不純物である原料
混合粉末を焼結したものを用いることを特徴とする軸物
切削工具。
6. A shaft cutting tool configured by joining a blade portion and a shank portion, wherein the cemented carbide according to any one of claims 1 to 5 is used as the blade portion, and W is used as the shank portion. Excludes 0.1 to 5% by weight of carbide powder of one or more metal elements selected from the group consisting of elements of groups 4A, 5A and 6A of periodic table, and 4 to 8 powder of Co and / or Ni as a binder phase. A shaft cutting tool characterized by using a mixture of WC powder having an average particle diameter of 1 to 3 μm and a raw material mixed powder which is an unavoidable impurity, which is blended at a ratio of wt%.
【請求項7】 刃部とシャンク部の長さ比率が下記
(1)式を満足するものである請求項6に記載の軸物切
削工具。 刃部:シャンク部=(2〜3d):(全長−刃部の長さ)…(1) 但し、d:外周径
7. The shaft cutting tool according to claim 6, wherein the length ratio of the blade portion and the shank portion satisfies the following expression (1). Blade part: Shank part = (2-3d): (Overall length-Length of blade part) (1) where d: Outer diameter
【請求項8】 刃部とシャンク部の接合界面には、相互
に嵌合する複数の凹溝および凸条が形成され、且つその
ピッチ間隔が0.1〜0.3mmである請求項6または
7に記載の軸物切削工具。
8. The joint groove between the blade portion and the shank portion is formed with a plurality of recessed grooves and ridges to be fitted with each other, and the pitch interval thereof is 0.1 to 0.3 mm. A shaft cutting tool according to item 7.
JP28149193A 1993-11-10 1993-11-10 Shaft cutting tool Expired - Lifetime JP3606527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28149193A JP3606527B2 (en) 1993-11-10 1993-11-10 Shaft cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28149193A JP3606527B2 (en) 1993-11-10 1993-11-10 Shaft cutting tool

Publications (2)

Publication Number Publication Date
JPH07138692A true JPH07138692A (en) 1995-05-30
JP3606527B2 JP3606527B2 (en) 2005-01-05

Family

ID=17639930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28149193A Expired - Lifetime JP3606527B2 (en) 1993-11-10 1993-11-10 Shaft cutting tool

Country Status (1)

Country Link
JP (1) JP3606527B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09300104A (en) * 1996-05-10 1997-11-25 Sumitomo Coal Mining Co Ltd Complex tool material of super-hard alloy system
JP2004190118A (en) * 2002-12-13 2004-07-08 Kyocera Corp Cemented carbide, its production method, and cutting tool using the same
JP2004256862A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2004256861A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2007223041A (en) * 1994-08-29 2007-09-06 Sandvik Intellectual Property Ab End mill with detachable top
JP2008522027A (en) * 2005-06-27 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Sintered cemented carbide using vanadium as gradient forming element
JP2016041853A (en) * 2015-11-04 2016-03-31 住友電工ハードメタル株式会社 Cemented carbide, micro-drill and method for producing cemented carbide
WO2021079561A1 (en) * 2019-10-25 2021-04-29 住友電気工業株式会社 Cemented carbide and cutting tool comprising same as base material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH04152004A (en) * 1990-10-15 1992-05-26 Kobe Steel Ltd Cutting tool
JPH0598384A (en) * 1991-10-08 1993-04-20 Mitsubishi Materials Corp Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH05117799A (en) * 1991-10-24 1993-05-14 Mitsubishi Materials Corp Tungsten carbide-based sintered hard alloy
JPH05179310A (en) * 1991-12-27 1993-07-20 Kobe Steel Ltd Wear resistant cemented carbide end mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115541A (en) * 1989-09-28 1991-05-16 Nippon Tungsten Co Ltd Wc-base hard alloy
JPH04152004A (en) * 1990-10-15 1992-05-26 Kobe Steel Ltd Cutting tool
JPH0598384A (en) * 1991-10-08 1993-04-20 Mitsubishi Materials Corp Tungsten carbide base sintered hard alloy having high strength and high hardness
JPH05117799A (en) * 1991-10-24 1993-05-14 Mitsubishi Materials Corp Tungsten carbide-based sintered hard alloy
JPH05179310A (en) * 1991-12-27 1993-07-20 Kobe Steel Ltd Wear resistant cemented carbide end mill

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223041A (en) * 1994-08-29 2007-09-06 Sandvik Intellectual Property Ab End mill with detachable top
JPH09300104A (en) * 1996-05-10 1997-11-25 Sumitomo Coal Mining Co Ltd Complex tool material of super-hard alloy system
JP2004190118A (en) * 2002-12-13 2004-07-08 Kyocera Corp Cemented carbide, its production method, and cutting tool using the same
JP2004256862A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP2004256861A (en) * 2003-02-25 2004-09-16 Kyocera Corp Cemented carbide, production method therefor, and cutting tool using the same
JP4842962B2 (en) * 2005-06-27 2011-12-21 サンドビック インテレクチュアル プロパティー アクティエボラーグ Sintered cemented carbide using vanadium as gradient forming element
JP2008522027A (en) * 2005-06-27 2008-06-26 サンドビック インテレクチュアル プロパティー アクティエボラーグ Sintered cemented carbide using vanadium as gradient forming element
JP2016041853A (en) * 2015-11-04 2016-03-31 住友電工ハードメタル株式会社 Cemented carbide, micro-drill and method for producing cemented carbide
WO2021079561A1 (en) * 2019-10-25 2021-04-29 住友電気工業株式会社 Cemented carbide and cutting tool comprising same as base material
JPWO2021079561A1 (en) * 2019-10-25 2021-04-29
CN113166862A (en) * 2019-10-25 2021-07-23 住友电气工业株式会社 Cemented carbide and cutting tool comprising same as base material
CN113166862B (en) * 2019-10-25 2022-06-21 住友电气工业株式会社 Cemented carbide and cutting tool comprising same as base material
US12005507B2 (en) 2019-10-25 2024-06-11 Sumitomo Electric Industries, Ltd. Cemented carbide and cutting tool including same as substrate

Also Published As

Publication number Publication date
JP3606527B2 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
EP0380096B1 (en) Cemented carbide drill
US7297176B2 (en) Cemented carbide body
JP3606527B2 (en) Shaft cutting tool
JP3331220B2 (en) Materials for shaft cutting tools
JP4607954B2 (en) TiCN-based cermet, cutting tool, and method of manufacturing workpiece using the same
JP2008238354A (en) Drill and cutting method
JP4069749B2 (en) Cutting tool for roughing
JP2893886B2 (en) Composite hard alloy material
JPH05171335A (en) Differential layer surface refined sintered alloy and its manufacture
JP2815533B2 (en) Cutting equipment for milling
JP3103707B2 (en) Cermet for cutting tools
JPH10193206A (en) Cutting tool whose cutting edge piece has excellent brazing joining strength
JP3618183B2 (en) Cemented carbide end mill for cutting hard materials
JPH11138326A (en) Cemented carbide ball end mill having ball nose part whose half tip part indicates excellent antifriction property
JP4154643B2 (en) Cemented carbide square end mill with excellent chipping resistance with high-speed cutting.
JP2004230481A (en) Drill for machining printed circuit board
JP2668977B2 (en) Cutting tool made of tungsten carbide based cemented carbide with excellent fracture resistance
JPH04152004A (en) Cutting tool
JP4747493B2 (en) Shaft cutting tool capable of high-speed cutting of difficult-to-cut materials
JP2005288640A (en) End mill made of cemented carbide to exert excellent anti-abrasiveness in high-speed machining of hard-to-machine material
JPH0431012B2 (en)
JP3358477B2 (en) Cutting tool with excellent brazing joint strength with cutting edge piece
JP2893887B2 (en) Composite hard alloy material
JP2000288820A (en) Face milling tool showing high speed feed cutting and superior wear resistance without decreasing roughness of cut face
JP2002192406A (en) Cemented carbide throw-away cutting tip exercising superior abrasion resistance in high-speed cutting

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term