JPH07138198A - Apparatus for synthesizing methanol - Google Patents

Apparatus for synthesizing methanol

Info

Publication number
JPH07138198A
JPH07138198A JP29164593A JP29164593A JPH07138198A JP H07138198 A JPH07138198 A JP H07138198A JP 29164593 A JP29164593 A JP 29164593A JP 29164593 A JP29164593 A JP 29164593A JP H07138198 A JPH07138198 A JP H07138198A
Authority
JP
Japan
Prior art keywords
steam
heat exchanger
high temperature
methanol
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29164593A
Other languages
Japanese (ja)
Other versions
JP3073377B2 (en
Inventor
Yasuhei Kikuoka
泰平 菊岡
Hiroshi Kusunoki
啓 楠
Mitsuo Ueda
三男 上田
Kohei Kawanishi
康平 川西
Kazuhisa Tanaka
量久 田中
Hitoshi Miyamoto
均 宮本
Nobuo Nakamori
信夫 中森
Keiichi Kugimiya
啓一 釘宮
Toshimitsu Umagoe
俊光 馬越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP05291645A priority Critical patent/JP3073377B2/en
Publication of JPH07138198A publication Critical patent/JPH07138198A/en
Application granted granted Critical
Publication of JP3073377B2 publication Critical patent/JP3073377B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a methanol synthesis apparatus consisting of a steam electrolytic apparatus, a heat exchanger between high-temperature H2 and O2 and steam for electrolysis and a synthetic tower, provided with a heat exchanger, for producing CH3OH from H2 and CO2, cooling production heat with pure water and then obtaining steam for electrolysis, and capable of reducing power consumption and globe-warming effect. CONSTITUTION:This apparatus is provided with (A) a high-temperature steam electrolytic apparatus 1 for decomposing high-temperature steam into H2 8 and O29, (B) a regeneration type heat exchanger 2 for giving high-temperature steam to the apparatus 1 by thermally exchanging high-temperature H2 8 and O29 generated from this electrolytic apparatus 1 with steam fed to the electrolytic apparatus 1 and (C) a methanol synthetic tower 3 producing CH3OH from H2 8 whose temperature is lowered in this heat exchanger 2 and a preheated CO26 fed from the outside of the system and having a heat exchanger for cooling the produced heat by pure water 5 and then generating steam for feeding to the heat exchanger 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタノール合成装置に関
し、特に太陽エネルギあるいは水力エネルギなどのクリ
ーンな自然エネルギを利用してメタノール燃料を合成し
うる同装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a methanol synthesizing apparatus, and more particularly to the apparatus capable of synthesizing methanol fuel by utilizing clean natural energy such as solar energy or hydraulic energy.

【0002】[0002]

【従来の技術】従来のメタノール合成装置の一態様を図
3によって説明する。例えば太陽電池、水力発電などの
炭酸ガスを発生しない発電設備10aによって発生する
電力(水素1モルを生成するエネルギ:84.2kca
l/mol)を使って水電解装置11により水を電気分
解して水素を製造してメタノール合成塔3aに供給す
る。一方、火力発電所等で発生、排出される炭酸ガス6
aを回収して熱交換器4aを通してメタノール合成塔3
aへ供給する。該メタノール合成塔3a内で両ガスを反
応させることによってメタノール7aを製造する。上記
水電解装置11には純水5a(40.5mol/h)が
再生式熱交換器2aの内を通り、水電解装置11で発生
した高温の酸素9aと熱交換されて高温水となって供給
される。なお、図3に示されている温度は各部の温度の
一例を示す。
2. Description of the Related Art One mode of a conventional methanol synthesizer will be described with reference to FIG. For example, electric power generated by a power generation facility 10a that does not generate carbon dioxide gas, such as a solar cell or hydroelectric power generation (energy that produces 1 mol of hydrogen: 84.2 kca
1 / mol) to electrolyze water by the water electrolysis device 11 to produce hydrogen and supply the hydrogen to the methanol synthesis tower 3a. On the other hand, carbon dioxide 6 generated and emitted at thermal power plants
a is collected and passed through the heat exchanger 4a to the methanol synthesis tower 3
supply to a. Methanol 7a is produced by reacting both gases in the methanol synthesis tower 3a. Pure water 5a (40.5 mol / h) passes through the regenerative heat exchanger 2a in the water electrolysis device 11 and is heat-exchanged with the high temperature oxygen 9a generated in the water electrolysis device 11 to become high temperature water. Supplied. The temperatures shown in FIG. 3 are examples of the temperature of each part.

【0003】[0003]

【発明が解決しようとする課題】図3のシステムの試算
結果では、メタノールを1モル(22.4リットル)製
造するに必要な電気エネルギはメタノールの発熱量の
1.45倍が必要である。その原因は水の電解装置の効
率が80%程度で、20%の電気エネルギが熱エネルギ
として、システム外へ放出され、この放出熱が低温のた
め十分に回収できないことによる。
According to the calculation results of the system shown in FIG. 3, the electric energy required to produce 1 mol (22.4 liters) of methanol requires 1.45 times the heating value of methanol. The reason is that the efficiency of the water electrolysis device is about 80%, and 20% of electric energy is released as heat energy to the outside of the system, and the released heat cannot be sufficiently recovered because of low temperature.

【0004】本発明は上記技術水準に鑑み、メタノール
の製造に関して必要とする電気エネルギを削減し、より
高効率のトータルシステムによりメタノールの製造コス
トの低減化を図りうるメタノール合成装置を提供しよう
とするものである。
In view of the above-mentioned state of the art, the present invention intends to provide a methanol synthesis apparatus capable of reducing the electric energy required for the production of methanol and reducing the production cost of methanol by a more efficient total system. It is a thing.

【0005】[0005]

【課題を解決するための手段】本発明は高温水蒸気を酸
素と水素とに分解する高温水蒸気電解装置、該高温水蒸
気電解装置より発生する高温の水素及び酸素と該高温水
蒸気電解装置に供給する水蒸気を熱交換させて高温水蒸
気とする再生式熱交換器、該再生式熱交換器で減温され
た水素と系外から供給された予熱炭酸ガスによってメタ
ノールを合成し、かつ合成によって発生する熱を純水に
よって冷却して前記再生式熱交換器に供給する水蒸気を
発生する熱交換器を有するメタノール合成塔を備えてな
るメタノール合成装置である。
The present invention is directed to a high temperature steam electrolyzer for decomposing high temperature steam into oxygen and hydrogen, high temperature hydrogen and oxygen generated by the high temperature steam electrolyzer, and steam to be supplied to the high temperature steam electrolyzer. Regenerative heat exchanger that heat-exchanges to form high-temperature steam, synthesizes methanol with hydrogen deheated in the regenerative heat exchanger and preheated carbon dioxide gas supplied from outside the system, and heat generated by the synthesis is A methanol synthesis apparatus comprising a methanol synthesis tower having a heat exchanger that generates steam to be cooled by pure water and supplied to the regenerative heat exchanger.

【0006】すなわち、本発明はエネルギの有効利用の
ために、以下の手段を採用するものである。 (1)水素の製造法として、水電解法に変えて水蒸気電
解法を採用する。水蒸気電解法としては固体酸化物電解
質を利用する高温水蒸気電解装置を用いる。 (2)メタノール合成塔の冷却に、上記(1)の水蒸気
電解装置で用いる純水を用いる。 (3)水蒸気電解装置から排出される高温の水素ガスと
酸素ガスと上記(2)によって加熱、昇温された純水
(水蒸気)と熱交換する再生式熱交換器を設ける。
That is, the present invention employs the following means for effective use of energy. (1) As a method for producing hydrogen, a steam electrolysis method is adopted instead of the water electrolysis method. As the steam electrolysis method, a high temperature steam electrolysis apparatus utilizing a solid oxide electrolyte is used. (2) Pure water used in the steam electrolysis apparatus of (1) is used for cooling the methanol synthesis tower. (3) A regenerative heat exchanger that exchanges heat with the high-temperature hydrogen gas and oxygen gas discharged from the steam electrolyzer and the pure water (steam) heated and heated by the above (2) is provided.

【0007】[0007]

【作用】[Action]

(1)高温水蒸気電解装置を用いることについて 高温水蒸気電解装置では一般的に固体酸化物電解質とし
てイットリアで安定化したジルコニア(YSZ)を用い
る。この電解質は酸素イオンのみを透過し、電子伝導性
がないために、電流の水素変換率は100%である(実
験で確認されている)。また、1000℃程度の高温で
操作するため、電気分解電圧が低い(0.92ボルト程
度)ので消費される電力が少ない。 (2)電解用純水でメタノール合成塔を冷却することに
ついて 水素と炭酸ガスを約200℃程度でメタノール合成用触
媒を介して反応させるとき発熱反応がある。この発熱量
を電解用純水に伝達することによって電解用水蒸気を製
造することができるので、水蒸気をつくるために必要な
外部エネルギが不要となる。 (3)再生式熱交換器を設けることについて 水蒸気電解装置から排出される高温の水素、酸素の熱エ
ネルギを回収しながら約1000℃の水蒸気を得ること
ができる。
(1) Using a high temperature steam electrolyzer In a high temperature steam electrolyzer, yttria-stabilized zirconia (YSZ) is generally used as a solid oxide electrolyte. Since this electrolyte only permeates oxygen ions and has no electronic conductivity, the hydrogen conversion rate of the electric current is 100% (confirmed by the experiment). Further, since the operation is performed at a high temperature of about 1000 ° C., the electrolysis voltage is low (about 0.92 V), so that the power consumed is small. (2) About cooling the methanol synthesis tower with pure water for electrolysis When hydrogen and carbon dioxide are reacted at about 200 ° C. via a catalyst for methanol synthesis, there is an exothermic reaction. Since the steam for electrolysis can be produced by transmitting this heat generation amount to the pure water for electrolysis, the external energy required for producing steam is not required. (3) Providing a Regenerative Heat Exchanger It is possible to obtain steam at about 1000 ° C. while recovering the heat energy of high temperature hydrogen and oxygen discharged from the steam electrolyzer.

【0008】[0008]

【実施例】本発明の一実施例を図1によって説明する。
図1において、1は水蒸気電解装置で、このものは水蒸
気の入口、水素の出口、酸素の出口をもち、固体酸化物
電解質(例えばYSZ)の両面に電極を介して発電設備
10から電力を供給できる電解セルで構成されている。
2は再生式熱交換器で、水蒸気電解装置1で発生した高
温の水素ガス及び酸素ガスと予熱された水蒸気の熱交換
を行うものである。3はメタノール合成塔で、前記再生
式熱交換器2で適度に減温された水素ガスと系外から供
給され過度に加熱された炭酸ガスが供給され、内部にメ
タノール合成用触媒が配置され、3H2 +CO2 →CH
3 OH+H2 Oの反応によってメタノールを合成する装
置であり、内部に純水による冷却コイル3′が設置され
ているものである。冷却コイル3′は水蒸気ボイラに相
当する。4は熱交換器であってメタノール合成塔3へ供
給する炭酸ガス6の加熱のための熱交換コイル4′と電
解用純水の予熱用熱交換コイル4″が内蔵される。5は
純水、6は炭酸ガス、7はメタノール、8は水素、9は
酸素である。10は発電設備で水力発電所あるいは太陽
電池などが好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 denotes a steam electrolyzer, which has a steam inlet, a hydrogen outlet, and an oxygen outlet, and supplies electric power from a power generation facility 10 to both sides of a solid oxide electrolyte (for example, YSZ) via electrodes. It consists of an electrolytic cell that can.
Reference numeral 2 is a regenerative heat exchanger for exchanging heat between the high-temperature hydrogen gas and oxygen gas generated in the steam electrolyzer 1 and the preheated steam. 3 is a methanol synthesis tower, to which hydrogen gas moderately cooled by the regenerative heat exchanger 2 and carbon dioxide gas which is supplied from outside the system and is excessively heated are supplied, and a catalyst for methanol synthesis is arranged inside. 3H 2 + CO 2 → CH
This is a device for synthesizing methanol by the reaction of 3 OH + H 2 O, in which a cooling coil 3'made of pure water is installed. The cooling coil 3'corresponds to a steam boiler. A heat exchanger 4 has a heat exchange coil 4'for heating the carbon dioxide 6 supplied to the methanol synthesis tower 3 and a heat exchange coil 4 "for preheating the pure water for electrolysis. 5 is pure water. , 6 is carbon dioxide gas, 7 is methanol, 8 is hydrogen, and 9 is oxygen, and 10 is a power generation facility, preferably a hydroelectric power station or a solar cell.

【0009】以上の構成において、まず電解用純水は以
下のように流れる。純水5は熱交換器4の熱交換コイル
4″に入り、内部のメタノール、水蒸気混合物との熱交
換によって、約100℃に予熱される。予熱された純水
はメタノール合成塔3の冷却コイル3′に入り、約17
5℃の水蒸気になると共に、メタノール合成反応熱を奪
う。さらに再生熱交換器2において高温の水素8及び酸
素9と熱交換し、約975℃に加温され水蒸気電解装置
1に入る。
In the above structure, first, pure water for electrolysis flows as follows. The pure water 5 enters the heat exchange coil 4 ″ of the heat exchanger 4 and is preheated to about 100 ° C. by heat exchange with the internal mixture of methanol and steam. The preheated pure water is a cooling coil of the methanol synthesis tower 3. Enter 3 ', about 17
It becomes steam at 5 ° C and takes away the heat of the methanol synthesis reaction. Further, in the regenerative heat exchanger 2, it exchanges heat with high temperature hydrogen 8 and oxygen 9 and is heated to about 975 ° C. and enters the steam electrolyzer 1.

【0010】水蒸気電解装置1においては、発電設備1
0からの電力が供給され固体酸化物電解質(例えばYS
Z)を通って、高温水蒸気は分解され、酸素9が分離さ
れる結果、水素8が水蒸気室に残り、高温の水素8と酸
素9がそれぞれの出口から排出される。このときの各ガ
スの温度は1000℃であり、再生式熱交換器2に送ら
れる。
In the steam electrolyzer 1, a power generation facility 1
Power from 0 to solid oxide electrolyte (eg YS
Through Z), the high temperature steam is decomposed and oxygen 9 is separated. As a result, hydrogen 8 remains in the steam chamber and high temperature hydrogen 8 and oxygen 9 are discharged from their respective outlets. The temperature of each gas at this time is 1000 ° C. and is sent to the regenerative heat exchanger 2.

【0011】高温の水素8は再生式熱交換器2で減温さ
れたのち、メタノール合成塔3へ送られる。炭酸ガス6
は熱交換器4の熱交換コイル4′で約175℃に予熱さ
れメタノール合成塔3へ送られる。なお、図1の各ライ
ンに付した温度などは図3と同じく図1の系の一態様を
示すものである。
The high-temperature hydrogen 8 is cooled by the regenerative heat exchanger 2 and then sent to the methanol synthesis tower 3. Carbon dioxide 6
Is preheated to about 175 ° C. by the heat exchange coil 4 ′ of the heat exchanger 4 and sent to the methanol synthesis tower 3. Note that the temperature and the like given to each line in FIG. 1 indicate one aspect of the system of FIG. 1 as in FIG.

【0012】図2に、従来例の水電解と本発明の高温水
蒸気電解法のエネルギ比較を示す。本来、電気分解によ
って水素1モルを製造する理論エネルギは電気エネルギ
Eと吸熱反応熱Hの和であり、水電解と水蒸気電解はほ
ぼ等しい。現実の装置では、水電解では電極損失が大き
く、水の加熱のためのエネルギWと電極のジュール損失
Lを加えた(E+H+W+L)が電力として必要とな
る。一方、高温水蒸気電解では、電解効率は100%に
近いことが実験的に明らかになっており、所要電力は
(E+H)でよい。但し約1000℃の水蒸気を製造す
るエネルギSが必要であるが、このエネルギSは高温の
水素と酸素から回収できるので、そのエネルギ(回収
熱)Rを差し引いたエネルギW=S−Rが外部エネルギ
として必要である。本発明装置では、この外部熱エネル
ギWがメタノール合成塔の発熱反応によって得ることが
可能であるよう構成されているので、結局消費電力は
(H+E)のみとなる。
FIG. 2 shows an energy comparison between the conventional water electrolysis and the high temperature steam electrolysis method of the present invention. Originally, the theoretical energy for producing 1 mol of hydrogen by electrolysis is the sum of electric energy E and endothermic reaction heat H, and water electrolysis and steam electrolysis are almost equal. In an actual apparatus, electrode loss is large in water electrolysis, and (E + H + W + L), which is the sum of energy W for heating water and Joule loss L of the electrode, is required as electric power. On the other hand, in high temperature steam electrolysis, it has been experimentally revealed that the electrolysis efficiency is close to 100%, and the required electric power may be (E + H). However, energy S for producing water vapor at about 1000 ° C. is required, but since this energy S can be recovered from high-temperature hydrogen and oxygen, the energy W = SR obtained by subtracting the energy (recovered heat) R is the external energy. As necessary. In the device of the present invention, since the external heat energy W can be obtained by the exothermic reaction of the methanol synthesis tower, the power consumption is only (H + E) after all.

【0013】図1の例の試算結果では、製造されるメタ
ノールの発熱量に対して、必要となる電力エネルギの比
は1.12倍で従来システムが1.45倍であることか
ら約77%の改善効果が見込める。
According to the trial calculation result of the example of FIG. 1, the ratio of the required electric energy to the calorific value of the methanol produced is 1.12 times, which is 1.45 times that of the conventional system. The improvement effect of can be expected.

【0014】[0014]

【発明の効果】本発明によれば、電力消費が少なくてす
むメタノール合成装置が提供され、系外からの炭酸ガス
を利用してメタノールに固定させることができるので、
地球温暖化の防止にも大いに寄与することができる。
EFFECTS OF THE INVENTION According to the present invention, there is provided a methanol synthesizing apparatus which consumes less electric power and can be fixed to methanol by utilizing carbon dioxide gas from outside the system.
It can also contribute significantly to the prevention of global warming.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のメタノール合成装置の一実施例の説明
図。
FIG. 1 is an explanatory view of an embodiment of a methanol synthesis apparatus of the present invention.

【図2】本発明装置の効果を説明する図表。FIG. 2 is a chart for explaining the effects of the device of the present invention.

【図3】従来のメタノール合成装置の一態様の説明図。FIG. 3 is an explanatory view of one mode of a conventional methanol synthesis apparatus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上田 三男 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 川西 康平 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 田中 量久 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 宮本 均 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 中森 信夫 兵庫県高砂市荒井町新浜二丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 釘宮 啓一 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 (72)発明者 馬越 俊光 兵庫県神戸市兵庫区和田崎町一丁目1番1 号 三菱重工業株式会社神戸造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mitsuo Ueda 1-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries Ltd. Takasago Research Institute (72) Kohei Kawanishi 2-chome, Niihama, Arai-cho, Takasago-shi, Hyogo No. 1 Mitsubishi Heavy Industries, Ltd. Takasago Research Institute (72) Inventor Sakuhisa Tanaka 2-1-1 Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Takasago Research (72) Inventor Hitoshi Miyamoto, Niihama, Arai-machi, Takasago-shi, Hyogo Prefecture 1-1-1 Mitsubishi Heavy Industries, Ltd., Takasago Research Laboratory (72) Inventor Nobuo Nakamori 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries Ltd., Takasago Research Laboratory (72) Inventor Keiichi Kugimiya Kobe, Hyogo Prefecture Hyogo Prefecture 1-1-1 Wadasaki-cho, Tokyo Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Toshimitsu Magoshi Compartment Kobe-shi, Hyogo-ku, Wadasaki-cho, chome No. 1 in the No. 1 Mitsubishi Heavy Industries, Ltd. Kobe Shipyard & Machinery Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温水蒸気を酸素と水素とに分解する高
温水蒸気電解装置、該高温水蒸気電解装置より発生する
高温の水素及び酸素と該高温水蒸気電解装置に供給する
水蒸気を熱交換させて高温水蒸気とする再生式熱交換
器、該再生式熱交換器で減温された水素と系外から供給
された予熱炭酸ガスによってメタノールを合成し、かつ
合成によって発生する熱を純水によって冷却して前記再
生式熱交換器に供給する水蒸気を発生する熱交換器を有
するメタノール合成塔を備えてなるメタノール合成装
置。
1. A high temperature steam electrolyzer for decomposing high temperature steam into oxygen and hydrogen, high temperature hydrogen and oxygen generated by the high temperature steam electrolyzer and steam supplied to the high temperature steam electrolyzer by heat exchange to obtain high temperature steam. A regenerative heat exchanger, which synthesizes methanol by hydrogen reduced in temperature by the regenerative heat exchanger and preheated carbon dioxide gas supplied from outside the system, and cools the heat generated by the synthesis with pure water. A methanol synthesis apparatus comprising a methanol synthesis tower having a heat exchanger that generates steam to be supplied to a regenerative heat exchanger.
JP05291645A 1993-11-22 1993-11-22 Methanol synthesizer Expired - Lifetime JP3073377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05291645A JP3073377B2 (en) 1993-11-22 1993-11-22 Methanol synthesizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05291645A JP3073377B2 (en) 1993-11-22 1993-11-22 Methanol synthesizer

Publications (2)

Publication Number Publication Date
JPH07138198A true JPH07138198A (en) 1995-05-30
JP3073377B2 JP3073377B2 (en) 2000-08-07

Family

ID=17771635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05291645A Expired - Lifetime JP3073377B2 (en) 1993-11-22 1993-11-22 Methanol synthesizer

Country Status (1)

Country Link
JP (1) JP3073377B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012569A (en) * 2001-06-28 2003-01-15 Laser Gijutsu Sogo Kenkyusho System for forming methane or methanol
WO2014141883A1 (en) * 2013-03-11 2014-09-18 三菱重工業株式会社 Methanol plant and gasoline synthesis plant
JP2016522166A (en) * 2013-04-08 2016-07-28 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method of producing combustible gas from water electrolysis (HTE) or co-electrolysis with H2O / CO2 in the same chamber and associated catalytic reactor and system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012569A (en) * 2001-06-28 2003-01-15 Laser Gijutsu Sogo Kenkyusho System for forming methane or methanol
WO2014141883A1 (en) * 2013-03-11 2014-09-18 三菱重工業株式会社 Methanol plant and gasoline synthesis plant
JP2014172878A (en) * 2013-03-11 2014-09-22 Mitsubishi Heavy Ind Ltd Methanol plant and gasoline synthesis plant
US9790154B2 (en) 2013-03-11 2017-10-17 Mitsubishi Heavy Industries, Ltd. Methanol plant and gasoline synthesis plant
JP2016522166A (en) * 2013-04-08 2016-07-28 コミッサリア タ レネルジー アトミク エ オ エネルジー オルタネイティヴ Method of producing combustible gas from water electrolysis (HTE) or co-electrolysis with H2O / CO2 in the same chamber and associated catalytic reactor and system

Also Published As

Publication number Publication date
JP3073377B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US5479462A (en) Method for producing methanol by use of nuclear heat and power generating plant
US7910258B2 (en) Natural gas direct carbon fuel cell
CA2139310C (en) System for energy storage, hydrogen production and the manufacture of methanol for abating of greenhouse gases
US7201979B2 (en) SORFC system and method with an exothermic net electrolysis reaction
EP1571727B1 (en) Apparatus and method for operation of a high temperature fuel cell system using recycled anode exhaust
JP4761195B2 (en) Hydrogen production equipment
AU2020202212B2 (en) Co-electrolysis system and co-electrolysis method using the same
CA2343740A1 (en) Solid oxide fuel cell which operates with an excess of fuel
JPH0364866A (en) Fuel cell system
JP2019507718A (en) Method of producing carbon monoxide optimized by SOEC
CN113451612B (en) Green and efficient power-ammonia-power energy system
US20230046387A1 (en) Method and plant for producing hydrogen
JP3708924B2 (en) Chemical hydrogen production method using both heat and electricity
JPH03200734A (en) Synthesis of methanol
CA3198699A1 (en) Method and plant for producing syngas
JP6974402B2 (en) Plants that consume reformed gas and methods for reforming raw material gas
US11495806B2 (en) Ultra high efficiency fuel cell power generation system
JPH07138198A (en) Apparatus for synthesizing methanol
Al-Hallaj et al. Conceptual design of a novel hybrid fuel cell/desalination system
JP2003165704A (en) Hydrogen manufacturing system
CN201402833Y (en) Battery integration generating device based on natural-gas-prepared hydrogen and proton exchange membrane fuel
Weimer et al. CO2 removal and fixation solar high temperature syngas generation for fuel synthesis
JPH04261130A (en) Production of methanol utilizing nuclear heat
JPH04254796A (en) Direct reduction of metal ore
JPH04244035A (en) Production of methanol using nuclear heat

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000502