JPH07138090A - Method for growing mixed crystal in liquid phase and apparatus therefor - Google Patents
Method for growing mixed crystal in liquid phase and apparatus thereforInfo
- Publication number
- JPH07138090A JPH07138090A JP28107793A JP28107793A JPH07138090A JP H07138090 A JPH07138090 A JP H07138090A JP 28107793 A JP28107793 A JP 28107793A JP 28107793 A JP28107793 A JP 28107793A JP H07138090 A JPH07138090 A JP H07138090A
- Authority
- JP
- Japan
- Prior art keywords
- melt
- crystal
- seed crystal
- mixed
- mixed crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、発光素子用混晶等の化
合物半導体として使用される混晶を液相成長させる方法
及び装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for liquid phase growing a mixed crystal used as a compound semiconductor such as a mixed crystal for a light emitting device.
【0002】[0002]
【従来の技術】複数種の半導体間にできる混晶は、バン
ド構造が各成分単体の中間形態をとり、結晶の格子定数
もほぼベガードの法則に従った中間値をとる。この特性
を利用して、発光素子における直接遷移型バンド構造域
での波長制御やヘテロ接合の形成等に広く使用されてい
る。従来法によって形成される混晶は、ほとんどが単体
基板結晶の上にエピタキシャル成長させた薄膜状であ
り、厚いウエハ状の混晶は稀である。厚いウエハ上の混
晶は、発光ダイオードの光透過基板として有用である。
たとえば、GaAs基板結晶上にGa1-x Alx As系
混晶を無偏析的に厚くエピタキシャル成長させた後、基
板GaAsを研磨除去し、混晶部分のみを二次基板とし
て使用する。このとき、光透過性基板部分を半球状に加
工すると、空気との界面における全反射が防止される。2. Description of the Related Art In a mixed crystal formed between a plurality of types of semiconductors, the band structure takes an intermediate form of each component simple substance, and the crystal lattice constant also takes an intermediate value in accordance with Vegard's law. Utilizing this characteristic, it is widely used for wavelength control and formation of a heterojunction in a direct transition type band structure region in a light emitting device. Most of the mixed crystals formed by the conventional method are in the form of a thin film epitaxially grown on a single substrate crystal, and thick wafer-shaped mixed crystals are rare. Mixed crystals on thick wafers are useful as light transmissive substrates for light emitting diodes.
For example, after a Ga 1-x Al x As-based mixed crystal is epitaxially grown thickly on a GaAs substrate crystal without segregation, the substrate GaAs is polished and removed, and only the mixed crystal portion is used as a secondary substrate. At this time, if the light transmissive substrate portion is processed into a hemispherical shape, total reflection at the interface with air is prevented.
【0003】AlAs成分をほぼ一定に保った条件下で
Ga1-x Alx As系混晶を無偏析的に厚く成長させる
ため、種々の方法が提案されている。たとえば、特開昭
51−20081号公報では、融液と基板との間に温度
勾配を付け、多量の融液から混晶を一定温度で晶出させ
ている。この方法では、融液と基板との間に有効に温度
勾配を付けるため、成長用反応管の基板保持位置部分に
冷却機構を設けている。また、日本物理学会誌「応用物
理」第44巻第9号(1975年)第971〜978頁
「液相エピタキシャル法によるGa1-x Alx As厚膜
の成長」では、予め調製した原料を融液表面に浮かべる
ため、未溶解のGaAs固体の過剰量を混入した溶液を
一旦高温に保持し、次いで所定温度まで降温することに
より、液面に原料混晶を晶出浮遊させている。原料混晶
が液面に浮遊している融液に温度勾配を付け、温度勾配
に応じた溶解度の変化を利用して溶質を基板上に拡散輸
送させる。これにより、所定組成の混晶を晶出させてい
る。また、成長層組成の制御法についても開示されてい
る。Various methods have been proposed for growing a Ga 1-x Al x As-based mixed crystal thick without segregation under the condition that the AlAs component is kept substantially constant. For example, in JP-A-51-20081, a temperature gradient is provided between the melt and the substrate to crystallize a mixed crystal from a large amount of melt at a constant temperature. In this method, a cooling mechanism is provided at the substrate holding position portion of the growth reaction tube in order to effectively establish a temperature gradient between the melt and the substrate. In addition, in the Journal of Applied Physics, "Applied Physics", Vol. 44, No. 9 (1975), pp. 971-978 "Growth of Ga 1-x Al x As thick films by liquid phase epitaxial method", raw materials prepared in advance are used. In order to float on the surface of the melt, the solution mixed with an excessive amount of undissolved GaAs solid is once held at a high temperature and then cooled to a predetermined temperature to crystallize and float the raw material mixed crystal on the liquid surface. A temperature gradient is applied to the melt in which the raw material mixed crystal floats on the liquid surface, and the solute is diffuse-transported onto the substrate by utilizing the change in solubility according to the temperature gradient. Thereby, a mixed crystal having a predetermined composition is crystallized. Also, a method of controlling the composition of the growth layer is disclosed.
【0004】[0004]
【発明が解決しようとする課題】従来の混晶成長法で
は、融液に含まれている溶質を拡散によって種結晶側に
供給している。そのため、混晶の成長が拡散速度によっ
て律速され、大きな成長速度で厚い晶出層を得ることが
困難であった。具体的には、良好なエピタキシャル成長
層が得られる成長速度は、1μm/分以下の極めて遅い
速度である。種結晶基板の表面近傍における融液の過飽
和度を高く保つとき、成長速度を大きくすることができ
る。高い過飽和度を得るためには、特開昭50−105
374号公報で開示されているように、基板表面から融
液内部に向かって急峻な温度勾配を付けることが必要と
される。しかし、急峻な温度勾配を安定条件下で維持す
ることは困難である。過飽和度は、特開昭49−110
578号公報で開示されているように、融液の温度を降
下させながら成長を継続させることにより、ある程度ま
で高めることができる。この場合、晶出温度の低下によ
り混晶の成分が偏析し、成長層の厚み方向に関する組成
変化が生じる欠点がある。しかも、大き過ぎる降温速度
では、融液に過冷却が生じ易く、成長層が細胞状のモザ
イク構造になってしまう欠点がある。In the conventional mixed crystal growth method, the solute contained in the melt is supplied to the seed crystal side by diffusion. Therefore, the growth of the mixed crystal is limited by the diffusion rate, and it is difficult to obtain a thick crystallized layer at a high growth rate. Specifically, the growth rate at which a good epitaxial growth layer is obtained is an extremely slow rate of 1 μm / min or less. When the supersaturation degree of the melt near the surface of the seed crystal substrate is kept high, the growth rate can be increased. To obtain a high degree of supersaturation, JP-A-50-105
As disclosed in Japanese Patent No. 374, it is necessary to provide a steep temperature gradient from the substrate surface toward the inside of the melt. However, it is difficult to maintain a steep temperature gradient under stable conditions. The degree of supersaturation is described in JP-A-49-110.
As disclosed in Japanese Patent No. 578, it is possible to raise the temperature of the melt to some extent by continuing the growth while lowering the temperature of the melt. In this case, there is a drawback that the components of the mixed crystal are segregated due to the decrease of the crystallization temperature, and the composition of the growth layer changes in the thickness direction. Moreover, if the temperature drop rate is too high, the melt is likely to be overcooled, and the growth layer has a disadvantage that it has a cellular mosaic structure.
【0005】結果として、基板結晶上に成長させ得る混
晶層は、24時間程度かけて成長させた場合でも1.4
mm程度の厚みに止まっている。この厚みに起因した制
約のため、基板部分を研磨除去した混晶層から得られる
混晶ウエハは、せいぜい1枚であり、複数枚の混晶ウエ
ハを切り出すことはできない。また、数十時間以上連続
して成長を行わせるとき、融液成分、特にAs等の蒸発
による組成変化の影響が大きく現れ、得られた混晶ウエ
ハの品質安定性が劣化する。本発明は、このような問題
を解消すべく案出されたものであり、混晶ソースとなる
微結晶を上層部に浮遊させた融液に熱対流を強制的に発
生させ、熱対流によって微結晶を種結晶側に輸送するこ
とにより、大きな成長速度で種結晶表面に厚い混晶を成
長させることを目的とする。As a result, the mixed crystal layer that can be grown on the substrate crystal is 1.4 even when grown for about 24 hours.
It has a thickness of about mm. Due to the restriction caused by this thickness, the number of mixed crystal wafers obtained from the mixed crystal layer obtained by polishing and removing the substrate portion is at most one, and a plurality of mixed crystal wafers cannot be cut out. Further, when the growth is continuously performed for several tens of hours or more, the influence of the composition change due to the evaporation of the melt component, especially As and the like becomes significant, and the quality stability of the obtained mixed crystal wafer deteriorates. The present invention has been devised in order to solve such a problem, and forcibly generates thermal convection in a melt in which microcrystals serving as a mixed crystal source are suspended in the upper layer, and fine convection is generated by the thermal convection. By transporting the crystal to the seed crystal side, it is intended to grow a thick mixed crystal on the seed crystal surface at a high growth rate.
【0006】[0006]
【課題を解決するための手段】本発明の液相成長方法
は、その目的を達成するため、容器外殻を形成する外筒
部内に流通孔が側壁に形成された内筒部を配置した二重
筒状容器に融液を収容し、該融液の上層部に混晶ソース
を微結晶として晶出浮遊させ、前記内筒部の内部に下方
から挿入された可動床で前記種結晶ウエハを前記二重筒
状容器の底部近傍位置に保持し、前記外筒部を介した加
熱及び前記可動床を介した冷却により前記内筒部の外側
を上昇し内側を下降する熱対流を発生させ、前記融液の
上層部にある前記微結晶を前記熱対流で前記種結晶側に
輸送し、前記種結晶の上に混晶として晶出させることを
特徴とする。また、液相成長装置は、容器外殻を形成す
る外筒部の内部に、前記外筒部よりも高さが小さく、側
壁に流通孔が形成された内筒部を配置した二重筒状容器
と、前記内筒部の内部に設けられ、前記二重筒状容器の
底部近傍位置で種結晶を保持する可動床と、前記二重筒
状容器に収容された融液を前記外筒部を介して加熱する
加熱手段とを備え、該加熱手段による加熱及び前記可動
床による冷却で、前記内筒部の外側を上昇し内側を下降
する熱対流を前記融液に発生させることを特徴とする。
可動床は、昇降及び回転可能に内筒部の内部に下方から
挿入され、頂面に種結晶保持部が形成されている。In order to achieve the object of the liquid phase growth method of the present invention, an inner cylinder portion having a side wall having a through hole is arranged in the outer cylinder portion forming the outer shell of the container. The melt is housed in a heavy-cylindrical container, the mixed crystal source is crystallized and suspended in the upper layer of the melt as fine crystals, and the seed crystal wafer is placed on the movable bed inserted from below into the inner cylinder. Holding in the vicinity of the bottom of the double cylindrical container, heat convection that rises outside the inner cylinder part and descends inside by heating through the outer cylinder part and cooling through the movable floor is generated, The microcrystals in the upper layer of the melt are transported to the seed crystal side by the thermal convection and crystallized as a mixed crystal on the seed crystal. Further, the liquid phase growth apparatus is a double cylinder in which an inner cylinder part having a height smaller than that of the outer cylinder part and having a through hole formed in a side wall is arranged inside the outer cylinder part forming the outer shell of the container. A container, a movable bed that is provided inside the inner tubular part, and holds a seed crystal at a position near the bottom of the double tubular container, and the melt contained in the double tubular container with the outer tubular part. Heating means for heating via the heating means, and by the heating by the heating means and the cooling by the movable floor, heat convection that rises outside the inner cylindrical portion and descends inside is generated in the melt. To do.
The movable bed is vertically rotatably and rotatably inserted into the inner cylindrical portion from below and has a seed crystal holding portion formed on the top surface.
【0007】本発明に従った液相成長装置は、たとえば
図1に示した構造をもち、石英ガラス製の反応管10内
に黒鉛製の二重筒状融液ホルダー20を配置している。
反応管10は、周囲が高周波加熱コイル11,抵抗加熱
体等の加熱手段で取り囲まれており、内部に石英質のガ
ス導入管12が配置されている。ガス導入管12から、
水素気流等の還元性ガス又は不活性ガスが反応管10の
内部に送り込まれる。融液ホルダー20は、外筒部21
の内側に内筒部22を配置し、内筒部22の内側に円柱
状の可動床23を設けている。外筒部21は、融液30
を収容する容器の外殻を構成し、底部が石英質の筒状サ
ポート24で支持されている。内筒部22は、溢流堰と
して働くように外筒部21より低く、外筒部21の底壁
と一体化されている。外筒部21の下部に相当する位置
で、内筒部22の側面に流通孔25が形成されている。
内筒部22の筒状脚部26は、外筒部21と可動床23
との間の環状間隙に差し込まれ、可動床23に対するガ
イドとしての機能を持つ。The liquid phase growth apparatus according to the present invention has, for example, the structure shown in FIG. 1, and a graphite double tube-shaped melt holder 20 is arranged in a reaction tube 10 made of quartz glass.
The reaction tube 10 is surrounded by a heating means such as a high-frequency heating coil 11 and a resistance heating body, and a silica gas introduction tube 12 is arranged inside. From the gas introduction pipe 12,
A reducing gas such as a hydrogen stream or an inert gas is fed into the reaction tube 10. The melt holder 20 has an outer cylinder portion 21.
The inner cylindrical portion 22 is disposed inside the inner cylindrical portion 22, and a cylindrical movable floor 23 is provided inside the inner cylindrical portion 22. The outer tube portion 21 is a melt 30.
Which constitutes the outer shell of the container for housing the bottom of the container and is supported by the cylindrical support 24 made of silica. The inner tubular portion 22 is lower than the outer tubular portion 21 so as to function as an overflow weir, and is integrated with the bottom wall of the outer tubular portion 21. A circulation hole 25 is formed in the side surface of the inner tubular portion 22 at a position corresponding to the lower portion of the outer tubular portion 21.
The tubular leg portion 26 of the inner tubular portion 22 includes the outer tubular portion 21 and the movable floor 23.
It functions as a guide for the movable floor 23 by being inserted into the annular gap between the and.
【0008】可動床23は、ヒートシンクとしての作用
を呈することから、熱伝導性の良好な黒鉛焼結体材料、
特に不純物濃度の低い原子炉用中性子吸収体として使用
されるBフリーの黒鉛やガラス状カーボンで被覆した耐
熱鋼等の材質で作製される。また、適宜の冷媒を循環さ
せる冷却機構を内蔵しても良い。可動床23は、ピスト
ン状又はスピンドル状の構造を持ち、頂面で種結晶ウエ
ハ31を保持する。可動床23は、容器底部に設けた軸
孔から差し込まれ、昇降及び回転するように適宜の駆動
手段(図示せず)に接続されている。融液ホルダー20
に収容された融液30は、高周波加熱コイル11による
加熱で昇温する。融液30は、過剰な溶質と共に高温域
まで加熱されることによって調製される。このとき、可
動床23を上昇させ、種結晶ウエハ31を融液30の液
面上方に維持する。成分調製された融液30を降温させ
る過程で、混晶の過飽和部分が微結晶32となって晶出
する。晶出した微結晶32は、微結晶集合体又は多結晶
体として、比重差のため融液30の上層部に浮遊し、或
いは外筒21の内壁面に固着する。この状態で可動床2
3を下降させ、種結晶ウエハ31を外筒部21の底部近
傍に位置させる。種結晶ウエハ31は、可動床23の昇
降量を調整することにより、成長面が常に最適位置に維
持される。また、可動床31を回転させることにより、
種結晶ウエハ31の近傍にある融液30の温度が均一化
される。Since the movable floor 23 acts as a heat sink, a graphite sintered body material having good thermal conductivity,
In particular, it is made of a material such as heat-resistant steel coated with B-free graphite or glassy carbon that is used as a neutron absorber for nuclear reactors having a low impurity concentration. Moreover, you may incorporate the cooling mechanism which circulates an appropriate refrigerant | coolant. The movable floor 23 has a piston-shaped or spindle-shaped structure, and holds the seed crystal wafer 31 on its top surface. The movable floor 23 is inserted from a shaft hole provided at the bottom of the container, and is connected to an appropriate drive means (not shown) so as to move up and down and rotate. Melt holder 20
The temperature of the melt 30 stored in is increased by heating with the high-frequency heating coil 11. The melt 30 is prepared by heating to a high temperature region with an excess of solute. At this time, the movable bed 23 is raised to maintain the seed crystal wafer 31 above the liquid surface of the melt 30. During the process of lowering the temperature of the melt 30 in which the components have been prepared, the supersaturated portion of the mixed crystal is crystallized as fine crystals 32. The crystallized microcrystals 32 float as microcrystal aggregates or polycrystals in the upper layer of the melt 30 due to the difference in specific gravity, or adhere to the inner wall surface of the outer cylinder 21. Movable floor 2 in this state
3, the seed crystal wafer 31 is positioned near the bottom of the outer cylinder 21. The seed crystal wafer 31 has its growth surface always maintained at an optimum position by adjusting the amount of elevation of the movable floor 23. Also, by rotating the movable floor 31,
The temperature of the melt 30 in the vicinity of the seed crystal wafer 31 is made uniform.
【0009】融液30は、高周波加熱コイル11によっ
て外筒部21の外表面から加熱され、ヒートシンクとし
て働く可動床23によって下方から冷却される。内筒部
22の筒状脚部26も、同様にヒートシンクとして働
く。そのため、融液30に、上層部が高温で下層部が低
温の温度勾配が付けられる。また、融液30内に、矢印
で示すように、外筒部21の内壁に沿った上昇流及び内
筒部22内における下降流からなる熱対流33が発生す
る。融液30の上層部に浮遊している微結晶32は、熱
対流33によって融液30に溶解して下層部に運ばれ、
種結晶ウエハ31の表面に晶出し、成長混晶単結晶34
となる。混晶単結晶34を晶出することにより低濃度に
なった融液30は、流通孔25を経て外筒部21に流出
し、上昇流となって融液30の上層部に流動する。上昇
した融液30は、上層部の微結晶32を溶し込み、高濃
度融液となった後、種結晶ウエハ31に向かって下降す
る。この循環流により、融液30の上層部では微結晶3
3が溶し込まれ、下層部では混晶単結晶34が晶出す
る。The melt 30 is heated from the outer surface of the outer cylinder portion 21 by the high frequency heating coil 11 and cooled from below by the movable floor 23 which functions as a heat sink. The tubular leg portion 26 of the inner tubular portion 22 also acts as a heat sink. Therefore, the melt 30 has a temperature gradient in which the upper layer is high and the lower layer is low. Further, in the melt 30, as shown by an arrow, a thermal convection 33 is generated, which is an ascending flow along the inner wall of the outer tubular portion 21 and a downward flow in the inner tubular portion 22. The microcrystals 32 floating in the upper layer portion of the melt 30 are dissolved in the melt 30 by the thermal convection 33 and are carried to the lower layer portion,
Crystallized on the surface of the seed crystal wafer 31 and grown mixed crystal single crystal 34
Becomes The melt 30 having a low concentration by crystallizing the mixed crystal single crystal 34 flows out to the outer cylinder part 21 through the flow hole 25 and becomes an upward flow to flow to the upper layer part of the melt 30. The rising melt 30 melts the fine crystals 32 in the upper layer into a high-concentration melt, and then descends toward the seed crystal wafer 31. Due to this circulating flow, in the upper layer portion of the melt 30, the fine crystals 3
3, the mixed crystal single crystal 34 crystallizes out in the lower layer.
【0010】[0010]
【作用】外筒部21と内筒部22との間にある融液30
は、十分な量のソース混晶を飽和状態まで溶解する高温
に高周波化熱コイル11で加熱されている。他方、内筒
部22の内部にある融液30は、溶かし込んだ溶質が晶
出する温度まで、ヒートシンクとして働く可動床23及
び筒状脚部26で冷却されている。その結果、融液30
の上層部にあるソース部から下層部にあるシード部へ溶
質が迅速に輸送される。内筒部22の内部及び外部にお
ける融液30の温度差に起因する熱対流33のため、ソ
ース部からシード部までの距離が長くなっても、十分な
輸送量が確保される。ソース部からシード部までの距離
を長くすると、融液30の収容量が増し生産能力を大き
くできることは勿論、より大きな温度差をソース部とシ
ード部との間に付けることができる。その結果、従来法
に比較して10倍以上早い成長速度で混晶単結晶34が
成長する。種結晶ウエハ31を保持した可動床23は、
回転及び/又は下降によって結晶成長界面周辺の温度条
件を均一化する。そのため、混晶単結晶34の外形が対
称に制御されると共に、固液界面の位置を最適に保ちな
がら成長を継続することができる。したがって、高品質
で大型の厚肉混晶が得られる。Operation: The melt 30 between the outer cylinder portion 21 and the inner cylinder portion 22
Is heated by the high frequency heating coil 11 to a high temperature that melts a sufficient amount of the source mixed crystal to the saturated state. On the other hand, the melt 30 inside the inner tubular portion 22 is cooled to a temperature at which the melted solute is crystallized by the movable floor 23 and the tubular leg portion 26 that function as heat sinks. As a result, the melt 30
The solute is rapidly transported from the source part in the upper layer part to the seed part in the lower layer part. Due to the thermal convection 33 caused by the temperature difference of the melt 30 inside and outside the inner tubular portion 22, a sufficient transport amount is secured even if the distance from the source portion to the seed portion becomes long. Increasing the distance from the source part to the seed part increases the capacity of the melt 30 to increase the production capacity, and of course allows a larger temperature difference to be provided between the source part and the seed part. As a result, the mixed crystal single crystal 34 grows at a growth rate 10 times faster than that of the conventional method. The movable floor 23 holding the seed crystal wafer 31 is
The temperature condition around the crystal growth interface is made uniform by rotating and / or descending. Therefore, the outer shape of the mixed crystal single crystal 34 is controlled symmetrically, and the growth can be continued while keeping the position of the solid-liquid interface at an optimum level. Therefore, a high-quality and large-sized thick mixed crystal can be obtained.
【0011】[0011]
【実施例】面方位(100)のGaAsを種結晶ウエハ
31として、黒鉛でできた直径25mmのピストン状可
動床23の頂面に固定した。1200gの金属Ga,7
7gのGaAs,2.3gの金属Al及びドーパントと
して0.7gの金属Znを、内径150mmの外筒部2
1及び内径40mmの内筒部22をもつ融液ホルダー2
0に装入した。そして、反応管10内を10%Ar含有
水素気流で置換した。反応管10の内部をAr含有水素
気流で完全に置換した後、高周波加熱コイル11に小電
流を供給しGaを溶融した。高周波加熱コイル11に供
給する電流を徐々に大きくすると、Al及びZnが完全
にGa融液に溶解し、次いでGaAsも次第に溶解し
た。この昇温過程で、融液30の温度が300℃よりあ
まり高くならないとき、種結晶ウエハ31が融液30の
液面上方に位置するように可動床23を上昇させた。EXAMPLE GaAs having a plane orientation (100) was used as a seed crystal wafer 31 and was fixed to the top surface of a piston-shaped movable floor 23 made of graphite and having a diameter of 25 mm. 1200g metal Ga, 7
7 g of GaAs, 2.3 g of metallic Al, and 0.7 g of metallic Zn as a dopant are added to the outer cylindrical portion 2 having an inner diameter of 150 mm.
1 and a melt holder 2 having an inner tube portion 22 having an inner diameter of 40 mm
Charged 0. Then, the inside of the reaction tube 10 was replaced with a hydrogen flow containing 10% Ar. After completely replacing the inside of the reaction tube 10 with an Ar-containing hydrogen stream, a small current was supplied to the high-frequency heating coil 11 to melt Ga. When the current supplied to the high frequency heating coil 11 was gradually increased, Al and Zn were completely dissolved in the Ga melt, and then GaAs was also gradually dissolved. During this temperature raising process, when the temperature of the melt 30 did not rise above 300 ° C., the movable bed 23 was raised so that the seed crystal wafer 31 was located above the liquid surface of the melt 30.
【0012】次いで、融液30を890℃まで昇温さ
せ、その温度に30分間保持した。高温保持により、G
aAsを含めほとんどの溶質が融液30に溶解した。調
製された融液30を、毎分2〜3℃の降温速度で840
℃まで冷却した。この冷却により、Ga1-x Alx As
混晶の過飽和分が微結晶32となって晶出し、融液30
の上層部に浮遊した。そこで、種結晶ウエハ31が融液
ホルダー20の底部近傍に位置するまで、可動床23を
下降させた。また、可動床23を毎分5〜6回転で回転
させ、種結晶ウエハ31周辺の温度条件を均一化した。
この状態を保持していると、融液30は、上層部の温度
が840℃になり、下層部の温度が705℃になった。
すなわち、上下方向に温度差135℃の温度勾配が生
じ、内筒部22の外側を上昇し内側を下降する熱対流3
3が融液ホルダー20内に定常的に生じた。炉上方から
浮遊微結晶32の動きを観察したモデル実験の結果から
推察される対流速度は大きく、毎分15サイクルに達し
ていた。Next, the melt 30 was heated to 890 ° C. and kept at that temperature for 30 minutes. By maintaining high temperature, G
Most solutes including aAs were dissolved in the melt 30. 840 the prepared melt 30 at a temperature decreasing rate of 2 to 3 ° C. per minute.
Cooled to ° C. By this cooling, Ga 1-x Al x As
The supersaturated portion of the mixed crystal becomes crystallites 32 and crystallizes, and the melt 30
Floated in the upper layer. Therefore, the movable floor 23 was lowered until the seed crystal wafer 31 was positioned near the bottom of the melt holder 20. Further, the movable bed 23 was rotated at 5 to 6 revolutions per minute to make the temperature condition around the seed crystal wafer 31 uniform.
In this state, the melt 30 had an upper layer temperature of 840 ° C and a lower layer temperature of 705 ° C.
That is, a temperature gradient with a temperature difference of 135 ° C. is generated in the vertical direction, and the heat convection 3 rises outside the inner tubular portion 22 and falls inside the inner tubular portion 22.
3 was constantly generated in the melt holder 20. The convection velocity inferred from the result of the model experiment in which the movement of the floating crystallites 32 was observed from above the furnace was high, reaching 15 cycles per minute.
【0013】種結晶ウエハ31上における混晶単結晶3
4の成長速度は、厚みの増加速度で平均500μm/時
であった。2〜3時間ごとに1mmの割合で可動床23
を下方に移動し、成長部の固液界面位置を調節しなが
ら、48時間保持した。炉に対する電力供給を停止し、
可動床23を上方に移動させ、成長結晶23を融液30
の液面から出した。炉全体が冷却した後、成長結晶23
を炉外に取り出した。成長したGa1-x Alx As系の
混晶単結晶34は、上端部が尖った釣鐘状になってお
り、全体の高さが約15mmであった。混晶単結晶34
をスライシングし、厚み500μmの混晶ウエハを7枚
得た。混晶比xは、ウエハ面内及び各ウエハ間でほぼ均
一の値0.4を示し、発光素子用エピタキシャル基板と
して使用することができた。Mixed crystal single crystal 3 on seed crystal wafer 31
The growth rate of No. 4 was an average of 500 μm / hour in terms of the increasing rate of thickness. Movable floor 23 at a rate of 1 mm every 2-3 hours
Was moved downward and held for 48 hours while adjusting the solid-liquid interface position of the growth part. Shut off the power supply to the furnace,
The movable bed 23 is moved upward so that the grown crystal 23 melts 30
Out of the liquid surface. After the whole furnace is cooled, the grown crystal 23
Was taken out of the furnace. The grown Ga 1-x Al x As mixed crystal single crystal 34 had a bell shape with a sharp upper end, and the total height was about 15 mm. Mixed crystal single crystal 34
Was sliced to obtain 7 mixed crystal wafers having a thickness of 500 μm. The mixed crystal ratio x showed a value of 0.4, which was almost uniform in the plane of the wafer and between the wafers, and could be used as an epitaxial substrate for a light emitting device.
【0014】なお、以上の実施例においては、融液30
を高周波加熱する場合を説明した。しかし、本発明はこ
れに拘束されるものではなく、二重筒状容器の外筒部を
外側から加熱するものである限り、抵抗加熱を始めとし
て他の加熱手段を採用することも可能である。また、成
長させる混晶としても、GaAs−AlAsに限ったも
のではない。たとえば、GaAs−InAs系,GaP
−InP系等の周期率表におけるV族元素を共通元素と
する他の混晶も、本発明に従って同様に成長させること
ができる。In the above embodiment, the melt 30
The case of high-frequency heating was explained. However, the present invention is not limited to this, and other heating means including resistance heating can be adopted as long as the outer cylindrical portion of the double cylindrical container is heated from the outside. . Further, the mixed crystal to be grown is not limited to GaAs-AlAs. For example, GaAs-InAs system, GaP
Other mixed crystals having a group V element as a common element in the periodic table such as —InP system can be similarly grown according to the present invention.
【0015】[0015]
【発明の効果】以上に説明したように、本発明において
は、融液内に強制的に発生させた熱対流によって溶質を
ソース部からシード部に輸送し、種結晶基板の上に混晶
を迅速に成長させている。熱対流は、ソース部からシー
ド部を大きく離すことを可能にすると共に、結晶成長部
の固液界面近傍における緩やかな温度勾配、換言すれば
濃度勾配を可能にする。その結果、従来法に比較して極
めて大型の混晶単結晶が容易に成長する。しかも、可動
床の回転や昇降によって固液界面近傍の温度均一性や適
正な界面位置が確保されるため、大型の結晶を成長させ
る場合にあっても形状制御が可能となる。得られた混晶
単結晶は、従来の混晶に比較して厚いことから数枚の混
晶基板に切り出すことができ、生産性を向上させる。As described above, in the present invention, the solute is transported from the source portion to the seed portion by the thermal convection forcefully generated in the melt, and the mixed crystal is formed on the seed crystal substrate. Growing fast. The thermal convection enables the seed portion to be largely separated from the source portion, and also enables a gradual temperature gradient in the vicinity of the solid-liquid interface of the crystal growth portion, in other words, a concentration gradient. As a result, an extremely large mixed crystal single crystal easily grows as compared with the conventional method. Moreover, since the temperature uniformity near the solid-liquid interface and an appropriate interface position are ensured by rotating and moving the movable bed, the shape can be controlled even when growing a large crystal. Since the obtained mixed crystal single crystal is thicker than the conventional mixed crystal, it can be cut into several mixed crystal substrates, and the productivity is improved.
【図1】 本発明実施例で使用した液相成長装置FIG. 1 is a liquid phase growth apparatus used in Examples of the present invention.
10:反応管 11:高周波加熱コイル(加熱手段)
20:融液ホルダー(二重筒状容器) 21:外
筒部 22:内筒部 23:可動床 25:流通
孔 30:融液 31:種結晶ウエハ 32:微
結晶 33:熱対流 34:成長した混晶単結晶10: Reaction tube 11: High frequency heating coil (heating means)
20: Melt holder (double cylinder container) 21: Outer cylinder part 22: Inner cylinder part 23: Movable floor 25: Flow hole 30: Melt 31: Seed crystal wafer 32: Microcrystal 33: Thermal convection 34: Growth Mixed crystal single crystal
Claims (4)
側壁に形成された内筒部を配置した二重筒状容器に融液
を収容し、該融液の上層部に混晶ソースを微結晶として
晶出浮遊させ、前記内筒部の内部に下方から挿入された
可動床で前記種結晶ウエハを前記二重筒状容器の底部近
傍位置に保持し、前記外筒部を介した加熱及び前記可動
床を介した冷却により前記内筒部の外側を上昇し内側を
下降する熱対流を発生させ、前記融液の上層部にある前
記微結晶を前記熱対流で前記種結晶側に輸送し、前記種
結晶の上に混晶として晶出させる液相成長方法。1. A melt is contained in a double cylindrical container in which an inner cylinder having a side wall with a through hole is arranged in an outer cylinder forming an outer shell of the container, and a mixed crystal is contained in an upper layer of the melt. The source is crystallized and suspended as fine crystals, and the seed crystal wafer is held at a position near the bottom of the double cylindrical container by a movable bed inserted from below into the inner cylindrical portion, and the outer cylindrical portion is interposed therebetween. By the heating and cooling through the movable bed, thermal convection that rises outside and descends inside of the inner tubular portion is generated, and the microcrystals in the upper layer portion of the melt are heated by the convection to the seed crystal side. And a liquid crystal growth method of crystallizing as a mixed crystal on the seed crystal.
可能に設けられ、頂面で種結晶を保持する請求項1記載
の液相成長方法。2. The liquid phase growth method according to claim 1, wherein the movable bed according to claim 1 is provided so as to be vertically movable and rotatable and holds a seed crystal on a top surface thereof.
記外筒部よりも高さが小さく、側壁に流通孔が形成され
た内筒部を配置した二重筒状容器と、前記内筒部の内部
に設けられ、前記二重筒状容器の底部近傍位置で種結晶
を保持する可動床と、前記二重筒状容器に収容された融
液を前記外筒部を介して加熱する加熱手段とを備え、該
加熱手段による加熱及び前記可動床による冷却で、前記
内筒部の外側を上昇し内側を下降する熱対流を前記融液
に発生させる液相成長装置。3. A double cylindrical container in which an inner cylinder portion having a height smaller than that of the outer cylinder portion and having a side wall formed with a through hole is disposed inside an outer cylinder portion forming an outer shell of the container, A movable bed that is provided inside the inner tubular part and holds a seed crystal at a position near the bottom of the double tubular container, and a melt contained in the double tubular container through the outer tubular part. A liquid phase growth apparatus comprising: heating means for heating, and by the heating by the heating means and the cooling by the movable bed, thermal convection that rises outside the inner cylindrical portion and descends inside is generated in the melt.
可能に内筒部の内部に下方から挿入され、頂面に種結晶
保持部が形成されている液相成長装置。4. The liquid phase growth apparatus according to claim 3, wherein the movable bed is vertically rotatably and rotatably inserted into the inner cylindrical portion from below and a seed crystal holding portion is formed on the top surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28107793A JPH07138090A (en) | 1993-11-10 | 1993-11-10 | Method for growing mixed crystal in liquid phase and apparatus therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28107793A JPH07138090A (en) | 1993-11-10 | 1993-11-10 | Method for growing mixed crystal in liquid phase and apparatus therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07138090A true JPH07138090A (en) | 1995-05-30 |
Family
ID=17634007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28107793A Withdrawn JPH07138090A (en) | 1993-11-10 | 1993-11-10 | Method for growing mixed crystal in liquid phase and apparatus therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07138090A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012121766A (en) * | 2010-12-08 | 2012-06-28 | Ihi Corp | Method and apparatus for stirring reaction vessel for gallium nitride |
-
1993
- 1993-11-10 JP JP28107793A patent/JPH07138090A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012121766A (en) * | 2010-12-08 | 2012-06-28 | Ihi Corp | Method and apparatus for stirring reaction vessel for gallium nitride |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101681658B1 (en) | Sheet thickness control | |
KR100955887B1 (en) | Method for growing silicon single crystal and method for manufacturing silicon wafer | |
US7179330B2 (en) | Method of manufacturing silicon single crystal, silicon single crystal and silicon wafer | |
US20210222320A1 (en) | Method of Producing a Single-Crystal | |
US20100148403A1 (en) | Systems and Methods For Manufacturing Cast Silicon | |
JPH05286791A (en) | Production and apparatus for production of crystal by floating zone melting method | |
JP2009149452A (en) | Method for growing semiconductor crystal | |
JP2008247706A (en) | Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer | |
Deitch et al. | Bulk single crystal growth of silicon-germanium | |
CN100385046C (en) | Method for producing silicon wafer | |
US4654110A (en) | Total immersion crystal growth | |
JP2003286024A (en) | Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering | |
US8603242B2 (en) | Floating semiconductor foils | |
US4619811A (en) | Apparatus for growing GaAs single crystal by using floating zone | |
US4824520A (en) | Liquid encapsulated crystal growth | |
JPH07138090A (en) | Method for growing mixed crystal in liquid phase and apparatus therefor | |
JP2690419B2 (en) | Single crystal growing method and apparatus | |
JP2009190914A (en) | Method for producing semiconductor crystal | |
JP2010030847A (en) | Production method of semiconductor single crystal | |
JP2007284323A (en) | Manufacturing device and manufacturing method for semiconductor single crystal | |
JP2006188403A (en) | Compound semiconductor single crystal and its manufacturing method and apparatus | |
JP2004099390A (en) | Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal | |
JP2010030868A (en) | Production method of semiconductor single crystal | |
JP2000001308A (en) | Production of polycrystalline silicon ingot and apparatus for production therefor | |
JP2002274995A (en) | Method of manufacturing silicon carbide single crystal ingot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20010130 |