JPH07137145A - Method and apparatus for optical formation - Google Patents

Method and apparatus for optical formation

Info

Publication number
JPH07137145A
JPH07137145A JP5312851A JP31285193A JPH07137145A JP H07137145 A JPH07137145 A JP H07137145A JP 5312851 A JP5312851 A JP 5312851A JP 31285193 A JP31285193 A JP 31285193A JP H07137145 A JPH07137145 A JP H07137145A
Authority
JP
Japan
Prior art keywords
base plate
movable base
resin
layer
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5312851A
Other languages
Japanese (ja)
Inventor
Kyoichi Deki
恭一 出来
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP5312851A priority Critical patent/JPH07137145A/en
Publication of JPH07137145A publication Critical patent/JPH07137145A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/12Spreading-out the material on a substrate, e.g. on the surface of a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip
    • B29K2995/0073Roughness, e.g. anti-slip smooth

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To prepare for a following layer in a short period, or obviate the necessity of flattening means and also render the structure simple by controlling the placement of a movable base plate and supply of photo-setting resin, and thus making the position of a free liquid level constant, and giving vibration to the movable base plate for conducting the perfect covering and flattening of resin. CONSTITUTION:A movable base plate 3 is maintained at the depth of, e.g. 0.1mm from the liquid level 11 of resin. Beam light 4 is scanned on the basis of slice-frigure data for exposure. In this manner, the first layer 5 of a thin plate solidified layer is fixed on the movable base plate 3. In the next place, photo-setting resin 2 is supplied from photo-setting resin supplying means 9 to such an extent that liquid level overflows from the resin bath 1, and then the movable base plate 3 is lowered for one layer of the thin plate solidified layer. Then, when the movable base plate 3 is given vibration by an actuator 8, the first layer 5 is completely covered with photo-setting resin 2, and further flattening of the photo-setting resin layer 2 can be achieved. After that, beam light 4 is exposed in the same manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光造形法に関するも
のであって、特に自由液面法による光造形法およびその
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stereolithography method, and more particularly to a stereolithography method by a free liquid surface method and an apparatus therefor.

【0002】[0002]

【従来の技術】近年、工業製品は曲面を多用したデザイ
ンが要求され、また部品の実装密度が非常に高くなって
いる。このためコンピュータによって立体形状を取り扱
う技術が発達し、3次元CADシステムによる設計が普
及しつつある。これに伴い、3次元物体モデルの加工に
はCADデータを直接利用した数値制御(NC)のフラ
イス加工が利用されている。しかし、現実には完全な立
体形状の加工は困難であり、実用上は浮き彫り彫刻程度
のものしか製作できない。とくに内部構造を一体として
NC工作機で正確に削り出すことは事実上不可能であ
る。
2. Description of the Related Art In recent years, industrial products have been required to have a design with many curved surfaces, and the mounting density of parts has become extremely high. For this reason, techniques for handling three-dimensional shapes by computers have been developed, and designs using three-dimensional CAD systems are becoming popular. Along with this, numerical control (NC) milling that directly uses CAD data is used for processing a three-dimensional object model. However, in reality, it is difficult to process a completely three-dimensional shape, and in practice, only a relief engraving can be produced. In particular, it is virtually impossible to accurately machine an internal structure with an NC machine tool.

【0003】上記問題を解決する方法の一つとして、光
硬化性樹脂を利用した光反応成形法がある。これについ
ては例えば「レーザー研究」(第18巻第7号448乃
至455ページ)に記載の丸谷の論文に詳細に説明され
ている。以降丸谷に倣い、光硬化性樹脂を利用した光反
応成形法を光造形法と称する。
As one of the methods for solving the above problems, there is a photoreactive molding method using a photocurable resin. This is described in detail in the article by Marutani, for example, in "Laser Research" (Vol. 18, No. 7, pp. 448 to 455). Following Marutani, a photoreactive molding method using a photocurable resin is referred to as a stereolithography method.

【0004】光造形法による3次元物体モデルの形成
は、一般的に以下のように行われる。まずコンピュータ
上で定義された数値モデル(CADデータまたは3次元
計測データ)を高さ方向に等間隔の水平面で切断し、ス
ライス図形データ群を作成する。次にそれらのデータを
下端から取り出して、その形状に基づいて光硬化性樹脂
に光ビームを照射・走査する。照射部分は縮重合反応を
生じて固化する。照射光は樹脂中で吸収され減衰し、固
化は樹脂表面でのみ発生するので、結果的に薄板状固化
層が形成される。その後、所定の厚さの未硬化樹脂層を
その上に重ね、次のスライス図形データについての露光
・固化を行う。この工程を漸次、上端まで繰り返し、薄
板状固化層を積層することにより任意の3次元物体モデ
ルが形成される。尚、硬化反応時に上下の層は互いに強
固に接合され、結局全体は一体化したプラスチックの立
体モデルとなる。
Formation of a three-dimensional object model by the stereolithography method is generally performed as follows. First, a numerical model (CAD data or three-dimensional measurement data) defined on a computer is cut along a horizontal plane at equal intervals in the height direction to create a slice graphic data group. Next, these data are taken out from the lower end, and the photocurable resin is irradiated and scanned with a light beam based on the shape. The irradiated portion undergoes a polycondensation reaction to solidify. The irradiation light is absorbed and attenuated in the resin, and solidification occurs only on the surface of the resin, so that a thin plate solidified layer is formed. After that, an uncured resin layer having a predetermined thickness is overlaid thereon, and the next slice graphic data is exposed and solidified. This process is gradually repeated until the upper end, and by laminating thin plate-like solidified layers, an arbitrary three-dimensional object model is formed. The upper and lower layers are firmly bonded to each other during the curing reaction, and as a result, the whole becomes a solid three-dimensional model of plastic.

【0005】所定の厚さの未硬化樹脂層を薄板状固化層
に積層する方法の一つとして、光を照射すべき樹脂液表
面を重力作用による自由液面とする自由液面法がある。
図2は自由液面法の説明図である。1は例えばラジカル
重合型のアクリレート系樹脂である光硬化性樹脂2を貯
蔵する樹脂槽である。3は上下方向に移動する可動ベー
スプレートであり、この上に3次元物体モデルが形成さ
れる。4は例えばHe−Cdレーザ装置からのビーム光
であり、前述のスライス図形データに基づいて制御され
た不図示のガルバノメータを用いた光学系によって走査
される。
As one of the methods for laminating an uncured resin layer having a predetermined thickness on a thin plate-like solidified layer, there is a free liquid level method in which the surface of a resin liquid to be irradiated with light is a free liquid surface by the action of gravity.
FIG. 2 is an explanatory diagram of the free liquid level method. Reference numeral 1 denotes a resin tank for storing a photocurable resin 2 which is, for example, a radical polymerization type acrylate resin. Reference numeral 3 denotes a movable base plate which moves in the vertical direction, on which a three-dimensional object model is formed. Reference numeral 4 denotes a beam light from, for example, a He-Cd laser device, which is scanned by an optical system using a galvanometer (not shown) controlled based on the above-mentioned slice figure data.

【0006】自由液面法による薄板状固化層の積層は以
下の手順で行われる。まず可動ベースプレート3を樹脂
中に浸漬し上下動させ、樹脂の液面11から所定の薄板
状固化層の深さd、例えば約0.1mmの深さの位置に
保持する。そして、ビーム光4をスライス図形データに
基づいて走査しながら露光する。この工程により、薄板
状固化層の第1層5が形成され、可動ベースプレート3
に固着される。
Lamination of the thin plate solidified layer by the free liquid level method is performed by the following procedure. First, the movable base plate 3 is immersed in a resin and moved up and down, and is held at a predetermined depth d of the thin plate-like solidified layer from the liquid surface 11 of the resin, for example, at a depth of about 0.1 mm. Then, the light beam 4 is exposed while scanning based on the slice graphic data. By this step, the first layer 5 of the thin plate solidified layer is formed, and the movable base plate 3
Stuck to.

【0007】次に薄板状固化層の第1層5の上面から光
硬化性樹脂2の自由液面11までの距離が、前述の薄板
状固化層の一層分の厚さと等しくなるように、可動ベー
スプレート3を下方に移動させ保持する。これにより所
定の厚みを持った未硬化樹脂層6が薄板状固化層5の第
1層の上に形成される。尚、可動ベースプレート3の支
持機構31は、その光硬化性樹脂2の液中での占有体積
が可動ベースプレート3の移動により都度変化する。よ
ってこの条件を考慮して可動ベースプレート3を前記の
状態となるよう制御する必要がある。そして次のスライ
ス図形データについての露光・固化を行う。以上の工程
を繰り返すことにより、所望の3次元物体モデルが形成
される。
Next, the distance from the upper surface of the first layer 5 of the thin plate-like solidified layer to the free liquid surface 11 of the photocurable resin 2 is set to be equal to the thickness of one layer of the thin plate-like solidified layer described above. The base plate 3 is moved downward and held. Thereby, the uncured resin layer 6 having a predetermined thickness is formed on the first layer of the thin plate solidified layer 5. The volume occupied by the photocurable resin 2 in the liquid of the support mechanism 31 of the movable base plate 3 changes each time the movable base plate 3 moves. Therefore, in consideration of this condition, it is necessary to control the movable base plate 3 to be in the above state. Then, the next slice graphic data is exposed and solidified. A desired three-dimensional object model is formed by repeating the above steps.

【0008】[0008]

【発明が解決しようとする課題】以上のように自由液面
法は簡便な方法であるが、露光・固化の前には未硬化樹
脂層6をその下層にある固化層上に、完全にかつ一定の
層厚になるよう平坦に被う必要がある。しかしながら光
硬化性樹脂2には一定の表面張力があるので、単に可動
ベースプレート3を前記のように制御して、所定の深さ
だけ下方に移動させ保持するだけでは光硬化性樹脂2を
固化層上に完全に被うことができず、未硬化樹脂層6を
形成することができない。従って、従来は可動ベースプ
レート3を所定の深さ以上沈めて光硬化性樹脂2が固化
層上を完全に被った後、可動ベースプレート3の支持機
構31の光硬化性樹脂2の液中での占有体積を充分に考
慮して、可動ベースプレート3を所定の位置に上方へ移
動させ保持して未硬化樹脂層6を形成していた。
As described above, the free liquid level method is a simple method, but before the exposure and solidification, the uncured resin layer 6 is completely and completely formed on the underlying solidified layer. It is necessary to cover flatly so as to have a constant layer thickness. However, since the photo-curable resin 2 has a constant surface tension, the photo-curable resin 2 is solidified by simply controlling the movable base plate 3 as described above and moving and holding the movable base plate 3 downward by a predetermined depth. It cannot be completely covered and the uncured resin layer 6 cannot be formed. Therefore, conventionally, after the movable base plate 3 is submerged to a predetermined depth or more and the photocurable resin 2 completely covers the solidified layer, the support mechanism 31 of the movable base plate 3 is occupied in the liquid by the liquid. The uncured resin layer 6 is formed by moving the movable base plate 3 upward to a predetermined position and holding it while sufficiently considering the volume.

【0009】また光硬化性樹脂2には樹脂の種類によっ
てある一定の粘性があるので、固化層上を完全に被った
だけでは未硬化樹脂層6は平坦とはならない。そこで従
来は、前記のように可動ベースプレート3を保持した
後、露光・固化の前に例えばブラシ状の掃引手段で未硬
化樹脂層6を掃引して平坦化している。または特開平5
−96632に開示されているように光硬化性樹脂2に
超音波振動を与えて流動性を高めて、光硬化性樹脂2の
平坦化にかかる時間を短縮している。しかしながらこの
光硬化性樹脂2に超音波振動を与える方法では、形成す
るモデルが図3のような100、101からなる構造物
である多重管では、内側の管部101に超音波振動が伝
達しづらいので平坦化に時間がかかる。以上のように従
来の自由液面法による光造形では、薄板状固化層5を一
層造形後次層の準備の処理に時間がかかり、また複雑な
制御機構を必要とし、さらに平坦化手段が別途必要なの
で装置構造も複雑となる欠点を有する。
Since the photocurable resin 2 has a certain viscosity depending on the type of resin, the uncured resin layer 6 does not become flat just by completely covering the solidified layer. Therefore, conventionally, after the movable base plate 3 is held as described above, the uncured resin layer 6 is swept and flattened by, for example, brush-shaped sweeping means before exposure and solidification. Or JP-A-5
As disclosed in -96632, the photocurable resin 2 is subjected to ultrasonic vibration to enhance the fluidity, and the time required for flattening the photocurable resin 2 is shortened. However, in the method of applying ultrasonic vibration to the photocurable resin 2, in the case of a multi-tube whose model to be formed is a structure composed of 100 and 101 as shown in FIG. 3, the ultrasonic vibration is transmitted to the inner tube portion 101. Since it is difficult, it takes time to flatten. As described above, in the conventional stereolithography by the free liquid level method, it takes time to prepare the thin plate solidified layer 5 for one layer after preparation, and a complicated control mechanism is required. Since it is necessary, it has a drawback that the device structure is complicated.

【0010】そこで本発明はかかる事情に鑑みてなされ
たものであり、その目的は、自由液面法による光造形法
およびその装置において、可動ベースプレートを単純に
所定の薄板状固化層の厚み1層分だけ下げるだけで、固
化層上に所定の厚みを持った未硬化樹脂層6を形成し、
その平坦化を前記の掃引手段や光硬化性樹脂2に超音波
振動与える手段を使用することなく実現することのでき
る光造形法およびその装置を提供することにある。
Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a movable base plate simply in a predetermined thin plate-like solidified layer having a thickness of one layer in a stereolithography method by the free liquid surface method and its apparatus. By only lowering the amount, an uncured resin layer 6 having a predetermined thickness is formed on the solidified layer,
An object of the present invention is to provide an optical modeling method and its apparatus that can realize the flattening without using the sweeping means or the means for applying ultrasonic vibration to the photocurable resin 2.

【0011】[0011]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、樹脂槽に光硬化性樹脂を収容し、上下
方向に移動する可動ベースプレートを前記光硬化性樹脂
の自由液面より一定の距離だけ下方に移動し、ビーム光
により露光・固化後、順次前記可動ベースプレートを一
定の距離だけ下方に移動する工程とビーム光による露光
・固化固定を繰り返し、最終的に所望の3次元物体モデ
ルを得る光造形法において、前記可動ベースプレートの
移動前に光硬化性樹脂の供給を制御して自由液面の位置
を一定にし、前記可動ベースプレートに振動を与えて樹
脂の完全被覆と平坦化を成す。
In order to achieve the above object, the present invention provides a movable base plate which accommodates a photocurable resin in a resin tank and moves in the vertical direction from a free liquid surface of the photocurable resin. After moving a fixed distance downward, exposing and solidifying with the beam of light, repeating the step of sequentially moving the movable base plate downward by a fixed distance and exposing / fixing and fixing with the beam of light to finally obtain a desired three-dimensional object. In the stereolithography method for obtaining a model, the position of the free liquid surface is controlled by controlling the supply of the photocurable resin before the movement of the movable base plate, and the movable base plate is vibrated to completely cover and flatten the resin. Make up.

【0012】また、樹脂槽に光硬化性樹脂を収容し、上
下方向に移動する可動ベースプレートを前記光硬化性樹
脂の自由液面より一定の距離だけ下方に移動し、ビーム
光により露光・固化後、順次前記可動ベースプレートを
一定の距離だけ下方に移動する工程とビーム光による露
光・固化固定を繰り返し、最終的に所望の3次元物体モ
デルを得る光造形装置において、前記可動ベースプレー
トの位置と光硬化性樹脂の供給を制御して自由液面の位
置を一定にする光硬化性樹脂供給手段と、前記可動ベー
スプレートに振動を与えて樹脂の完全被覆と平坦化を成
すための前記可動ベースプレートに設置された振動供給
手段を含む。
Further, the photocurable resin is housed in a resin tank, and the movable base plate which moves in the vertical direction is moved below the free liquid surface of the photocurable resin by a certain distance, and after exposure and solidification by beam light. In a stereolithography apparatus that sequentially obtains a desired three-dimensional object model by repeating a process of sequentially moving the movable base plate downward by a predetermined distance and exposing and solidifying and fixing with a light beam, the position of the movable base plate and photocuring Installed on the movable base plate for controlling the supply of the functional resin to keep the position of the free liquid surface constant and for vibrating the movable base plate to completely cover and flatten the resin. Vibration supply means.

【0013】[0013]

【作用】可動ベースプレートに設置した振動手段を振動
させることにより、可動ベースプレートに形成された固
化層も振動する。従って可動ベースプレートを所定の薄
板状固化層の厚み1層分だけ下げ、所定の振動数をもっ
て振動手段を振動させることによって、光硬化性樹脂が
固化層上に所定の厚みをもって完全に被われる。さらに
この固化層の振動は、固化層上を完全に被った光硬化性
樹脂に対して圧力として作用するので、前記振動手段の
振動数を制御することによりその平坦化を実現する。以
上により、固化層上に所定の厚みを持った未硬化樹脂層
を形成する。尚、自由液面の位置が一定であるので、可
動ベースプレートは、その支持機構の光硬化性樹脂液中
での占有体積を考慮することなく単純に所定の薄板状固
化層の厚み1層分だけ下げるだけで所定の位置に保持さ
れる。
By vibrating the vibrating means installed on the movable base plate, the solidified layer formed on the movable base plate also vibrates. Therefore, by lowering the movable base plate by one thickness of a predetermined thin plate solidified layer and vibrating the vibrating means at a predetermined frequency, the photocurable resin is completely covered with a predetermined thickness on the solidified layer. Further, since the vibration of the solidified layer acts as a pressure on the photo-curable resin completely covering the solidified layer, the flattening is realized by controlling the frequency of the vibrating means. As described above, an uncured resin layer having a predetermined thickness is formed on the solidified layer. Since the position of the free liquid surface is constant, the movable base plate is simply the thickness of one predetermined thin plate solidified layer without considering the volume occupied by the supporting mechanism in the photocurable resin liquid. It is held in place simply by lowering it.

【0014】[0014]

【実施例】以下に図面に示す実施例に基づいて本発明を
具体的に説明する。図1は本発明の一実施例である光造
形装置を説明する概略説明図である。1は例えばラジカ
ル重合型のアクリレート系樹脂である光硬化性樹脂2を
貯蔵する樹脂槽である。3は上下方向に移動する可動ベ
ースプレートであり、この上に3次元物体モデルが形成
される。4は例えばHe−Cdレーザ装置からのビーム
光であり、前述のスライス図形データに基づいて制御さ
れた不図示のガルバノメータを用いた光学系によって走
査される。8は可動ベースプレート3に取り付けられ振
動を与えるアクチュエータである。また9は樹脂槽1内
の光硬化性樹脂2の液面11を常に溢れ出す位置に保持
するための光硬化性樹脂供給手段であり、10は供給用
樹脂槽である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the embodiments shown in the drawings. FIG. 1 is a schematic explanatory diagram illustrating an optical modeling apparatus that is an embodiment of the present invention. Reference numeral 1 denotes a resin tank for storing a photocurable resin 2 which is, for example, a radical polymerization type acrylate resin. Reference numeral 3 denotes a movable base plate which moves in the vertical direction, on which a three-dimensional object model is formed. Reference numeral 4 denotes a beam light from, for example, a He-Cd laser device, which is scanned by an optical system using a galvanometer (not shown) controlled based on the above-mentioned slice figure data. An actuator 8 is attached to the movable base plate 3 to give vibration. Further, 9 is a photocurable resin supply means for keeping the liquid surface 11 of the photocurable resin 2 in the resin tank 1 at a position where it overflows at all times, and 10 is a supply resin tank.

【0015】本実施例における薄板状固化層の積層は以
下の手順で行われる。まず可動ベースプレート3を樹脂
中に浸漬透し上下動させ、樹脂の液面11から所定の薄
板状固化層の深さ、例えば約0.1mmの深さの位置に
保持する。そして、ビーム光4をスライス図形データに
基づいて走査しながら露光する。この工程により、薄板
状固化層の第1層5が形成され、可動ベースプレート3
に固着される。尚、図では説明上、薄板状固化層の第1
層5が形成された後、さらに可動ベースプレート3を下
方へ距離dだけ移動させた状態を示している。
The lamination of the thin plate solidified layers in this embodiment is carried out by the following procedure. First, the movable base plate 3 is dipped and penetrated in a resin and moved up and down, and is held at a predetermined depth of the thin plate solidified layer from the liquid surface 11 of the resin, for example, a position of about 0.1 mm. Then, the light beam 4 is exposed while scanning based on the slice graphic data. By this step, the first layer 5 of the thin plate solidified layer is formed, and the movable base plate 3
Stuck to. In the drawing, for the sake of explanation, the first thin solidified layer
After the layer 5 is formed, the movable base plate 3 is further moved downward by the distance d.

【0016】次に光硬化性樹脂供給手段9によって、樹
脂槽1内の光硬化性樹脂2の液面が溢れ出すまで光硬化
性樹脂2を供給する。そして所定の薄板状固化層の厚み
1層分だけ可動ベースプレート3を下げる。可動ベース
プレート3を下げる前に光硬化性樹脂2の液面が一定位
置にあるので、可動ベースプレート3の支持機構31の
光硬化性樹脂2の液中における占有体積が可動ベースプ
レート3の移動に伴い都度変化しても、単純に所定の薄
板状固化層の厚み1層分だけ可動ベースプレート3を下
げるだけで薄板状固化層の第1層5の上面から光硬化性
樹脂2の自由液面11までの距離dは、前述の薄板状固
化層の一層分の厚さと等しくなるよう設定される。
Next, the photocurable resin supplying means 9 supplies the photocurable resin 2 until the liquid surface of the photocurable resin 2 in the resin tank 1 overflows. Then, the movable base plate 3 is lowered by the thickness of one predetermined thin plate solidified layer. Since the liquid surface of the photocurable resin 2 is at a fixed position before the movable base plate 3 is lowered, the volume occupied by the photocurable resin 2 of the support mechanism 31 of the movable base plate 3 in the liquid is changed with the movement of the movable base plate 3 each time. Even if it changes, the movable base plate 3 is simply lowered by one thickness of a predetermined thin plate-like solidified layer to reach the free liquid surface 11 of the photocurable resin 2 from the upper surface of the first layer 5 of the thin plate-like solidified layer. The distance d is set to be equal to the thickness of one layer of the thin plate solidified layer described above.

【0017】可動ベースプレート3を移動後、アクチュ
エータ8を作動させ可動ベースプレート3に振動を与え
る。薄板状固化層の第1層5は可動ベースプレート3に
固着されているので、必然的に薄板状固化層の第1層5
も同時に振動する。振動の振幅を薄板状固化層の一層分
の厚さと同程度になるよう設定すれば、薄板状固化層の
第1層5は光硬化性樹脂2で完全に覆われる。さらにこ
の固化層の振動は、固化層を完全に被った光硬化性樹脂
2に対して圧力として作用するので、前記振動手段の振
動数を制御することによりその平坦化が実現される。そ
の後振動を停止し、ビーム光4をスライス図形データに
基づいて走査しながら露光する。以上の工程を繰り返す
ことにより、所望の3次元物体モデルが形成される。
After moving the movable base plate 3, the actuator 8 is operated to give vibration to the movable base plate 3. Since the first layer 5 of the thin plate-like solidified layer is fixed to the movable base plate 3, the first layer 5 of the thin plate-like solidified layer is inevitable.
Also vibrates at the same time. If the vibration amplitude is set to be approximately the same as the thickness of one layer of the thin plate solidified layer, the first layer 5 of the thin plate solidified layer is completely covered with the photocurable resin 2. Further, since the vibration of the solidified layer acts as a pressure on the photocurable resin 2 that completely covers the solidified layer, the flattening can be realized by controlling the frequency of the vibrating means. Then, the vibration is stopped and the beam light 4 is exposed while scanning based on the slice figure data. A desired three-dimensional object model is formed by repeating the above steps.

【0018】本発明は、直接可動ベースプレート3を通
じて3次元物体モデルとなる薄板状固化層に振動を与え
ているので、例えば形成するモデルが図3のような多重
管であっても内側の管部101に振動が容易に伝達し、
内側の管部101を形成する薄板状固化層の第1層5は
光硬化性樹脂2で完全に覆われ、また平坦化も短時間で
達成できる。
In the present invention, since the thin plate-like solidified layer serving as a three-dimensional object model is vibrated directly through the movable base plate 3, for example, even if the model to be formed is a multiple tube as shown in FIG. Vibration can be easily transmitted to 101,
The first layer 5 of the thin plate-like solidified layer forming the inner tube portion 101 is completely covered with the photocurable resin 2, and flattening can be achieved in a short time.

【0019】[0019]

【発明の効果】以上説明したように、本発明の光造形装
置によれば、可動ベースプレートに設置した振動手段を
振動させることにより、可動ベースプレートに形成され
た固化層も振動する。従って可動ベースプレートを所定
の薄板状固化層の厚み1層分だけ下げ、所定の振動数を
もって振動手段を振動させることによって、光硬化性樹
脂が固化層上に所定の厚みをもって完全に被うことがで
きる。さらにこの固化層の振動は、固化層上を完全に被
った光硬化性樹脂に対して圧力として作用するので、前
記振動手段の振動数を制御することによりその平坦化を
実現することができるので、固化層上に所定の厚みを持
った未硬化樹脂層を形成する。従って、薄板状固化層を
一層造形後、次層の準備の処理を短時間に実現でき、ま
た別途平坦化手段が不要なので装置構造も簡単にでき
る。また、自由液面の位置が一定になるよう樹脂槽に光
硬化性樹脂を光硬化性樹脂供給手段によって供給するの
で、可動ベースプレートは、その支持機構の光硬化性樹
脂の液中での占有体積を考慮することなく単純に所定の
薄板状固化層の厚み1層分だけ下げるだけで所定の位置
に保持することができる。
As described above, according to the stereolithography apparatus of the present invention, the vibrating means installed on the movable base plate vibrates, so that the solidified layer formed on the movable base plate also vibrates. Therefore, by lowering the movable base plate by one layer of a predetermined thin plate solidified layer and vibrating the vibrating means at a predetermined frequency, the photocurable resin can be completely covered with a predetermined thickness on the solidified layer. it can. Further, since the vibration of the solidified layer acts as a pressure on the photocurable resin completely covering the solidified layer, it is possible to realize the flattening by controlling the frequency of the vibrating means. An uncured resin layer having a predetermined thickness is formed on the solidified layer. Therefore, after forming one thin plate-like solidified layer, the preparation process for the next layer can be realized in a short time, and a separate flattening means is not required, so that the device structure can be simplified. In addition, since the photocurable resin is supplied to the resin tank by the photocurable resin supply means so that the position of the free liquid surface is constant, the movable base plate has a volume occupied by the photocurable resin of the supporting mechanism in the liquid. It is possible to hold the film in a predetermined position by simply lowering the thickness of the predetermined thin plate solidified layer by one layer without considering the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である光造形装置を説明する
概略説明図である。
FIG. 1 is a schematic explanatory diagram illustrating an optical modeling apparatus that is an embodiment of the present invention.

【図2】自由液面法の説明図である。FIG. 2 is an explanatory diagram of a free liquid level method.

【図3】多重管の3次元物体モデルにおける光造形法の
説明図である。
FIG. 3 is an explanatory diagram of a stereolithography method in a three-dimensional object model of multiple tubes.

【符号の簡単な説明】[Simple explanation of symbols]

1 樹脂槽 2 光硬化性樹脂 3 可動ベースプレート 31 可動ベースプレート3の支持機構 4 ビーム光 5 板状固化層の第1層 6 未硬化樹脂層 8 アクチュエータ 9 光硬化性樹脂供給手段 10 供給用樹脂槽 11 自由液面 DESCRIPTION OF SYMBOLS 1 Resin tank 2 Photocurable resin 3 Movable base plate 31 Support mechanism of the movable base plate 3 4 Beam light 5 1st layer of plate-like solidified layer 6 Unhardened resin layer 8 Actuator 9 Photocurable resin supply means 10 Supplying resin tank 11 Free liquid level

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】樹脂槽に光硬化性樹脂を収容し、上下方向
に移動する可動ベースプレートを前記光硬化性樹脂の自
由液面より一定の距離だけ下方に移動し、ビーム光によ
り露光・固化後、順次前記可動ベースプレートを一定の
距離だけ下方に移動する工程とビーム光による露光・固
化固定を繰り返し、最終的に所望の3次元物体モデルを
得る光造形法において、前記可動ベースプレートの位置
と光硬化性樹脂の供給を制御して自由液面の位置を一定
にし、前記可動ベースプレートに振動を与えて樹脂の完
全被覆と平坦化を成すことを特徴とする光造形法。
1. A resin tank containing a photocurable resin, and a movable base plate that moves in the vertical direction is moved downward by a certain distance from the free liquid surface of the photocurable resin, and after exposure and solidification by beam light. In the stereolithography method in which the step of sequentially moving the movable base plate downward by a predetermined distance and the exposure / solidification / fixation by the beam light are repeated to finally obtain a desired three-dimensional object model, the position of the movable base plate and the photocuring are set. Molding method, characterized in that the position of the free liquid surface is controlled by controlling the supply of the functional resin, and the movable base plate is vibrated to completely cover and flatten the resin.
【請求項2】樹脂槽に光硬化性樹脂を収容し、上下方向
に移動する可動ベースプレートを前記光硬化性樹脂の自
由液面より一定の距離だけ下方に移動し、ビーム光によ
り露光・固化後、順次前記可動ベースプレートを一定の
距離だけ下方に移動する工程とビーム光による露光・固
化固定を繰り返し、最終的に所望の3次元物体モデルを
得る光造形装置において、前記可動ベースプレートの位
置と光硬化性樹脂の供給を制御して自由液面の位置を一
定にする光硬化性樹脂供給手段と、前記可動ベースプレ
ートに振動を与えて樹脂の完全被覆と平坦化を成すため
の前記可動ベースプレートに設置された振動供給手段を
含むことを特徴とする光造形装置。
2. A photocurable resin is housed in a resin tank, and a movable base plate which moves vertically is moved below a free liquid surface of the photocurable resin by a certain distance, and after exposure and solidification by beam light. In a stereolithography apparatus that sequentially obtains a desired three-dimensional object model by repeating a process of sequentially moving the movable base plate downward by a predetermined distance and exposing and solidifying and fixing with a light beam, the position of the movable base plate and photocuring Installed on the movable base plate for controlling the supply of the functional resin to keep the position of the free liquid surface constant and for vibrating the movable base plate to completely cover and flatten the resin. A stereolithography apparatus including a vibration supply unit.
JP5312851A 1993-11-19 1993-11-19 Method and apparatus for optical formation Pending JPH07137145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5312851A JPH07137145A (en) 1993-11-19 1993-11-19 Method and apparatus for optical formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5312851A JPH07137145A (en) 1993-11-19 1993-11-19 Method and apparatus for optical formation

Publications (1)

Publication Number Publication Date
JPH07137145A true JPH07137145A (en) 1995-05-30

Family

ID=18034199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5312851A Pending JPH07137145A (en) 1993-11-19 1993-11-19 Method and apparatus for optical formation

Country Status (1)

Country Link
JP (1) JPH07137145A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166447A (en) * 2008-01-21 2009-07-30 Sony Corp Optical shaping apparatus and optical shaping method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009166447A (en) * 2008-01-21 2009-07-30 Sony Corp Optical shaping apparatus and optical shaping method

Similar Documents

Publication Publication Date Title
US4999143A (en) Methods and apparatus for production of three-dimensional objects by stereolithography
EP0686480B1 (en) Stereolithographic supports
US5015424A (en) Methods and apparatus for production of three-dimensional objects by stereolithography
JP3443365B2 (en) Method and apparatus for forming a three-dimensional object
US5693144A (en) Vibrationally enhanced stereolithographic recoating
US5076974A (en) Methods of curing partially polymerized parts
US6207097B1 (en) Method for manufacturing physical objects using precision stereolithography
JPH09216292A (en) Optical solidifying and shaping apparatus performing optical scanning simultaneously with re-coating
JP2016511713A (en) 3D object production
JPH07195529A (en) Optical shaping method and apparatus
JPS61225012A (en) Formation of three-dimensional configuration
JPH07137145A (en) Method and apparatus for optical formation
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH08156109A (en) Optically shaping method
JPH08207144A (en) Supporting stage for optical molding
JPS61217219A (en) Three-dimensional configuration forming device
JPH0910967A (en) Optical molding device
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor
JPH0655643A (en) Manufacture of light molded form and device therefor
JPH05278122A (en) Solid modeler
JPS6299753A (en) Formation of three-dimensional shape
JPH05309748A (en) Optical molding method and device therefor
JP3352165B2 (en) Liquid leveling method in stereolithography
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JPH08150661A (en) Optical shaping method