JPH07137113A - Screw designing method for twin-screw extruder - Google Patents

Screw designing method for twin-screw extruder

Info

Publication number
JPH07137113A
JPH07137113A JP5284752A JP28475293A JPH07137113A JP H07137113 A JPH07137113 A JP H07137113A JP 5284752 A JP5284752 A JP 5284752A JP 28475293 A JP28475293 A JP 28475293A JP H07137113 A JPH07137113 A JP H07137113A
Authority
JP
Japan
Prior art keywords
resin
screw
extruder
analysis
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5284752A
Other languages
Japanese (ja)
Inventor
Takehisa Sugaya
武久 菅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP5284752A priority Critical patent/JPH07137113A/en
Publication of JPH07137113A publication Critical patent/JPH07137113A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2517Design of extruder parts, e.g. by modelling based on mathematical theories or experiments of intermeshing screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders

Abstract

PURPOSE:To provide a screw designing method for a twin-screw extruder capable of designing a proper screw form at every material and product. CONSTITUTION:A preprocessor creates a mesh data by dividing a resin passage in a barrel with a hexahedron cell element three-dimensionally. A heat flow calculating section analyzes a numerical value by various boundary conditions and resin properties based on an actual phenomenon based on the mesh data and disperses it, and analyzes a heat flow for fixing physical quantity histories of temperature, shear rate, and viscosity. A postprocessor displays a trajectory in the area to be analyzed, based on the flow velocity dispersed by the numerical analysis and displays each physical quantity graphically on the mesh data. By using a value to be outputted by the heat flow analysis, any of a resin temperature distribution, a shear rate distribution, and a shearing stress distribution after passage of a melt resin through a full-filling part in an extruder is made to be an index. By using the index, a dimension of a screw is designed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2軸押出機のスクリュ
ー設計方法に関する。
FIELD OF THE INVENTION The present invention relates to a screw design method for a twin-screw extruder.

【0002】[0002]

【従来の技術】従来、スクリュー性能の検討は、2軸同
方向押出機スクリュー部での樹脂の流れ、圧力分布を定
量化したもの(ANTEC'90 P.135-138)、2軸同方向押出
機内の樹脂流路を3次元で解析し、スクリュー部での樹
脂の流れ、操業特性とスクリュー形状特性を定量化した
もの(ANTEC'90 P.139-142)、2軸同方向押出機のスク
リューエレメントの混練性能を実験的に行ったもの(AN
TEC'91 P.149-152)、2軸同方向押出機内の樹脂流路内
の樹脂流速、圧力、剪断速度を定量化したもの(ANTEC'
92 P.1311-1316)がある。
2. Description of the Related Art Conventionally, screw performance has been studied by quantifying resin flow and pressure distribution in the screw section of a twin-screw co-direction extruder (ANTEC'90 P.135-138), two-screw co-direction extruder. Three-dimensional analysis of the resin flow path inside the machine to quantify the resin flow in the screw part, operation characteristics and screw shape characteristics (ANTEC'90 P.139-142), screw for twin-screw co-direction extruder Experimental kneading performance of elements (AN
TEC'91 P.149-152) Quantification of resin flow velocity, pressure and shear rate in the resin flow passage in a twin-screw co-direction extruder (ANTEC '
92 P.1311-1316).

【0003】また、2軸同方向押出機内の樹脂流路を3
次元微小要素分割したメッシュデータのもとで3次元の
数値解析を行うもの(特開平3−288620号公報、
特開平4−364921号公報)、更にこれらの解析結
果を用いて要求品質に合致するスクリュー形状を決定す
るもの(特開平3−288619号公報)等がある。
Further, the resin flow path in the twin-screw co-direction extruder is set to 3
Three-dimensional numerical analysis based on mesh data divided into three-dimensional microelements (JP-A-3-288620)
JP-A-4-364921), and a method of determining the screw shape that meets the required quality using these analysis results (JP-A-3-288619).

【0004】[0004]

【発明が解決しようとする課題】従来、2軸押出機のス
クリュー設計方法において以下の問題点があった。即
ち、原料及び製品毎に既存の押出機スクリューでテスト
を行い、その結果に基づいてスクリュー形状を決定する
ため、設計の自由度が小さく、設計完了迄に多くの時間
を必要とした。
Conventionally, there have been the following problems in the screw design method of the twin-screw extruder. That is, since a test is performed with an existing extruder screw for each raw material and product, and the screw shape is determined based on the result, the degree of freedom in design is small and it takes a lot of time to complete the design.

【0005】また、従来技術に示す押出機内の熱流動に
対するシミュレーションにおいては押出機内の樹脂挙動
を温度の考慮無しで定量化するのみで、押出最終製品で
の外観・物性を考慮したシミュレーション出力値の取扱
は無い。この為、原料および製品毎の具体的なスクリュ
ー形状の適正化は行なえなかった。
Further, in the simulation of heat flow in the extruder shown in the prior art, the resin behavior in the extruder is simply quantified without considering the temperature, and the simulation output value considering the appearance and physical properties of the final extrusion product is obtained. There is no handling. For this reason, it was not possible to optimize the specific screw shape for each raw material and product.

【0006】[0006]

【課題を解決するための手段】本発明は、このような上
記問題点を解決するために、2軸押出機におけるスクリ
ュー設計方法を、スクリューの回転によりバレル内の樹
脂が押し出される2軸押出機内の樹脂溶融完全充満部の
樹脂流路を、六面体セル要素で三次元微小要素分割し、
そのメッシュデータに基づいて、熱流動を支配する各方
程式(連続の式、運動方程式、エネルギー方程式、構成
方程式)の三次元成分全てを、実現象に基づいた各境界
条件と樹脂特性とにより数値解析し離散化する場合にお
いて、幾つかの領域に分けて押出機内樹脂流路を微小要
素分割し、各領域間相互の境界条件の受渡し処理を行
い、離散化された流速を基に解析対称領域内の樹脂の流
跡線を表示し、温度、剪断速度、粘度等の物理量の履歴
を定量化するすることにより押出機内樹脂流路の熱流動
解析方法を用いてシミュレーションを行い、その結果の
うち、押出機内の樹脂溶融完全充満部での一秒毎の樹脂
流跡線に基づき、流入口から流出口までの各秒の粒子座
標値(Xi,Y i,Z i ) とした時に、流線全体にわたって流
跡線分の屈曲角度Θの内90度以内の屈曲角度のものの
積算値(ΣΘ)の全流跡線について平均値を指標化し、
その指標と最終製品の外観、物性の関係を明確にするこ
とで、この設計指標を用いた最適スクリュー寸法を設計
する方法を発明したものである。
In order to solve the above problems, the present invention provides a screw design method for a twin-screw extruder in which a resin in a barrel is extruded by rotation of the screw. The resin flow path of the resin melting completely filled part of is divided into three-dimensional minute elements by hexahedral cell elements,
Numerical analysis of all three-dimensional components of each equation (continuity equation, kinematic equation, energy equation, constitutive equation) that governs heat flow based on the mesh data by each boundary condition and resin property based on actual phenomenon In the case of discretization, the resin flow path in the extruder is divided into several elements and divided into minute elements, the boundary conditions between each area are transferred, and the analysis is performed within the symmetry area based on the discretized flow velocity. Display the resin trajectory of, the temperature, shear rate, by performing a simulation using the heat flow analysis method of the resin flow path in the extruder by quantifying the history of physical quantities such as viscosity, of the results, Based on the resin flow line every second at the completely melted portion of the resin in the extruder, the streamline is obtained when the particle coordinate value (X i, Y i, Z i ) from the inlet to the outlet is obtained every second. Within the bending angle Θ of the trajectory segment The average value is indexed for all trace lines of the integrated value (ΣΘ) of those with a bending angle within 90 degrees,
The inventors invented a method for designing an optimum screw size using this design index by clarifying the relationship between the index and the appearance and physical properties of the final product.

【0007】本発明における2軸押出機は、スクリュー
回転方向がそれぞれの軸で反対のもの、同方向のもので
あっても良い。
In the twin-screw extruder according to the present invention, the screw rotation directions may be opposite or the same in each axis.

【0008】また、本発明における樹脂は熱と剪断によ
るエネルギーによって溶融・流動性を発現する熱可塑性
樹脂で、例えばポリエチレン、ポリプロピレン、ポリス
チレン、ポリカーボネイト、硬質塩化ビニル樹脂、軟質
塩化ビニル樹脂、ナイロン樹脂、ポリビニルアセタール
樹脂、アクリル樹脂、アセタール樹脂、ポリエステル樹
脂等が挙げられる。これらの熱可塑性樹脂には、可塑
剤、充填材等が添加されてもよい。また、熱、剪断によ
るエネルギーによって不溶化(硬化反応)し、再可熱し
ても融解しない熱硬化性樹脂で、例えばフェノール樹
脂、ユリア樹脂、メラミン樹脂、アニリン樹脂、不飽和
ポリエステル樹脂、ジアリルフタレート樹脂、エポキシ
樹脂、アルキド樹脂、珪素樹脂、ポリイミド樹脂、ポリ
ウレタン樹脂等でもよい。
Further, the resin in the present invention is a thermoplastic resin which exhibits melting and fluidity by heat and energy by shearing, such as polyethylene, polypropylene, polystyrene, polycarbonate, hard vinyl chloride resin, soft vinyl chloride resin, nylon resin, Examples thereof include polyvinyl acetal resin, acrylic resin, acetal resin, polyester resin and the like. A plasticizer, a filler, and the like may be added to these thermoplastic resins. Further, heat, a thermosetting resin that is insolubilized (curing reaction) by energy due to shearing and does not melt even when reheated, such as phenol resin, urea resin, melamine resin, aniline resin, unsaturated polyester resin, diallyl phthalate resin, Epoxy resin, alkyd resin, silicon resin, polyimide resin, polyurethane resin, etc. may be used.

【0009】また、本発明の数値解析とは、樹脂流路デ
ータ(メッシュデータ)を各種の条件(スクリュー回転
周速、壁面温度、流入量など)のもとで流動場、温度場
を最終的に収束解が得られるまで繰り返し計算すること
を指し、有限要素法、有限差分法、有限体積法等が挙げ
られる。また、本発明の押出機内の樹脂溶融完全充満部
とは、押出機内のバレルとスクリュー間の樹脂流路に於
て、樹脂が溶融流動状態で、樹脂流路での樹脂の占める
割合が100%である部分である。
In the numerical analysis of the present invention, the resin flow path data (mesh data) is used to determine the flow field and temperature field under various conditions (screw rotation peripheral speed, wall surface temperature, inflow amount, etc.). It refers to iterative calculation until a convergent solution is obtained, and examples include finite element method, finite difference method, and finite volume method. Further, the completely melted portion of the resin in the extruder of the present invention means that in the resin flow path between the barrel and the screw in the extruder, the resin is in a molten and flowing state, and the proportion of the resin in the resin flow path is 100%. Is the part that is.

【0010】[0010]

【作用】本発明によるスクリュー設計方法により、2軸
押出機内の詳細樹脂挙動に即した押出機内樹脂溶融完全
充満部での樹脂履歴を加味した熱流動解析結果データに
基づいて、押し出す原料及び製品毎の適正スクリュー設
計が机上で行え、設計の自由度が大きく非常に短時間に
行える。また、設計指針が明確で定量的になってるため
種々のスクリューに対するデータベース構築が可能とな
る。
According to the screw design method according to the present invention, each raw material and product to be extruded are based on the heat flow analysis result data in which the resin history in the completely melted portion of the resin in the extruder is taken into consideration in accordance with the detailed resin behavior in the twin screw extruder. The appropriate screw design can be done on the desk, and the degree of freedom in design is great and it can be done in a very short time. In addition, the design guideline is clear and quantitative, which makes it possible to construct a database for various screws.

【0011】[0011]

【実施例】本発明の実施例を図面を参照して説明する。
図1は、押出機内樹脂流路の熱流動解析方法を実行する
ための全体構成図である。このシステムは、押出機内樹
脂流路を6面体セル要素で3次元的に分割し、熱流動解
析を行う為のメッシュデータを作成するプリ・プロセッ
サー(メッシュ・ジェネレーター)、そのメッシュデー
タと、実現象により規定される種々の境界条件を用いて
流動場と温度場を繰り返し計算するアナリシス・プログ
ラム、アナリシス・プログラムにより3次元に離散化さ
れた各物理量をメッシュデータ上に図化し、かつ、各要
素の流速を用いて樹脂の流跡線を表示するポスト・プロ
セッサーから成っている。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram for executing a heat flow analysis method for a resin flow path in an extruder. This system is a pre-processor (mesh generator) that divides the resin flow path inside the extruder three-dimensionally with hexahedral cell elements and creates mesh data for thermal-hydraulic analysis, the mesh data and actual phenomena. The analysis program that repeatedly calculates the flow field and temperature field using various boundary conditions defined by the above, each physical quantity discretized three-dimensionally by the analysis program on the mesh data, and It consists of a post processor that displays the trajectory of the resin using the flow velocity.

【0012】プリ・プロセッサーでは、押出機内を特徴
づける主要なパラメーターと3次元各方向の分割数とを
規定した入力データに基づいてメッシュデータを作成す
る。
The pre-processor creates mesh data based on the input data defining the main parameters characterizing the inside of the extruder and the number of divisions in each of the three-dimensional directions.

【0013】図2及び表1に2軸異方向回転押出機に対
する入力パラメータを示す。ここで、図、表中の各変数
の意味は以下の通りである。即ち、まず2軸押出機内の
樹脂流路を微小要素に分割し6面体ソリッド要素の集合
体とする。この分割は、フライトZ方向分割数(NWO
B)、溝部Z方向分割数(NWCH)、溝部X方向分割数(N
HCH)、バレル部X方向分割数(NHBA)、スクリュー非
噛合部周方向分割数(NNC )、スクリュー噛合部周方向
分割数(NC)を決定するとともにスクリュー内半径(R
I)、スクリュー外半径(RO)、バレル内半径(RB)、
スクリュー軸間距離(RL)、フライトピッチ(PICH)、
フライト頂幅(A )、フライト圧力角(ALF )、基本ブ
ロック数(NBBN)、フライト条数(ISN )を設定するこ
とにより行われる。
FIG. 2 and Table 1 show the input parameters for the twin-screw counter-rotating extruder. Here, the meaning of each variable in the figures and tables is as follows. That is, first, the resin flow path in the twin-screw extruder is divided into minute elements to form an assembly of hexahedral solid elements. This division is the number of divisions in the flight Z direction (NWO
B), number of divisions in groove Z direction (NWCH), number of divisions in groove X direction (NWCH)
HCH), the number of divisions in the X direction of the barrel part (NHBA), the number of divisions in the circumferential direction of the screw non-meshing part (NNC), the number of divisions in the circumferential direction of the screw meshing part (NC), and the screw inner radius (R
I), screw outer radius (RO), barrel inner radius (RB),
Screw shaft distance (RL), flight pitch (PICH),
This is done by setting the flight top width (A), flight pressure angle (ALF), basic block number (NBBN), and flight number (ISN).

【0014】[0014]

【表1】 [Table 1]

【0015】2軸押出機内の樹脂流動挙動を解析する場
合、形状が複雑になるため解析対象を3つの領域に分け
てメッシュデータを作成し、各領域間は相互に境界条件
を受渡して計算を進める。この3つの領域を図4に示
す。ここで、a,cはスクリューが噛み合わない非噛合
領域、bは左右のスクリューが噛み合う噛合領域であ
る。
When analyzing the resin flow behavior in a twin-screw extruder, the shape becomes complicated, so the analysis target is divided into three regions to create mesh data, and the boundary conditions are mutually passed between the regions for calculation. Proceed. The three areas are shown in FIG. Here, a and c are non-meshing regions in which the screws do not mesh, and b is a meshing region in which the left and right screws mesh.

【0016】次に、図3中の熱流動計算部につき説明す
る。熱流動計算部は、流動解析部と温度解析部からな
り、両者の収束計算により全体が安定計算段階に至るま
で繰り返し計算を行う。計算座標系は、押出機内で回転
するスクリュー上での回転座標系と静止座標系の両者を
選択出来る。
Next, the heat flow calculation unit in FIG. 3 will be described. The heat-hydraulic calculation unit is composed of a flow analysis unit and a temperature analysis unit, and iterative calculation is performed by the convergence calculation of both until the whole reaches the stable calculation stage. As the calculation coordinate system, both a rotating coordinate system on a screw rotating in the extruder and a stationary coordinate system can be selected.

【0017】温度境界条件は、スクリューフライトに実
現象により規定されるバレルスクリューフライトの壁面
温度をセットする。
The temperature boundary condition sets the wall temperature of the barrel screw flight, which is defined by the actual phenomenon in the screw flight.

【0018】流動境界条件は、計算に用いる座標系によ
り異なるが、静止座標系での解析の場合、スクリューフ
ライト部に、スクリュー回転速度により規定される周速
度をセットする。
The flow boundary condition differs depending on the coordinate system used for calculation, but in the case of analysis in the stationary coordinate system, the peripheral speed defined by the screw rotation speed is set in the screw flight section.

【0019】又、前述した三つの領域(図4中a,b,
c)毎に収束計算を行う。ここで、b部の計算は、a,
c部のb部に隣接する要素の物理量を境界条件として、
a,c部の計算でb部のa,c部それぞれに隣接する要
素の物理量を境界条件として、3つの領域全てが安定計
算段階に入るまで収束計算を継続する。ポスト・プロセ
ッサーは、メッシュ・データ及びアナリシス・プログラ
ムによる計算結果を用いて、メッシュ・データ上に各物
理量の分布図、各要素の流速に基づく流跡線を表示す
る。又、同時に解析コントロール・データのスイッチ切
替えにより、収束計算の収束状況や各物理量の履歴を図
化出力する。
Further, the above-mentioned three regions (a, b,
A convergence calculation is performed for each c). Here, the calculation of the b part is a,
As a boundary condition, the physical quantity of the element adjacent to the b part of the c part
In the calculation of the parts a and c, the physical quantity of the elements adjacent to the parts a and c of the part b is used as a boundary condition, and the convergence calculation is continued until all three regions enter the stable calculation stage. The post processor uses the mesh data and the calculation result of the analysis program to display a distribution map of each physical quantity and a trajectory line based on the flow velocity of each element on the mesh data. At the same time, by switching the analysis control data switch, the convergence status of the convergence calculation and the history of each physical quantity are graphically output.

【0020】次に、流跡線表示プログラムにつき説明す
る。図5に流跡線表示プログラムの概略フローを示す。
このプログラムでは、まず、プリ・プロセッサーで作成
したメッシュ・データとアナリシス・プログラムでの解
析結果を各ファイルから読み込む。次に、入力データで
規定される解析領域内の粒子位置座標を検出し、この座
標の含まれる要素とその回りの要素の流速から、その粒
子の流速を内挿計算する。その後、粒子をその流速で移
動させ、移動後の粒子位置座標を求め、流速を求めると
いう処理を繰り返し、粒子が入力データで規定する座標
値もしくは時間になるまでこの処理を繰り返す(粒子運
動解析部)。その後、この粒子の移動の軌跡をメッシュ
・データ上に図化出力し、入力データのスイッチの切替
えにより粒子の各物理量(温度・剪断速度・剪断応力・
圧力)の履歴を図化出力する。
Next, the trajectory display program will be described. FIG. 5 shows a schematic flow of the trajectory display program.
In this program, first, the mesh data created by the preprocessor and the analysis results by the analysis program are read from each file. Next, the particle position coordinates in the analysis region defined by the input data are detected, and the flow velocity of the particle is interpolated from the flow velocity of the element including this coordinate and the surrounding elements. After that, the particles are moved at the flow velocity, the particle position coordinates after the movement are obtained, and the process of obtaining the flow velocity is repeated, and this process is repeated until the particles reach the coordinate values or time specified by the input data (particle motion analysis unit). ). After that, the trajectory of this particle movement is graphically output on mesh data, and each physical quantity of the particle (temperature, shear rate, shear stress,
Output the history of pressure).

【0021】この流跡線の2軸押出機内の樹脂溶融完全
充満部全体での粒子の履歴を解析領域入口での100個
について定量化し、その流跡線に基づいて流入口から流
出口までの各秒の粒子座標値(X i,Y i,Z i ) としたと
きに、流線全体にわたって流跡線分の屈曲角度Θは、
The history of particles in the entire portion of the resin melt completely filled in the twin-screw extruder of this trajectory is quantified for 100 particles at the entrance of the analysis region, and based on the trajectory, from the inlet to the outlet. When the particle coordinate value (X i, Y i, Z i ) of each second is taken, the bending angle Θ of the trajectory segment over the entire streamline is

【数2】 の内、90度以内の屈曲角度のものの積算値(ΣΘ)を
全流跡線100個について平均化し、この値を設計指標
としてスクリュー形状の設計、適正化を行った。既存の
スクリュー形状と、この設計指標を用いて設計した新規
スクリュー形状との比較を表2に、また、この設計スク
リューを制作後、両スクリューを用いて押し出し製造し
た製品(肉厚3ミリ、幅1300ミリのシート)の外観
・物性を表3、表4に示す。
[Equation 2] Among them, the integrated value (ΣΘ) of bending angles within 90 degrees was averaged for all 100 trajectory lines, and the screw shape was designed and optimized using this value as a design index. Table 2 shows a comparison between the existing screw shape and the new screw shape designed using this design index. Also, after manufacturing this design screw, a product extruded using both screws (thickness 3 mm, width The appearance and physical properties of the 1300 mm sheet) are shown in Tables 3 and 4.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】表4から判るように、本設計方法を用いた
新規設計スクリューでは、設計期間を3か月から0.5
か月と大幅に削減出来、かついずれの押し出し条件で
も、良好なガラス繊維の分散状態で、かつ、繊維長保存
性も向上し、曲げ特性に優れた製品を製造出来る。
As can be seen from Table 4, the design period of the newly designed screw using this design method is 3 months to 0.5.
It is possible to significantly reduce the number of months, and under any extrusion condition, it is possible to manufacture a product in which the glass fiber is in a good dispersed state and the fiber length preservability is improved, and the bending property is excellent.

【0026】これに比し、表3に示す比較例1・2・3
・4では、既存のスクリューで押出条件を変更しても押
出シートのガラス繊維の均一分散性を確保出来ない。比
較例1の標準条件に対して比較例2、3、4では、ガラ
ス繊維の分散性向上を目的として、それぞれ金型背圧、
スクリュー回転数を変化させているが、押出機内樹脂溶
融完全充満部での樹脂の位置交換性の度合いを示す解析
指標はさほど変化せず、押し出しシートにおいてもガラ
ス繊維分散性の良化は少ない。このため、曲げ特性が低
い値を示している。
In comparison with this, Comparative Examples 1, 2 and 3 shown in Table 3
With No. 4, even if the extrusion conditions are changed with the existing screw, the uniform dispersibility of the glass fiber of the extruded sheet cannot be secured. Compared to the standard conditions of Comparative Example 1, in Comparative Examples 2, 3 and 4, for the purpose of improving the dispersibility of the glass fiber, mold back pressure,
Although the screw rotation speed was changed, the analysis index showing the degree of resin position exchangeability in the completely melted portion of the resin melt in the extruder did not change so much, and the glass fiber dispersibility was not improved even in the extruded sheet. Therefore, the bending property shows a low value.

【0027】実施例及び比較例に用いた装置は次の通り
である。
The apparatus used in Examples and Comparative Examples is as follows.

【0028】使用押出機:2軸異方向回転コニカルタイ
プ押出機(スクリュー先端外径50mm)。 使用樹脂:ポリプロピレン(MI値3)。 添加剤:ガラス繊維(コンテント20wt%、繊維径13
μm、初期繊維長3mm)。 使用金型:製品肉厚3mm、幅300mmシート金型。 押出成形条件:押出量50kg/h、バレル温度190
℃。 曲げ強度測定:試験(強さ、弾性率)、試験片形状JI
S K7113に準拠 ガラス繊維長測定:樹脂焼結後画像処理により定量化。 ガラス繊維分布測定:軟X線写真の目視
Extruder used: Conical type twin-screw rotating extruder (screw tip outer diameter 50 mm). Resin used: polypropylene (MI value 3). Additive: glass fiber (content 20wt%, fiber diameter 13
μm, initial fiber length 3 mm). Mold used: Product thickness 3 mm, width 300 mm sheet mold. Extrusion molding conditions: extrusion rate 50 kg / h, barrel temperature 190
° C. Bending strength measurement: test (strength, elastic modulus), test piece shape JI
According to SK7113 Glass fiber length measurement: Quantification by image processing after resin sintering. Glass fiber distribution measurement: Visual inspection of soft X-ray photographs

【0029】[0029]

【発明の効果】本発明による2軸押出機内スクリュー設
計方法によって、詳細樹脂挙動に即した解析出力データ
が得られ、そのデータに基づき、原料及び製品毎に、任
意の要求品質に対して適正なスクリュー形状の設計が机
上で短時間に行え、設計の自由度も広い。また、設計指
針が明確で定量的であり、種々のスクリューに対するデ
ータベース構築が可能となる。
According to the screw designing method for a twin-screw extruder according to the present invention, analysis output data in accordance with the detailed resin behavior can be obtained, and based on the data, it is appropriate for each raw material and product to meet any required quality. The screw shape can be designed on the desk in a short time, and the degree of freedom in design is wide. In addition, the design guidelines are clear and quantitative, and it is possible to construct a database for various screws.

【0030】[0030]

【図面の簡単な説明】[Brief description of drawings]

【図1】押出機内樹脂流路の熱流動解析を実行するため
のシステム構成図
FIG. 1 is a system configuration diagram for performing a heat flow analysis of a resin flow path in an extruder.

【図2】プリ・プロセッサーの入力パラメーター変数の
説明図
Figure 2: Explanatory diagram of input parameter variables of the preprocessor

【図3】アナリシス・プログラムの全体流れ図[Figure 3] Overall flow chart of the analysis program

【図4】2軸異方向回転押出機の軸直角断面図FIG. 4 is a sectional view perpendicular to the axis of a biaxial counter-rotating extruder.

【図5】流跡線表示プログラムの全体流れ図[Fig. 5] Overall flow chart of the trajectory display program

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 スクリューの回転によりバレル内の樹脂
が押し出される2軸押出機の樹脂流路を、六面体セル要
素で三次元微小要素分割したメッシュデータに基づい
て、熱流動を支配する各方程式の三次元成分全てを取扱
い、実現象に基づいた各種の境界条件と、樹脂特性によ
って数値解析を行って離散化する場合において、 複雑形状に対応するために、押出機内樹脂流路を微小要
素分割し、各領域間をお互いに境界条件の受渡し処理を
行い、離散化された流速を基に解析対称領域内の樹脂の
流跡線を表示し、温度、剪断速度、粘度等の物理量の履
歴を定量化することにより押出機内樹脂流路の熱流動解
析により出力される値を用いて、押出機内の樹脂溶融完
全充満部での一秒毎の樹脂流跡線に基づき、流入口から
流出口までの各秒の粒子座標値(Xi,Yi,Zi)と
した時に、流線全体にわたって流跡線分の屈曲角度をΘ
とし、 【数1】 のうち90度以内の屈曲角度のものの積算値ΣΘの全流
跡線について平均値を指標化し、その指標を用いて最適
スクリュー寸法を設計することを特徴とする2軸押出機
のスクリュー設計方法。
1. A resin flow path of a twin-screw extruder, in which resin in a barrel is extruded by rotation of a screw, is divided into three-dimensional microelements by hexahedral cell elements, and based on mesh data, each equation governing heat flow is calculated. When handling all three-dimensional components and performing numerical analysis based on various boundary conditions based on actual phenomena and resin characteristics for discretization, the resin flow path inside the extruder is divided into minute elements to handle complex shapes. Boundary conditions are passed between each area, analysis is performed based on the discretized flow velocity, and the trajectory of the resin in the symmetrical area is displayed to quantify the history of physical quantities such as temperature, shear rate, and viscosity. By using the value output by the heat flow analysis of the resin flow path in the extruder by converting the resin flow path based on the resin flow line every second at the completely filled portion of the resin melt in the extruder, Particle constellation for each second Values (Xi, Yi, Zi) when a, the bending angle of Nagareato line across streamlines Θ
And, A method of designing a screw for a twin-screw extruder, characterized in that an average value is indexed with respect to all trace lines of an integrated value ΣΘ of a bending angle within 90 degrees, and an optimal screw dimension is designed using the index.
JP5284752A 1993-11-15 1993-11-15 Screw designing method for twin-screw extruder Pending JPH07137113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5284752A JPH07137113A (en) 1993-11-15 1993-11-15 Screw designing method for twin-screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5284752A JPH07137113A (en) 1993-11-15 1993-11-15 Screw designing method for twin-screw extruder

Publications (1)

Publication Number Publication Date
JPH07137113A true JPH07137113A (en) 1995-05-30

Family

ID=17682546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5284752A Pending JPH07137113A (en) 1993-11-15 1993-11-15 Screw designing method for twin-screw extruder

Country Status (1)

Country Link
JP (1) JPH07137113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026271A1 (en) * 2010-08-27 2012-03-01 ポリプラスチックス株式会社 Simulation device, program, and recording medium
JP2013513177A (en) * 2009-12-08 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to build solids that rotate in the same direction and touch each other

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513177A (en) * 2009-12-08 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to build solids that rotate in the same direction and touch each other
WO2012026271A1 (en) * 2010-08-27 2012-03-01 ポリプラスチックス株式会社 Simulation device, program, and recording medium
JP2012045866A (en) * 2010-08-27 2012-03-08 Polyplastics Co Simulation device, program, and recording medium

Similar Documents

Publication Publication Date Title
Wilczyński et al. Fundamentals of global modeling for polymer extrusion
Lewandowski et al. Modeling of twin screw extrusion of polymeric materials
Pricci et al. Analytical and numerical models of thermoplastics: A review aimed to pellet extrusion-based additive manufacturing
Tseng et al. The use of shear-rate-dependent parameters to improve fiber orientation predictions for injection molded fiber composites
Wilczyński et al. Modeling and experimental studies on polymer melting and flow in injection molding
Chang et al. Using sequence-approximation optimization and radial-basis-function network for brake-pedal multi-target warping and cooling
US9862133B1 (en) Molding system for preparing an injection molded fiber reinforced composite article
Hussin et al. Hybrid mold: Comparative study of rapid and hard tooling for injection molding application using metal epoxy composite (MEC)
Tsai et al. Filling-balance-oriented parameters for multi-cavity molds in polyvinyl chloride injection molding
JPH07137113A (en) Screw designing method for twin-screw extruder
JPH06335953A (en) Screw designing method in twin-screw extruder
Marschik et al. Application of Network Analysis to Flow Systems with Alternating Wave Channels: Part B.(Superimposed Drag-Pressure Flows in Extrusion)
Marschik et al. Application of network analysis to flow systems with alternating wave channels: Part A (pressure flows)
Varga et al. Surface Quality Evaluation in the Milling Process Using a Ball Nose End Mill
Rios et al. Comparative study of mixing in corotating twin screw extruders using computer simulation
Wang et al. Computer-aided mold design and manufacturing
CN110110359A (en) A kind of line bullet model modeling method for solving based on geometric spline
Tseng et al. Coupled flow and fiber orientation analysis for 3D injection molding simulations of fiber composites
JPH04364921A (en) Heat fluid analysis method for resin pattern in extruder
Lv et al. Rheological properties of wood–plastic composites by 3D numerical simulations: different components
JPH06293053A (en) Screw planning method in twin-screw extruder
JP3725648B2 (en) Thermal / flow analysis method for resin flow path in extruder
Shi et al. Application software system based on direct slicing for rapid prototyping
Sato et al. Cartesian grid method with a consistent direct discretization approach for numerical simulation of non-Newtonian fluid flow
Jung et al. Rapid Numerical Estimation of Pressure Drop in Hot Runner System