JPH10244575A - Screw planning method in twin-screw extruder - Google Patents

Screw planning method in twin-screw extruder

Info

Publication number
JPH10244575A
JPH10244575A JP9053287A JP5328797A JPH10244575A JP H10244575 A JPH10244575 A JP H10244575A JP 9053287 A JP9053287 A JP 9053287A JP 5328797 A JP5328797 A JP 5328797A JP H10244575 A JPH10244575 A JP H10244575A
Authority
JP
Japan
Prior art keywords
screw
resin
extruder
calculated
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9053287A
Other languages
Japanese (ja)
Inventor
Takehisa Sugaya
武久 菅谷
Hiroyoshi Sen
裕喜 撰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9053287A priority Critical patent/JPH10244575A/en
Publication of JPH10244575A publication Critical patent/JPH10244575A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/64Screws with two or more threads
    • B29C48/655Screws with two or more threads having three or more threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/251Design of extruder parts, e.g. by modelling based on mathematical theories or experiments
    • B29C48/2511Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel
    • B29C48/2513Design of extruder parts, e.g. by modelling based on mathematical theories or experiments by modelling material flow, e.g. melt interaction with screw and barrel in the plasticising zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/59Screws characterised by details of the thread, i.e. the shape of a single thread of the material-feeding screw
    • B29C48/61Threads having wavy profiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To plan a screw shape in consideration of tress relaxation. SOLUTION: A mesh data of the meshing phase of a screw flight is corrected at every time step (Δt) and convergence calculation considering the time increment item of each fundamental equation related to heat and flow is performed to calculate a cyclical non-steady solution (step S1 - step S12). Next, the history of particles of a resin flow mark line is quantified and, at every flow mark line, on the basis of the stress value of each flow mark line position at every Δt from an inflow port, the temp. history from the position to an outflow port and a relax time of time characteristics, the relax quantity of the stress 1 calculated (steps S13, S14) and the residual stress value a t the outflow port of the stress at each flow mark line position is integrated as the whole of the flow mark line. The residual stress values are calculated with respect to all of imaginary particles and the standard deviation value is set to the surface property index APE to a final product (steps S15, S16). The surface property index APE is used to plan the optimum screw shape.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、2軸押出機におけ
るスクリュ設計方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw designing method for a twin screw extruder.

【0002】[0002]

【従来の技術】従来の2軸押出機におけるスクリュ性能
の検討は、2軸同方向回転押出機スクリュ部での樹脂の
流れ、圧力分布を定量化したもの(ANTEC:90
P.135−138)、2軸同方向回転押出機内の樹脂
流路を3次元で解析を行いスクリュ部での樹脂の流れ
や、操業特性、スクリュ形状特性を定量化したもの(A
NTEC:90P.139−142)、2軸同方向回転
押出機のスクリュエレメントの混練性能を実験的に行っ
たもの(ANTEC:91P.149−152)、2軸
同方向回転押出機内の樹脂流路内の樹脂流速、圧力、剪
断速度を定量化したもの(ANTEC:92P.131
1−1316)などがある。
2. Description of the Related Art The screw performance of a conventional twin-screw extruder was examined by quantifying the resin flow and pressure distribution in a screw portion of a twin-screw co-rotating extruder (ANTEC: 90).
P. 135-138) A three-dimensional analysis of the resin flow path in the twin-screw co-rotating extruder to quantify the resin flow, operating characteristics, and screw shape characteristics in the screw part (A
NTEC: 90P. 139-142) The kneading performance of a screw element of a twin-screw co-rotating extruder was experimentally performed (ANTEC: 91P.149-152). The resin flow rate in a resin flow path in a twin-screw co-rotating extruder , Pressure and shear rate (ANTEC: 92P.131)
1-1316).

【0003】また、本出願人は、押出機内の樹脂流路を
3次元微小要素分割したメッシュデータに基づいて3次
元の数値解析を行うもの(特開平3−288620号公
報、特開平4−364921号公報)や、これらの数値
解析結果を用いて要求品質に合致するスクリュ形状を決
定するもの(特開平3−288619号公報)などを提
案している。
[0003] The applicant of the present invention performs a three-dimensional numerical analysis based on mesh data obtained by dividing a resin flow path in an extruder into three-dimensional microelements (JP-A-3-288620, JP-A-4-364921). Japanese Patent Application Laid-Open No. Hei 3-288819, and a method for determining a screw shape that matches the required quality by using the results of these numerical analysis.

【0004】このうち、特開平3−288619号公報
の2軸押出機におけるスクリュ設計方法は、バレル内に
2軸のスクリュが設けられ、これらスクリュの回転によ
ってバレル内の樹脂が押し出されるように形成された2
軸押出機において、バレル内の樹脂流路を微小要素に分
割し、この分割によって得られたメッシュデータに基づ
いて、樹脂温度、押出圧力等の入力データによる数値解
析を行うとともに、この解析結果を基に、樹脂流路及び
入力データにおける最適スクリュ寸法を決定するもので
ある。
[0004] Among them, a screw designing method in a twin screw extruder disclosed in Japanese Patent Application Laid-Open No. Hei 3-288819 discloses a method in which a twin screw is provided in a barrel and the resin in the barrel is extruded by the rotation of the screw. Done 2
In a screw extruder, the resin flow path in the barrel is divided into small elements, and based on the mesh data obtained by this division, numerical analysis is performed using input data such as resin temperature and extrusion pressure, and the analysis results are analyzed. Based on this, the optimum screw size in the resin flow path and the input data is determined.

【0005】[0005]

【発明が解決しようとする課題】すなわち、従来の2軸
押出機におけるスクリュ設計方法は、2軸押出機内の
熱、流動解析によって算出される流跡線に基づいて、単
に物理量分布や物理量履歴分布を指標化し、スクリュ設
計を行っている。
That is, the conventional screw designing method in a twin-screw extruder simply uses a physical quantity distribution or a physical quantity history distribution based on a trajectory calculated by heat and flow analysis in the twin-screw extruder. Is used as an index to design screws.

【0006】しかしながら、製品の表面性を決定するプ
ロセス内で与えられた応力については、温度と時間とに
依存して緩和が起こる。そのため、この応力緩和を考慮
しないと、実際の製品の表面性と応力分布、応力履歴分
布との相関性が低く、原料配合ごとに良好な表面性を有
する押出製品を得るためのスクリュ形状の適正化が行え
ないといった問題があった。
[0006] However, the stress applied in the process of determining the surface properties of a product is relaxed depending on the temperature and time. Therefore, if this stress relaxation is not taken into account, the correlation between the actual product surface properties and the stress distribution and stress history distribution is low, and the appropriate screw shape to obtain an extruded product with good surface properties for each raw material mix There was a problem that conversion could not be performed.

【0007】本発明はこのような問題点を解決すべく創
案されたもので、その目的は、応力緩和を考慮すること
によって、原料配合ごとに良好な表面性を有する押出製
品を得るための最適なスクリュ形状の設計が可能な2軸
押出機におけるスクリュ設計方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to provide an optimum extruded product having good surface properties for each raw material mixture by considering stress relaxation. It is an object of the present invention to provide a screw designing method for a twin-screw extruder capable of designing various screw shapes.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するた
め、本発明の2軸押出機におけるスクリュ設計方法は、
バレル内に2軸のスクリュが設けられ、これらスクリュ
の回転によってバレル内の樹脂が押し出されるように形
成された2軸押出機において、前記バレル内の樹脂流路
を空間的に3次元微小要素に分割したメッシュデータに
基づき、熱、流動を支配する各基礎方程式を時間増分項
を含めて全て3次元で取り扱うとともに、実際の現象に
則した各種の境界条件と樹脂特性とに基づいて、非定常
数値解析を行い離散化するに際し、前記2軸スクリュフ
ライトが噛み合う領域を、各スクリュ軸ごとに2つのブ
ロックに分けて前記樹脂流路を3次元微小要素に分割
し、各領域間の境界面で互いに境界条件の受け渡し処理
を行いつつ、前記時間増分項による時間ステップごとに
ブロックを回転させ、前記領域において一方のブロック
面が他方のブロック内のスクリュ部分に入り込まないよ
うにメッシュデータの変形を行い、このようにして各時
間ステップごとに離散化された流速ベクトルに基づい
て、スクリュの回転に伴う押出機内の溶融樹脂の樹脂流
跡線を算出し、この流跡線の各位置での応力値と、樹脂
の応力緩和特性と、各流動位置から流出口までの温度履
歴とに基づき、流出口までに緩和する応力量を流跡線の
各位置ごとに算出して、流跡線全体で積算した残留応力
値を算出し、この残留応力値を、流入口から等分布に投
入した仮想粒子の全てについて算出し、そのばらつきを
最小化するように最適スクリュ寸法を設計するものであ
る。
Means for Solving the Problems To solve the above problems, a screw designing method for a twin screw extruder according to the present invention comprises:
In a twin-screw extruder in which a two-axis screw is provided in a barrel and the resin in the barrel is extruded by the rotation of the screw, the resin flow path in the barrel is spatially converted into three-dimensional microelements. Based on the divided mesh data, all the basic equations governing heat and flow are treated in three dimensions, including the time increment term, and unsteady based on various boundary conditions and resin characteristics according to the actual phenomena. When performing numerical analysis and discretizing, the area where the two-axis screw flight meshes is divided into two blocks for each screw axis, and the resin flow path is divided into three-dimensional microelements. The block is rotated for each time step by the time increment term while performing the transfer process of the boundary condition with each other, and one block surface in the area is set to the other block. The mesh data is deformed so as not to enter the screw part of the screw, and the resin flow trajectory of the molten resin in the extruder due to the rotation of the screw based on the flow velocity vector discretized at each time step in this way is Based on the stress value at each position of the trajectory, the stress relaxation characteristics of the resin, and the temperature history from each flow position to the outlet, the amount of stress to be relaxed to the outlet is calculated based on the trajectory. Calculate for each position, calculate the residual stress value integrated over the entire trajectory, calculate this residual stress value for all the virtual particles injected into the uniform distribution from the inlet, and minimize the variation In this way, the optimum screw dimensions are designed.

【0009】数値解析とは、樹脂流路データ(メッシュ
データ)を各種の条件(スクリュ回転周速、壁面温度、
流入量など)に基づいて流動場、温度場を最終的に周期
的非定常解が得られるまで繰り返し収束計算することを
意味し、その解析スキームは、有限要素法、有限差分
法、有限体積法などが挙げられるが、計算時間、計算容
量の点から、有限差分法が望ましい。また、有限差分法
での解法は、MAC法であっても、SIMPLE法であ
っても良く、収束法は、SOR法、ヤコビ法、ガウス・
ザイデル法であっても良い。また、メッシュは6面体セ
ル要素の他、3角要素等でもよい。
Numerical analysis means that resin flow path data (mesh data) is converted into various conditions (screw rotation peripheral speed, wall temperature,
The flow field and the temperature field based on the inflow, etc.) until the cyclic unsteady solution is finally obtained. The analysis scheme is the finite element method, finite difference method, finite volume method However, the finite difference method is preferable in terms of calculation time and calculation capacity. The solution by the finite difference method may be either the MAC method or the SIMPLE method, and the convergence method includes the SOR method, the Jacobi method, and the Gaussian method.
The Seidel method may be used. The mesh may be a triangular element or the like in addition to the hexahedral cell element.

【0010】このように、2軸押出機内の溶融樹脂の樹
脂履歴に基づき、樹脂が受ける応力値と、その応力の流
出口に至るまでの温度と時間とによる緩和量とを考慮し
て、残留緩和量の分布の算出を行うことによって、良好
な表面性を有する押出製品を得るための最適なスクリュ
形状を設計することができるものである。
As described above, based on the resin history of the molten resin in the twin-screw extruder, the residual stress is considered in consideration of the stress value applied to the resin and the amount of relaxation caused by the temperature and time until the stress reaches the outlet. By calculating the distribution of the amount of relaxation, it is possible to design an optimal screw shape for obtaining an extruded product having good surface properties.

【0011】ここで、溶融樹脂の充満部は、2軸押出機
内のバレルとスクリュとの間の樹脂流路において、溶融
流動状態で、樹脂流路を100%占める完全充満状態で
もよく、また100%未満の未充満状態でもよい。
Here, the filled portion of the molten resin may be a completely filled state occupying 100% of the resin flow path in a molten flow state in the resin flow path between the barrel and the screw in the twin-screw extruder. % May be unfilled.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。なお、以下の例では、完全
充満部を対象として説明しているが、未充満部の場合で
もVOF法(Volume of Fluid 法)等を用いれば、同様
に流動解析を行うことができる。
Embodiments of the present invention will be described below with reference to the drawings. In the following example, a completely filled portion is described, but a flow analysis can be performed in a similar manner by using a VOF method (Volume of Fluid method) even in an unfilled portion.

【0013】本発明のスクリュ設計方法が適用される2
軸押出機は、スクリュ回転方向がそれぞれの軸で反対の
もの、同じもののいずれでも良いが、本実施形態では、
スクリュ回転方向が反対のもの、すなわち2軸異方向回
転押出機に適用した場合について説明する。
The screw design method of the present invention is applied 2
In the screw extruder, the screw rotation direction may be opposite for each axis, or any of the same, but in this embodiment,
A case in which the direction of screw rotation is opposite, that is, a case where the present invention is applied to a biaxially different direction rotary extruder will be described.

【0014】また、本発明のスクリュ設計方法が適用さ
れる2軸押出機への充填樹脂は、熱と剪断によるエネル
ギーとによって溶融性、流動性を発現する熱可塑性樹脂
であって、例えばポリエチレン、ポリプロピレン、ポリ
スチレン、ポリカーボネート、硬質塩化ビニル樹脂、軟
質塩化ビニル樹脂、ナイロン樹脂、ポリビニルアセター
ル樹脂、アクリル樹脂、アセタール樹脂、ポリエステル
樹脂などが挙げられる。これらの熱可塑性樹脂には、可
塑剤、充填剤などが添加されてもよい。また、熱や剪断
によるエネルギーによって不溶化(硬質反応)し、再加
熱しても融解しない熱硬化性樹脂で、例えばフェノール
樹脂、ユリア樹脂、メラミン樹脂、アニリン樹脂、不飽
和ポリエステル樹脂、ジアリルフタレート樹脂、エポキ
シ樹脂、アルキド樹脂、珪素樹脂、ポリイミド樹脂、ポ
リウレタン樹脂などでもよい。
The resin to be filled in the twin-screw extruder to which the screw designing method of the present invention is applied is a thermoplastic resin which exhibits meltability and fluidity by heat and energy by shearing. Examples include polypropylene, polystyrene, polycarbonate, hard vinyl chloride resin, soft vinyl chloride resin, nylon resin, polyvinyl acetal resin, acrylic resin, acetal resin, and polyester resin. A plasticizer, a filler, and the like may be added to these thermoplastic resins. In addition, it is a thermosetting resin that is insolubilized (hard reaction) by energy due to heat or shearing and does not melt even when reheated. Epoxy resin, alkyd resin, silicon resin, polyimide resin, polyurethane resin and the like may be used.

【0015】図1は、本発明の2軸押出機におけるスク
リュ設計方法を実行するためのシステム構成図を示して
いる。このシステムは、押出機内樹脂流路を6面体セル
要素で3次元的に分割して熱流動解析を行うためのメッ
シュデータを作成する押出機メッシュ生成プログラムを
備えたプリプロセッサ(メッシュジェネレータ)11、
プリプロセッサ11で作成されたメッシュデータと実際
の現象により規定される種々の境界条件とを用いて流動
場と温度場とを繰り返し計算するアナリシスプログラム
を備えたソルバープロセッサ12、ソルバープロセッサ
12のアナリシスプログラムにより3次元に離散化され
た各物理量をメッシュデータ上に図化し、かつ各要素の
流速を用いて樹脂の流跡線を表示する流跡線表示プログ
ラムを備えたポストプロセッサ13、及び解析結果をグ
ラフ化するグラフプロセッサ14によって構成されてい
る。
FIG. 1 shows a system configuration diagram for executing a screw designing method in a twin-screw extruder according to the present invention. This system includes a preprocessor (mesh generator) 11 having an extruder mesh generation program for creating mesh data for performing heat flow analysis by dividing a resin flow path in an extruder three-dimensionally by hexahedral cell elements,
A solver processor 12 having an analysis program for repeatedly calculating a flow field and a temperature field using mesh data created by the preprocessor 11 and various boundary conditions defined by actual phenomena, and an analysis program of the solver processor 12 Postprocessor 13 equipped with a trajectory display program for plotting the three-dimensionally discretized physical quantities on mesh data and displaying the trajectory of the resin using the flow velocity of each element, and graphing the analysis results It is constituted by a graph processor 14 which converts the data into a graph.

【0016】プリプロセッサ11は、押出機内のスクリ
ュ形状を特徴づける主要なパラメータと、3次元各方向
の分割数とを規定して、メッシュデータを作成するとと
もに、操業条件(境界条件など)、樹脂特性、アナリシ
スプログラムの収束条件などをコントロールするパラメ
ータの設定を行う。
The preprocessor 11 defines the main parameters characterizing the screw shape in the extruder and the number of divisions in each of the three-dimensional directions, creates mesh data, and operates, for example, operating conditions (such as boundary conditions) and resin characteristics. And setting parameters for controlling the convergence conditions of the analysis program.

【0017】2軸異方向回転押出機の台形スクリュに対
する入力パラメータを以下に示す。すなわち、まず2軸
異方向回転押出機の樹脂流路を微小要素に分割し、6面
体ソリッドモデル要素の集合体とする。この分割は、ス
クリュ軸方向分割数、半径方向分割数、円周方向分割数
を決定するとともに、図2及び図3に示すように、スク
リュ内半径(RI)、スクリュ外半径(RO)、バレル
内半径(RB)、スクリュ軸間距離(RL)、フライト
ピッチ(PICH)、フライト頂幅(A)、フライト圧
力角(ALF)、フライト条数(ISN)を設定するこ
とによって行われる。この場合、形状が複雑になるた
め、解析対象をスクリュ軸ごとに2つのブロックに分け
てメッシュデータを作成する。
The input parameters for the trapezoidal screw of the twin screw counter-rotating extruder are shown below. That is, first, the resin flow path of the biaxially different-direction rotary extruder is divided into minute elements to form a set of hexahedral solid model elements. This division determines the number of divisions in the screw axial direction, the number of divisions in the radial direction, and the number of divisions in the circumferential direction. As shown in FIGS. 2 and 3, the screw inner radius (RI), screw outer radius (RO), barrel This is performed by setting the inner radius (RB), the distance between screw shafts (RL), the flight pitch (PICH), the flight top width (A), the flight pressure angle (ALF), and the number of flights (ISN). In this case, since the shape becomes complicated, the analysis target is divided into two blocks for each screw axis, and mesh data is created.

【0018】図4は、このようなプリプロセッサ11に
より生成された2軸異方向回転押出機のメッシュデータ
の軸直角断面図を示している。ソルバープロセッサ12
のアナリシスプログラムは、流動解析部と温度解析部と
からなり、プリプロセッサ11により作成されたデータ
ファイルを用い、マルチブロック法を用いて各ブロック
間の物理量が滑らかにつながるように、ブロック間で相
互に境界条件の受け渡しを行って計算を進める。また、
流動解析部と温度解析部との収束計算により、解析領域
全体が周期的非定常状態に至るまで時間ステップを更新
し、時間ステップ内では繰り返し収束計算を行う。
FIG. 4 is a cross-sectional view perpendicular to the axis of the mesh data of the biaxially different-direction rotary extruder generated by the preprocessor 11. Solver processor 12
The analysis program comprises a flow analysis unit and a temperature analysis unit, and uses a data file created by the preprocessor 11 to mutually connect physical blocks between blocks using a multi-block method so as to smoothly connect physical quantities between the blocks. The calculation is advanced by passing the boundary conditions. Also,
By the convergence calculation of the flow analysis unit and the temperature analysis unit, the time step is updated until the entire analysis area reaches the periodic unsteady state, and the convergence calculation is repeatedly performed within the time step.

【0019】図5に、アナリシスプログラムの基本フロ
ーチャートを示す。まず、プリプロセッサ11により作
成されたデータファイルを読み込み、定数の設定を行う
(ステップS1)。次に、時刻tn より時間増分Δtだ
け時間を進め(時刻tn+1 )、スクリュ軸回りに各ブロ
ックをΔt分回転させ(ステップS2,S3)、スクリ
ュフライトの噛合部分において双方のブロックが重なり
合わないように、かつ一方のブロック面が他方のブロッ
ク内のスクリュ部分に入り込まないようにメッシュデー
タの変形を行って(ステップS4)、境界条件の設定を
行う(ステップS5)。
FIG. 5 shows a basic flowchart of the analysis program. First, the data file created by the preprocessor 11 is read, and constants are set (step S1). Next, the time is advanced by a time increment Δt from the time t n (time t n + 1 ), and each block is rotated around the screw axis by Δt (steps S2 and S3). The mesh data is deformed so as not to overlap and so that one block surface does not enter the screw portion in the other block (step S4), and the boundary condition is set (step S5).

【0020】次に、その時刻tn+1 でのメッシュデータ
の各格子点上の粘度を温度と剪断速度とから求め(ステ
ップS6)、流速場を運動方程式を解くことで求める
(ステップS7)。次に、圧力に関するポアソン方程式
を例えばSOR法を用いて解くことで、メッシュデータ
の各格子点上の圧力増分を求め(ステップS8)、この
圧力増分で流速の補正を行う(ステップS9)。また、
温度場をエネルギー方程式を解くことで求める(ステッ
プS10)。
Next, the viscosity at each grid point of the mesh data at the time t n + 1 is determined from the temperature and the shear rate (step S6), and the flow velocity field is determined by solving the equation of motion (step S7). . Next, the pressure increase on each grid point of the mesh data is determined by solving the Poisson equation relating to the pressure using, for example, the SOR method (step S8), and the flow velocity is corrected with this pressure increase (step S9). Also,
The temperature field is obtained by solving an energy equation (step S10).

【0021】次に、プリプロセッサ11により作成され
たデータファイルで規定される解析領域内の粒子位置座
標を検出し、この粒子位置座標の含まれる要素と、その
回りの要素の流速とから、その粒子の流速を内挿計算す
る(ステップS11)。その後、粒子をその流速で移動
させ、再び時間増分Δtだけ時間を進める(ステップS
2)といったループの処理を、2つのブロック内の全て
の物理量が周期的非定常状態に至るまで継続する(ステ
ップS12)。
Next, the particle position coordinates within the analysis area defined by the data file created by the preprocessor 11 are detected, and the particle containing the particle position coordinates and the flow velocity of the surrounding elements are used to determine the particle position coordinates. Is calculated by interpolation (step S11). Thereafter, the particles are moved at the flow velocity, and the time is advanced by the time increment Δt again (step S).
The processing of the loop such as 2) is continued until all physical quantities in the two blocks reach the periodic unsteady state (step S12).

【0022】このようにして、各時間ステップ(時間増
分Δt)ごとに、スクリュフライトの噛合位相のメッシ
ュデータを修正し、熱、流動に関する各基礎方程式の時
間増分項を考慮した収束計算を行うことによって、周期
的非定常解析が可能となる。そのため、本来の2軸押出
機内の流動状態を厳密に表現することができるので、2
軸押出機内の溶融樹脂の樹脂履歴(温度、剪断速度、粘
度、応力、圧力など)を精度よく定量化することができ
る。
In this way, the mesh data of the mesh phase of the screw flight is corrected for each time step (time increment Δt), and the convergence calculation is performed in consideration of the time increment term of each basic equation relating to heat and flow. This enables periodic unsteady analysis. Therefore, the original flow state in the twin-screw extruder can be strictly expressed.
The resin history (temperature, shear rate, viscosity, stress, pressure, etc.) of the molten resin in the screw extruder can be accurately quantified.

【0023】ポストプロセッサ13は、プリプロセッサ
11により作成されたメッシュデータ及びアナリシスプ
ログラムによる計算結果を用いて、メッシュデータ上に
各物理量の分布図、各要素の流速に基づく流跡線を表示
する。また、解析コントロールデータのスイッチ切り替
えにより、収束計算の収束状況や各物理量の履歴を図化
出力する。
The post-processor 13 displays a distribution map of each physical quantity and a trajectory based on the flow velocity of each element on the mesh data, using the mesh data created by the pre-processor 11 and the calculation results by the analysis program. The convergence state of the convergence calculation and the history of each physical quantity are graphically output by switching the analysis control data.

【0024】図6ないし図8は、2軸異方向回転押出機
での流速、温度の解析結果の図化出力を示しており、図
6は、アナリシスプログラムの計算結果による軸直角断
面での流速ベクトル図、図7は、アナリシスプログラム
の計算結果による軸直角断面での温度コンター図、図8
は、アナリシスプログラムの計算結果による3次元鳥瞰
図での樹脂流跡線図である。
FIGS. 6 to 8 show the graphical output of the analysis results of the flow velocity and the temperature in the biaxially different direction rotary extruder. FIG. 6 shows the flow velocity in the cross section perpendicular to the axis based on the calculation result of the analysis program. FIG. 7 is a vector contour diagram, FIG. 7 is a temperature contour diagram in a section perpendicular to the axis according to the calculation result of the analysis program, and FIG.
FIG. 3 is a resin trajectory diagram in a three-dimensional bird's-eye view based on a calculation result of an analysis program.

【0025】次に、ソルバープロセッサ12では、アナ
リシスプログラムの計算結果による樹脂流跡線の2軸押
出機内の溶融樹脂の完全充満部全体での粒子の履歴を、
解析領域入口での例えば1000個について定量化する
(ステップS13)。そして、その各流跡線ごとに、流
入口から例えば0.1秒(Δt)ごとの流跡線各位置で
の応力値と、その位置から流出口までの温度履歴(樹脂
温度と滞留時間)と、樹脂特性の緩和時間とに基づい
て、その応力の緩和量を算出する(ステップS14)。
Next, in the solver processor 12, the history of particles of the resin trajectory over the entire full filling portion of the molten resin in the twin-screw extruder based on the calculation result of the analysis program is calculated.
Quantification is performed on, for example, 1000 pieces at the analysis area entrance (step S13). Then, for each of the trajectories, the stress value at each position of the trajectory, for example, every 0.1 seconds (Δt) from the inlet, and the temperature history from that position to the outlet (resin temperature and residence time) Then, based on the relaxation time of the resin characteristic, the relaxation amount of the stress is calculated (step S14).

【0026】次に、流跡線各位置のそれぞれの応力の流
出口での残留応力値を、流跡線全体で積算する。その残
留応力値を、上記した粒子1000個の全てについて算
出し(ステップS15)、その標準偏差値を最終製品に
対する表面性指標APEとする(ステップS16)。
Next, the residual stress value at the outlet of each stress at each position of the trajectory is integrated over the entire trajectory. The residual stress value is calculated for all the 1000 particles described above (step S15), and the standard deviation value is used as the surface property index APE for the final product (step S16).

【0027】以下、ステップS13〜ステップS16に
ついて、数式を用いて具体的に説明する。ある流跡線の
図9に示す各位置での物理量を以下に定義する。
Hereinafter, Steps S13 to S16 will be specifically described using mathematical expressions. The physical quantity at each position shown in FIG. 9 of a certain trajectory is defined below.

【0028】すなわち、樹脂温度:Tk 、応力値:
σk 、緩和定数(温度の関数):τ(T)、流跡線の時
間刻み間隔:Δt 従って、k=n(k≦kmax-2 )の位置で樹脂が受けた
応力値の流出口での残留値は、次式(1)で示される。
That is, resin temperature: T k , stress value:
σ k , relaxation constant (function of temperature): τ (T), time step interval of trajectory: Δt Therefore, the outlet of the stress value received by the resin at the position of k = n (k ≦ k max−2 ) Is represented by the following equation (1).

【0029】[0029]

【数1】 流跡線各位置ごとに、上記(1)式の値を算出し、その
算出した値を流跡線全体で積算した値(σres(i))は、
流出口での残留応力値として次式(2)で示される。
(Equation 1) The value of the above equation (1) is calculated for each position of the trajectory, and a value (σ res (i) ) obtained by integrating the calculated value over the entire trajectory is
The residual stress value at the outlet is represented by the following equation (2).

【0030】[0030]

【数2】 このσres(i)を流入口から等分布に投入したnmax 値の
仮想粒子の全て(上記実施例では1000個の粒子)に
ついて算出し、その標準偏差値を表面性指標APEとす
る。
(Equation 2) This σ res (i) is calculated for all of the virtual particles of the n max value (1000 particles in the above embodiment ) which are input into the uniform distribution from the inlet, and the standard deviation value is used as the surface property index APE.

【0031】[0031]

【数3】 そして、このようにして得られた表面性指標APEを用
いて、最適スクリュ寸法を設計する。
(Equation 3) Then, the optimum screw size is designed using the surface property index APE thus obtained.

【0032】図10は、最適スクリュ寸法を設計する動
作を示すフローチャートである。すなわち、スクリュ形
状、押出操業条件、樹脂データなどの入力データに基づ
き(ステップS21)、図5に示すアナリシスプログラ
ムに従って押出機内部の溶融樹脂の熱及び流動状態を解
析するとともに(ステップS22)、この解析結果から
得られた表面性指標APEと要求品質とを比較する(ス
テップS23,S24)。そして、スクリュ形状の入力
データを変更して(ステップS25)、ステップS22
での解析を繰り返すことにより、表面性指標APEが要
求品質を満たす値となったときのスクリュ寸法を、最適
スクリュ寸法として設計を完了する(ステップS2
6)。
FIG. 10 is a flowchart showing the operation for designing the optimum screw size. That is, based on input data such as screw shape, extrusion operation conditions, and resin data (step S21), the heat and flow state of the molten resin inside the extruder are analyzed according to the analysis program shown in FIG. 5 (step S22). The surface property index APE obtained from the analysis result is compared with the required quality (steps S23 and S24). Then, the input data of the screw shape is changed (Step S25), and Step S22 is performed.
By repeating the analysis in (1), the design is completed with the screw size when the surface property index APE becomes a value satisfying the required quality as the optimum screw size (step S2).
6).

【0033】図11に示す図表は、図10に示すフロー
チャートに従い、表面性指標APEを用いて新規設計し
たスクリュ形状の2軸押出機と、既存のスクリュ形状の
2軸押出機とによって押出成形した製品の比較結果を示
している。
The chart shown in FIG. 11 was formed by extrusion using a screw-shaped twin-screw extruder newly designed using the surface property index APE and an existing screw-shaped twin-screw extruder according to the flowchart shown in FIG. The comparison result of a product is shown.

【0034】新規設計したスクリュ(実施例1〜4)
と、既存のスクリュ(比較例1〜4)とを用いた2軸押
出機の条件は以下の通りである。 使用押出機 :2軸異方向回転パラレルタイプ押出機(スクリュ先端外 径91.2mm) 使用樹脂 :硬質PVC(重合度1400、徳山積水TS−1400 K製) 使用金型 :製品肉厚3mm、幅300mmのシート用金型 押出成形条件 :押出量200kg/h、バレル温度190℃ 表面不良現象測定 :接触式表面粗さ計を使用して押出製品の算術平均粗さ( Ra)を測定、測定条件は、カットオフ値25mm、評 価長さ100mm(押出方向) 図11に示す比較結果からも分かるように、本発明のス
クリュ設計方法を用いて設計した新規設計スクリュで
は、押し出したシートの表面性が、いずれの押出条件に
おいても、既存スクリュで押し出したシートの表面性に
比べて良好であることが確認された。
Newly Designed Screw (Examples 1-4)
And the conditions of the twin-screw extruder using the existing screws (Comparative Examples 1 to 4) are as follows. Extruder used: Two-axis different-direction rotating parallel type extruder (external diameter of screw tip: 91.2 mm) Resin used: Hard PVC (degree of polymerization 1400, manufactured by Tokuyama Sekisui TS-1400 K) Die used: product thickness 3 mm, width 300 mm sheet mold Extrusion molding condition: 200 kg / h of extrusion rate, 190 ° C. barrel temperature Measurement of surface defect phenomenon: Measurement of arithmetic average roughness (Ra) of extruded product using contact surface roughness meter, measurement conditions Is a cut-off value of 25 mm and an evaluation length of 100 mm (extrusion direction). As can be seen from the comparison results shown in FIG. 11, the newly designed screw designed using the screw design method of the present invention has a surface property of the extruded sheet. However, under any of the extrusion conditions, it was confirmed that the surface properties of the sheet extruded with the existing screw were better.

【0035】[0035]

【発明の効果】本発明の2軸押出機におけるスクリュ設
計方法は、バレル内に2軸のスクリュが設けられ、これ
らスクリュの回転によってバレル内の樹脂が押し出され
るように形成された押出機において、バレル内の樹脂流
路を空間的に3次元微小要素に分割したメッシュデータ
に基づき、熱、流動を支配する各基礎方程式を時間増分
項を含めて全て3次元で取り扱うとともに、実際の現象
に則した各種の境界条件と樹脂特性とに基づいて、非定
常数値解析を行い離散化するに際し、2軸スクリュフラ
イトが噛み合う領域を、各スクリュ軸ごとに2つのブロ
ックに分けて樹脂流路を3次元微小要素に分割し、各領
域間の境界面で互いに境界条件の受け渡し処理を行いつ
つ、時間増分項による時間ステップごとにブロックを回
転させ、前記領域において一方のブロック面が他方のブ
ロック内のスクリュ部分に入り込まないようにメッシュ
データの変形を行い、このようにして各時間ステップご
とに離散化された流速ベクトルに基づいて、スクリュの
回転に伴う押出機内の溶融樹脂の樹脂流跡線を算出し、
この流跡線の各位置での応力値と、樹脂の応力緩和特性
と、各流動位置から流出口までの温度履歴とに基づき、
流出口までに緩和する応力量を流跡線の各位置ごとに算
出して、流跡線全体で積算した残留応力値を算出し、こ
の残留応力値を、流入口から等分布に投入した仮想粒子
の全てについて算出し、そのばらつきを最小化するよう
に最適スクリュ寸法を設計するものである。つまり、2
軸押出機内の溶融樹脂が受ける応力値と、樹脂の応力緩
和特性とに基づいて、この応力の流出口に至るまでの緩
和量を算出することによって、高分子溶融体の応力緩和
を考慮した応力分布量が定量化でき、実際の押出製品の
良好な表面性を確保するスクリュ形状、操業条件を決定
できる。また、押出原料及び製品ごとに対する適正化が
机上で行えるので、非常に短時間で最適スクリュの設計
が行える。また、設計指針が明確で定量的になっている
ため、種々のスクリュに対するデータベースの構築が可
能である。
The screw designing method in the twin screw extruder according to the present invention relates to an extruder in which a twin screw is provided in a barrel, and the resin in the barrel is extruded by rotation of the screw. Based on mesh data obtained by spatially dividing the resin flow path in the barrel into three-dimensional microelements, all basic equations governing heat and flow are handled in three dimensions, including time increment terms, and are based on actual phenomena. Based on the various boundary conditions and resin characteristics that have been determined, when performing unsteady numerical analysis and discretization, the area where the two-axis screw flight meshes is divided into two blocks for each screw shaft, and the resin flow path is three-dimensionally divided. While dividing into small elements and performing a process of transferring boundary conditions to each other at a boundary surface between the regions, the block is rotated at each time step by a time increment term, Then, the mesh data is deformed so that one block surface does not enter the screw part in the other block. In this way, based on the flow velocity vector discretized for each time step, Calculate the resin trajectory of the molten resin in the extruder,
Based on the stress value at each position of this trajectory, the stress relaxation characteristics of the resin, and the temperature history from each flow position to the outlet,
The amount of stress to be relaxed to the outlet is calculated for each position of the trajectory line, the residual stress value integrated over the entire trajectory line is calculated, and this residual stress value is input from the inlet to the uniform distribution. The calculation is performed for all of the particles, and the optimum screw size is designed so as to minimize the variation. That is, 2
Based on the stress value applied to the molten resin in the screw extruder and the stress relaxation characteristics of the resin, the amount of relaxation of the stress up to the outlet is calculated, and the stress in consideration of the stress relaxation of the polymer melt is calculated. The amount of distribution can be quantified, and the screw shape and operating conditions that ensure good surface properties of the actual extruded product can be determined. In addition, since optimization for each extruded raw material and each product can be performed on a desk, an optimal screw can be designed in a very short time. In addition, since the design guidelines are clear and quantitative, it is possible to construct a database for various screws.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の2軸押出機におけるスクリュ設計方法
を実行するためのシステム構成図である。
FIG. 1 is a system configuration diagram for executing a screw designing method in a twin-screw extruder of the present invention.

【図2】プリプロセッサの入力パラメータ変数の説明図
である。
FIG. 2 is an explanatory diagram of input parameter variables of a preprocessor.

【図3】プリプロセッサの入力パラメータ変数の説明図
である。
FIG. 3 is an explanatory diagram of input parameter variables of a preprocessor.

【図4】プリプロセッサにより生成された2軸異方向回
転押出機のメッシュデータの軸直角断面図である。
FIG. 4 is a cross-sectional view at right angles to the mesh data of a two-axis different-direction rotary extruder generated by a preprocessor.

【図5】アナリシスプログラムの基本フローチャートで
ある。
FIG. 5 is a basic flowchart of an analysis program.

【図6】アナリシスプログラムの計算結果による軸直角
断面での流速ベクトル図である。
FIG. 6 is a flow velocity vector diagram in a cross section perpendicular to the axis based on the calculation result of the analysis program.

【図7】アナリシスプログラムの計算結果による軸直角
断面での温度コンター図である。
FIG. 7 is a temperature contour diagram in a section perpendicular to the axis according to a calculation result of an analysis program.

【図8】アナリシスプログラムの計算結果による3次元
鳥瞰図での樹脂流跡線図である。
FIG. 8 is a resin trajectory diagram in a three-dimensional bird's-eye view based on a calculation result of an analysis program.

【図9】流入口から流出口までの流跡線の一例を示す図
である。
FIG. 9 is a diagram showing an example of a trajectory from an inlet to an outlet.

【図10】最適スクリュ寸法を設計する動作を示すフロ
ーチャートである。
FIG. 10 is a flowchart showing an operation for designing an optimal screw size.

【図11】本発明のスクリュ設計方法によって設計した
新規設計スクリュと、既存スクリュ形状とによって押し
出し作成した製品の比較結果を示す図表である。
FIG. 11 is a table showing a comparison result between a newly designed screw designed by the screw designing method of the present invention and a product extruded and formed using an existing screw shape.

【符号の説明】[Explanation of symbols]

11 プリプロセッサ 12 ソルバープロセッサ 13 ポストプロセッサ 11 Preprocessor 12 Solver processor 13 Postprocessor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 バレル内に2軸のスクリュが設けられ、
これらスクリュの回転によってバレル内の樹脂が押し出
されるように形成された2軸押出機において、 前記バレル内の樹脂流路を空間的に3次元微小要素に分
割したメッシュデータに基づき、熱、流動を支配する各
基礎方程式を時間増分項を含めて全て3次元で取り扱う
とともに、実際の現象に則した各種の境界条件と樹脂特
性とに基づいて、非定常数値解析を行い離散化するに際
し、前記2軸スクリュフライトが噛み合う領域を、各ス
クリュ軸ごとに2つのブロックに分けて前記樹脂流路を
3次元微小要素に分割し、各領域間の境界面で互いに境
界条件の受け渡し処理を行いつつ、前記時間増分項によ
る時間ステップごとにブロックを回転させ、前記領域に
おいて一方のブロック面が他方のブロック内のスクリュ
部分に入り込まないようにメッシュデータの変形を行
い、このようにして各時間ステップごとに離散化された
流速ベクトルに基づいて、スクリュの回転に伴う押出機
内の溶融樹脂の樹脂流跡線を算出し、この流跡線の各位
置での応力値と、樹脂の応力緩和特性と、各流動位置か
ら流出口までの温度履歴とに基づき、流出口までに緩和
する応力量を流跡線の各位置ごとに算出して、流跡線全
体で積算した残留応力値を算出し、この残留応力値を、
流入口から等分布に投入した仮想粒子全部に対して算出
し、そのばらつきを最小化するように最適スクリュ寸法
を設計することを特徴とする2軸押出機におけるスクリ
ュ設計方法。
1. A two-axis screw is provided in a barrel,
In a twin-screw extruder formed such that the resin in the barrel is extruded by the rotation of these screws, heat and flow are generated based on mesh data obtained by spatially dividing the resin flow path in the barrel into three-dimensional minute elements. Each of the governing basic equations, including the time increment term, is all handled in three dimensions, and when performing unsteady numerical analysis and discretization based on various boundary conditions and resin characteristics according to actual phenomena, The area where the shaft screw flight meshes is divided into two blocks for each screw shaft, the resin flow path is divided into three-dimensional microelements, and the boundary conditions between the areas are transferred to each other at the boundary surface. The block is rotated at each time step according to the time increment term so that one block surface does not enter the screw portion in the other block in the area. The mesh data is deformed, and the resin trajectory of the molten resin in the extruder accompanying the rotation of the screw is calculated based on the flow velocity vector discretized for each time step in this manner. Based on the stress value at each position, the stress relaxation characteristics of the resin, and the temperature history from each flow position to the outlet, the amount of stress to be relaxed to the outlet is calculated for each position of the trajectory, The residual stress value integrated over the entire trajectory is calculated, and this residual stress value is calculated as
A screw designing method for a twin-screw extruder, characterized in that the calculation is performed for all virtual particles injected into an equal distribution from an inlet and an optimum screw dimension is designed so as to minimize the variation.
JP9053287A 1997-03-07 1997-03-07 Screw planning method in twin-screw extruder Withdrawn JPH10244575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9053287A JPH10244575A (en) 1997-03-07 1997-03-07 Screw planning method in twin-screw extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9053287A JPH10244575A (en) 1997-03-07 1997-03-07 Screw planning method in twin-screw extruder

Publications (1)

Publication Number Publication Date
JPH10244575A true JPH10244575A (en) 1998-09-14

Family

ID=12938521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9053287A Withdrawn JPH10244575A (en) 1997-03-07 1997-03-07 Screw planning method in twin-screw extruder

Country Status (1)

Country Link
JP (1) JPH10244575A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513177A (en) * 2009-12-08 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to build solids that rotate in the same direction and touch each other
JP2016078397A (en) * 2014-10-21 2016-05-16 株式会社日本製鋼所 Flow behavior prediction device, flow behavior prediction method, and flow behavior prediction program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013513177A (en) * 2009-12-08 2013-04-18 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to build solids that rotate in the same direction and touch each other
JP2016078397A (en) * 2014-10-21 2016-05-16 株式会社日本製鋼所 Flow behavior prediction device, flow behavior prediction method, and flow behavior prediction program

Similar Documents

Publication Publication Date Title
US5031127A (en) Molten injection-molding method
Karwe et al. Numerical simulation of fluid flow and heat transfer in a single-screw extruder for non-Newtonian fluids
La Gala et al. Theoretical evaluation of the melting efficiency for the single-screw micro-extrusion process: The case of 3D printing of ABS
Sarhangi Fard et al. Tools to simulate distributive mixing in twin‐screw extruders
Szarvasy et al. Computer aided optimisation of profile extrusion dies: definition and assessment of the objective function
Hétu et al. Immersed boundary finite elements for 3D flow simulations in twin-screw extruders
US20180354181A1 (en) Extrusion apparatus and methods
Gutfinger et al. Melt solidification in polymer processing
EP2000283B1 (en) Simulation apparatus for screw extruder volatilization and simulation program for screw extruder volatilization
Stevenson A simplified method for analyzing mold filling dynamics Part I: Theory
Robinson et al. Effect of geometry and fill level on the transport and mixing behaviour of a co-rotating twin screw extruder
Wilczyński et al. Modeling and experimental studies on polymer melting and flow in injection molding
Cheng et al. Mixing intensification in a horizontal self-cleaning twin-shaft kneader with a highly viscous Newtonian fluid
Hube et al. Numerical design of distributive mixing elements
Funatsu et al. 3‐D numerical analysis on the mixing performance for assemblies with filled zone of right‐handed and left‐handed double‐flighted screws and kneading blocks in twin‐screw extruders
JPH10244575A (en) Screw planning method in twin-screw extruder
JP3725648B2 (en) Thermal / flow analysis method for resin flow path in extruder
Potente et al. Design and processing optimization of extruder screws
Wilczyñski SSEM: a computer model for a polymer single-screw extrusion
Shah et al. Comparison of the flow in co-rotating and counter-rotating twin-screw extruders
Rios et al. Comparative study of mixing in corotating twin screw extruders using computer simulation
JPH06335953A (en) Screw designing method in twin-screw extruder
JP3679392B2 (en) Screw extruder simulation apparatus, simulation method and simulation program
Nakhoul et al. A multiphase Eulerian approach for modelling the polymer injection into a textured mould
JPH04364921A (en) Heat fluid analysis method for resin pattern in extruder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050413

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050531