JPH07137062A - Method of measuring amount of calaneder bank - Google Patents

Method of measuring amount of calaneder bank

Info

Publication number
JPH07137062A
JPH07137062A JP28935593A JP28935593A JPH07137062A JP H07137062 A JPH07137062 A JP H07137062A JP 28935593 A JP28935593 A JP 28935593A JP 28935593 A JP28935593 A JP 28935593A JP H07137062 A JPH07137062 A JP H07137062A
Authority
JP
Japan
Prior art keywords
bank
image
processing
density
gradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28935593A
Other languages
Japanese (ja)
Inventor
Atsushi Akamatsu
淳 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP28935593A priority Critical patent/JPH07137062A/en
Publication of JPH07137062A publication Critical patent/JPH07137062A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • B29C43/245Adjusting calender parameters, e.g. bank quantity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Image Processing (AREA)

Abstract

PURPOSE:To enable execution of an operation with a bank control value determined easily for each sort and to always enable execution of accurate measurement by a method wherein a brightness difference of a picked-up image plane is enlarged by an AGC processing, an offset for electric noise is removed, an image is binary-coded and a bank image is cut out. CONSTITUTION:In a method wherein the image of a bank 3 between calender rolls 1 and 2 is picked up by an infrared camera 4 and subjected to an image processing and the amount of the bank is measured therefrom, first a brightness difference of a picked-up image plane is enlarged by an automatic gain control(AGC) processing. Then, a window 31 containing the bank 3 and the peripheral part thereof is set in the image lane subjected to the AGC processing, and an emphasizing image processing wherein the minimum density in the image plane is made a set minimum density gradation and the maximum density therein a set maximum density gradation is executed. Moreover, an offset left for electric noise is removed, a change is made so that the minimum and maximum densities in the image plane after the removal be made the set minimum and maximum density gradations respectively, binary-coding is executed at a fixed binary-coding level set beforehand, and a bank image 30 is cut out.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種プラスチツクある
いはゴムなどをカレンダ加工してシートを製造するにあ
たり、シートの厚み変動などに影響を与える重要管理項
目の1つであるバンク量を制御するために、バンク量、
特に第1バンクの量を測定する方法であって、バンク温
度の変動に起因する測定誤差を解消する方法に関する。
BACKGROUND OF THE INVENTION The present invention controls a bank amount, which is one of important control items that affect variations in the thickness of a sheet when calendaring various plastics or rubbers to produce a sheet. The bank amount,
In particular, the present invention relates to a method of measuring the amount of the first bank, which eliminates a measurement error caused by a change in bank temperature.

【0002】[0002]

【従来の技術】これまで、バンク量を制御する方法とし
ては、カレンダロール間に形成されるバンク量を測定
し、その測定結果に基づいて、ロールの軸線方向にオシ
レートする原料フイードコンベアからの原料供給量を制
御する方法が知られており、また、バンク量を測定する
方法として、赤外線カメラでバンク像を撮像する方法が
知られている。
2. Description of the Related Art Heretofore, as a method of controlling a bank amount, a bank amount formed between calender rolls is measured, and based on the measurement result, a raw material feed conveyor which oscillates in the axial direction of the rolls is used. A method of controlling the material supply amount is known, and a method of capturing a bank image with an infrared camera is known as a method of measuring the bank amount.

【0003】すなわち図1に断面図で示すように、第1
ロール1と第2ロール2との間に形成される樹脂バンク
3を赤外線カメラ4により撮影すると、バンク部(樹脂
部)は放射率が高く、その他の周辺部(ロール面など)
は放射率が低いため、バンク部とロール面との温度差は
わずかであるにもかかわらず、図2に示すように、バン
クは温度が高く(画面上明るく)ロール面は温度が低く
(画面上暗く)写った画面が得られる。図2において3
0がバンクの画像である。
That is, as shown in the sectional view of FIG.
When the resin bank 3 formed between the roll 1 and the second roll 2 is photographed by the infrared camera 4, the bank portion (resin portion) has a high emissivity and the other peripheral portions (roll surface and the like).
Since the emissivity is low, the temperature of the bank is high (bright on the screen) and the temperature of the roll is low (screen You can get a screen that appears dark. 2 in FIG.
0 is the image of the bank.

【0004】この画面のA−A´上の濃度曲線は一般に
図4のような形をしており、これを適当な濃淡階調値
(2値化レベル)Lで2値化し、濃度がL以上であると
判定された部分の面積(画素数)を測定することによ
り、バンクの大きさとするものである。濃淡値は通常、
0(黒色)〜255階調(白色)に分けられる。そして
図1に示す原料フイードコンベア7からの原料供給量を
制御するなどしてバンク量を制御する。
The density curve on AA 'of this screen generally has a shape as shown in FIG. 4, which is binarized by an appropriate grayscale gradation value (binarization level) L to obtain the density L. The size of the bank is determined by measuring the area (number of pixels) of the portion determined to be above. The gray value is usually
It is divided into 0 (black) to 255 gradations (white). Then, the bank amount is controlled by controlling the raw material supply amount from the raw material feed conveyor 7 shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】ところが、一般に材料
配合が異なればカレンダ成形に最適なバンク温度が異な
るため、配合ごとにロール1、2の設定温度を変えて運
転している。また配合が同一でも、バンクの温度はバン
クの大きさ、ロール間のギヤツプなどにより変動する。
これらの理由で現実には、バンクの温度は±10℃程度
のレベルで変化する。
However, in general, when the material composition is different, the optimum bank temperature for calendar forming is different, so that the set temperatures of the rolls 1 and 2 are changed for each composition. Even if the composition is the same, the temperature of the bank varies depending on the size of the bank, the gap between the rolls and the like.
For these reasons, the bank temperature actually changes at a level of about ± 10 ° C.

【0006】一方、赤外線カメラにおける対象物温度と
その画像濃度との関係は適宜設定できるが、例えばポリ
塩化ビニル樹脂の場合好適な範囲は、図5に示すように
濃度が0(黒)となる温度をA、濃度が255(白)と
なる温度をA+Bとすると、Aは90〜120℃、Bは
50〜80℃とするのが適当であり、例えばA=100
℃、B=50℃の場合、±10℃の温度変化は±20%
の濃度値変化となる。従ってバンクの温度が変動する
と、図4に示すように、濃度曲線は温度が高い場合には
曲線10のように、バンク温度が低くなると曲線20の
ように変化するため、2値化レベルLを固定したままで
はバンクの大きさを正しく測定することができない。
On the other hand, the relationship between the temperature of the object and its image density in the infrared camera can be set as appropriate. For example, in the case of polyvinyl chloride resin, the suitable range is 0 (black) as shown in FIG. Assuming that the temperature is A and the temperature at which the density is 255 (white) is A + B, it is appropriate that A is 90 to 120 ° C. and B is 50 to 80 ° C. For example, A = 100.
℃, B = 50 ℃, ± 10 ℃ temperature change is ± 20%
Changes in the density value of. Therefore, when the bank temperature fluctuates, as shown in FIG. 4, the concentration curve changes like a curve 10 when the temperature is high and a curve 20 when the bank temperature is low. The bank size cannot be measured correctly when it is fixed.

【0007】このような画面の濃度(明るさ)が変動す
る場合の対策として、自動的に2値化レベルを決めるP
−tail法などの画像処理技術、あるいは画像処理を
実施する前にアナログ的に映像信号波形を自動的に調整
して画面を見易くするAGC(オートマチツクゲインコ
ントロール)処理技術などがあるが、上記のように濃度
変化が±20%程度と大きいため、温度変化に起因する
バンクの大きさの測定誤差をなくすことはできなかっ
た。
As a countermeasure against such a variation in the density (brightness) of the screen, P which automatically determines the binarization level is set.
There is an image processing technique such as the -tail method, or an AGC (Automatic Gain Control) processing technique that automatically adjusts the video signal waveform in an analog manner before performing the image processing to make the screen easy to see. As described above, since the density change is as large as about ± 20%, the measurement error of the bank size due to the temperature change cannot be eliminated.

【0008】[0008]

【課題を解決するための手段】本発明は、映像信号のア
ナログ処理技術と画像処理技術を組み合わせて、バンク
部の濃度を最大(白)近くに、ロール表面の濃度を最低
(黒)近くにリアルタイムで拡大し、この画像により2
値化レベルを固定したままでバンクの大きさを測定する
ことにより、温度変化に起因するバンクの大きさの測定
誤差をなくすものである。
SUMMARY OF THE INVENTION The present invention combines analog image processing technology and image processing technology for video signals to bring the density of the bank portion to a maximum (white) and the density of the roll surface to a minimum (black). Magnified in real time, this image shows 2
By measuring the size of the bank with the value level fixed, the measurement error of the size of the bank due to the temperature change is eliminated.

【0009】すなわち本発明は、カレンダロール間に形
成されるバンクを赤外線カメラにより撮影し、得られた
画像を画像処理してバンク量を測定する方法において、 1)AGC(オートマチツクゲインコントロール)処理
により撮影画面の明暗差を拡大し、 2)AGC処理した画面内に、バンクとその周辺とを含
むウインドウを設定して、ウインドウ内の画面の最小濃
度を設定最小濃度階調に、最大濃度を設定最大濃度階調
にする強調画像処理を行ない、 3)さらに、電気ノイズのため残されているオフセツト
を除き、 4)オフセツト除去後の画面について、画面の最小濃度
が設定最小濃度階調に、最大濃度が設定最大濃度階調に
なるように変換し、 5)予め設定した固定2値化レベルで画像を2値化して
バンク画像を切り出すことを特徴とするカレンダバンク
量の測定方法である。
That is, the present invention relates to a method of measuring a bank amount by photographing a bank formed between calender rolls with an infrared camera and subjecting the obtained image to image processing. 1) AGC (Automatic Gain Control) processing 2) Set the window including the bank and its surroundings in the AGC-processed screen, and set the minimum density of the screen in the window to the minimum density gradation and the maximum density. Enhance image processing to set maximum density gradation. 3) Furthermore, except offsets left behind due to electrical noise, 4) Regarding the screen after offset removal, the minimum density of the screen becomes the set minimum density gradation. Convert the maximum density to the set maximum density gradation, and 5) binarize the image at a preset fixed binarization level and cut out the bank image. It is a method of measuring the calendar bank the amount of the butterflies.

【0010】以下、図面に基づいて本発明を詳しく説明
する。図1は、本発明方法の実施に使用する装置の一例
の断面図、図2は赤外線カメラによる撮影画面、図3は
本発明の処理手順を説明する図、図4は図2のA−A´
上の濃度曲線、図5は赤外線カメラにおける対象物温度
とその画像濃度との関係を説明する図である。
The present invention will be described in detail below with reference to the drawings. 1 is a cross-sectional view of an example of an apparatus used for carrying out the method of the present invention, FIG. 2 is a screen shot by an infrared camera, FIG. 3 is a diagram for explaining the processing procedure of the present invention, and FIG. 4 is A-A of FIG. ´
The above density curve, FIG. 5 is a diagram for explaining the relationship between the object temperature and its image density in the infrared camera.

【0011】図1において、熱入れロール5よりの原料
樹脂は、帯状の樹脂6となって、原料フイードコンベア
7によりカレンダロールに供給され、バンク3を形成す
る。原料フイードコンベア7は支点を中心に首振りする
ことにより、ロール軸線方向にオシレートしている。
In FIG. 1, the raw material resin from the heating roll 5 becomes a belt-shaped resin 6 and is supplied to a calendar roll by a raw material feed conveyor 7 to form a bank 3. The raw material feed conveyor 7 oscillates in the roll axis direction by swinging around the fulcrum.

【0012】そして、赤外線カメラ4によりバンク3を
撮影すると、図2に示すようなバンク画像30が得られ
る。図3(a)は、バンク画像30上の線分A−A´の
明暗差を表わす電圧の変化(映像信号)を示している。
図3(a)には、画像を扱う場合避けられない電気ノイ
ズ32も示してある。
When the bank 3 is photographed by the infrared camera 4, a bank image 30 as shown in FIG. 2 is obtained. FIG. 3A shows a change in voltage (video signal) representing a difference in brightness between line segments AA ′ on the bank image 30.
FIG. 3A also shows electric noise 32 that cannot be avoided when handling an image.

【0013】この映像信号の大きさを、画面全体が見易
くなるよう自動調整するAGC(オートマチツクゲイン
コントロール)処理すると、波形は図3(b)のよう
に、映像信号の低い部分は0Vに、高い部分は設定最大
電圧(1V)に近づけられる結果、明暗差が大きくな
る。
When AGC (automatic gain control) processing is performed to automatically adjust the size of the video signal so that the entire screen is easy to see, the waveform becomes 0 V in the low part of the video signal as shown in FIG. 3B. As a result of the high portion being brought close to the set maximum voltage (1V), the difference in brightness becomes large.

【0014】しかしこのAGC処理は、元の画像の明暗
が全体的に変動するときに、アナログ電圧レベルで自動
的に全体の明るさを調整する機能のものなので、図2の
バンク部3と背景部の明暗差の拡大が不十分な場合が多
いことは前述の通りである。そこで、本発明において
は、映像信号を、濃淡を表わす離散数値である濃度階調
に変換して各種処理を行う画像処理技術により、次の強
調処理を行う。
However, since this AGC processing has a function of automatically adjusting the overall brightness by the analog voltage level when the lightness and darkness of the original image fluctuates as a whole, the bank unit 3 and the background of FIG. As described above, it is often the case that the difference between the light and dark areas is insufficiently expanded. Therefore, in the present invention, the following enhancement processing is performed by an image processing technique that converts a video signal into a density gradation that is a discrete numerical value that represents light and shade and performs various processing.

【0015】すなわち、まず画面を多数のます目に分割
し、各々のます目の明るさを濃度階調値としてデジタル
化する。濃度階調は通常、0(黒)〜255(白)階調
に分けて設定される。そして、バンクとその周辺を内に
持つウインドウ31を適宜位置に作り、そのウインドウ
内の画面の最小濃度階調を設定最小濃度階調(0階調)
に引き下げ、ウインドウ内の最大濃度階調を設定最大濃
度階調(通常255階調)に引き上げて、画面全体を強
調する。その結果得られる波形を図3(c)に例示す
る。
That is, first, the screen is divided into a large number of cells, and the brightness of each cell is digitized as a density gradation value. The density gradation is usually set separately from 0 (black) to 255 (white) gradation. Then, a window 31 having the bank and its periphery inside is created at an appropriate position, and the minimum density gradation of the screen in the window is set to the minimum density gradation (0 gradation).
To increase the maximum density gradation in the window to the set maximum density gradation (usually 255 gradations) to emphasize the entire screen. The waveform obtained as a result is illustrated in FIG.

【0016】このとき、電気ノイズ32により、バンク
周辺部の階調より小さいノイズ32の階調値がウインド
ウ31内の最小濃度階調となるため、バンク周辺部が0
階調より大きい階調値にしか変換されず、バンク周辺部
もかなりの明るさを持ち、従って全体が明るさが勝った
画像となる。
At this time, due to the electrical noise 32, the gradation value of the noise 32, which is smaller than the gradation in the peripheral area of the bank, becomes the minimum density gradation in the window 31, so that the peripheral area of the bank is 0.
Only the gradation value larger than the gradation is converted, and the peripheral portion of the bank also has a considerable brightness, so that the entire image becomes a bright image.

【0017】そこで、強調処理のため一旦濃度階調値に
変換された画像を再び映像信号に戻す時に、ノイズによ
るオフセツト分(階調値C´に相当する映像信号値C
(V))を除き、C(V)が0階調、1(V)が255
階調となるように再び濃度値に変換する。
Therefore, when the image once converted into the density gradation value for the emphasis processing is returned to the video signal again, the offset amount due to noise (the video signal value C corresponding to the gradation value C '
Except for (V)), C (V) has 0 gradation and 1 (V) has 255 gradations.
The density value is converted again so as to obtain gradation.

【0018】この結果得られた図3(d)に示すような
バンク部の拡大画像は、上記の一連の処理により、バン
ク部が255階調、その周辺部が0階調となるので、固
定した2値化レベルLを用いてバンク部を2値化してバ
ンクの大きさを測定することができる。
The enlarged image of the bank portion as shown in FIG. 3 (d) obtained as a result is fixed because the bank portion has 255 gradations and the peripheral portion has 0 gradations by the above series of processing. The bank size can be measured by binarizing the bank portion using the binarized level L.

【0019】本発明方法によれば、上記のように、バン
ク温度が変わっても、バンク部と周辺部の濃度階調差を
常に最大にすることができることから、固定した2値化
レベルLを用いてバンク部を2値化することができる。
According to the method of the present invention, as described above, even if the bank temperature changes, the density gradation difference between the bank portion and the peripheral portion can always be maximized. The bank part can be binarized by using this.

【0020】[0020]

【発明の効果】本発明方法によれば、材料配合が変わっ
ても、赤外線カメラの温度範囲、あるいはバンクを切り
出すための2値化レベルを都度変更することなくカレン
ダバンク量を測定できるので、品種ごとのバンク量管理
値を容易に決めて運転することができる。
According to the method of the present invention, even if the material composition is changed, the amount of calendar bank can be measured without changing the temperature range of the infrared camera or the binarization level for cutting out the bank each time. It is possible to easily determine the bank amount management value for each operation.

【0021】また、同一品種であってもバンク温度は運
転中に変動するが、これに対しても赤外線カメラの温度
範囲や2値化レベルを変える必要がなく、常に正確な測
定を行なうことができる。
Further, even if the same type of product is used, the bank temperature fluctuates during operation. Against this, there is no need to change the temperature range or the binarization level of the infrared camera, and accurate measurement can always be performed. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の実施に使用する装置の一例の断面
図。
FIG. 1 is a sectional view of an example of an apparatus used for carrying out the method of the present invention.

【図2】赤外線カメラによる撮影画面を示す図。FIG. 2 is a diagram showing a shooting screen of an infrared camera.

【図3】本発明の処理手順を説明する図。FIG. 3 is a diagram illustrating a processing procedure of the present invention.

【図4】図2のA−A´上の濃度曲線を示す図。FIG. 4 is a diagram showing a concentration curve on AA ′ in FIG.

【図5】赤外線カメラにおける対象物温度とその画像濃
度との関係を説明する図。
FIG. 5 is a diagram illustrating a relationship between an object temperature and an image density of the infrared camera.

【符号の説明】[Explanation of symbols]

3 バンク 30 バンク画像 31 ウインドウ 32 電気ノイズ 4 赤外線カメラ 7 原料フイードコンベア 3 bank 30 bank image 31 window 32 electrical noise 4 infrared camera 7 raw material feed conveyor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カレンダロール間に形成されるバンクを
赤外線カメラにより撮影し、得られた画像を画像処理し
てバンク量を測定する方法において、 1)AGC(オートマチツクゲインコントロール)処理
により撮影画面の明暗差を拡大し、 2)AGC処理した画面内に、バンクとその周辺とを含
むウインドウを設定して、ウインドウ内の画面の最小濃
度を設定最小濃度階調に、最大濃度を設定最大濃度階調
にする強調画像処理を行ない、 3)さらに、電気ノイズのため残されているオフセツト
を除き、 4)オフセツト除去後の画面について、画面の最小濃度
が設定最小濃度階調に、最大濃度が設定最大濃度階調に
なるように変換し、 5)予め設定した固定2値化レベルで画像を2値化して
バンク画像を切り出すことを特徴とするカレンダバンク
量の測定方法。
1. A method for measuring a bank amount by image-processing an obtained image of a bank formed between calender rolls with an infrared camera, and 1) a photographing screen by AGC (automatic gain control) processing. 2) Set the window including the bank and its surroundings in the AGC-processed screen, set the minimum density of the screen in the window to the minimum density gradation, and set the maximum density to the maximum density. 3) Furthermore, the enhanced image processing for gradation is performed. 3) Furthermore, the offset left behind due to electrical noise is removed. 4) The screen after the offset is removed, the minimum density of the screen is the set minimum density gradation and the maximum density is A calendar characterized by converting to a set maximum density gradation, and 5) binarizing an image at a preset fixed binarization level to cut out a bank image. Link the amount of the measurement method.
JP28935593A 1993-11-18 1993-11-18 Method of measuring amount of calaneder bank Pending JPH07137062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28935593A JPH07137062A (en) 1993-11-18 1993-11-18 Method of measuring amount of calaneder bank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28935593A JPH07137062A (en) 1993-11-18 1993-11-18 Method of measuring amount of calaneder bank

Publications (1)

Publication Number Publication Date
JPH07137062A true JPH07137062A (en) 1995-05-30

Family

ID=17742134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28935593A Pending JPH07137062A (en) 1993-11-18 1993-11-18 Method of measuring amount of calaneder bank

Country Status (1)

Country Link
JP (1) JPH07137062A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009789A1 (en) * 1996-09-05 1998-03-12 The Goodyear Tire And Rubber Company System and method for controlling the size of material banks in calenders, mills, and feed mills
WO1998032580A1 (en) * 1997-01-23 1998-07-30 Sunstar Giken Kabushiki Kaisha Two-pack urethane foam composition, and two-pack urethane foam composition packing apparatus and method
US6154252A (en) * 1996-11-13 2000-11-28 Nec Corporation Imaging device for use as radiation detector
JP2002540922A (en) * 1999-04-01 2002-12-03 クラフト・フーヅ・リサーチ・アンド・ディベロップメント・インコーポレイテッド Mill equipment
JP2006076262A (en) * 2004-09-13 2006-03-23 Sumitomo Chemical Co Ltd Manufacturing method of resin plate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998009789A1 (en) * 1996-09-05 1998-03-12 The Goodyear Tire And Rubber Company System and method for controlling the size of material banks in calenders, mills, and feed mills
US6154252A (en) * 1996-11-13 2000-11-28 Nec Corporation Imaging device for use as radiation detector
WO1998032580A1 (en) * 1997-01-23 1998-07-30 Sunstar Giken Kabushiki Kaisha Two-pack urethane foam composition, and two-pack urethane foam composition packing apparatus and method
US6337355B1 (en) 1997-01-23 2002-01-08 Sunstar Giken Kabushiki Kaisha Two-pack urethane foam composition
US6866804B2 (en) 1997-01-23 2005-03-15 Sunstar Suisse Sa Two-pack urethane foam composition, and two-pack urethane foam composition injecting apparatus and method
US7459107B2 (en) 1997-01-23 2008-12-02 Sunstar Suisse Sa Two-pack urethane foam composition, and two-pack urethane foam composition injecting apparatus and method
JP2002540922A (en) * 1999-04-01 2002-12-03 クラフト・フーヅ・リサーチ・アンド・ディベロップメント・インコーポレイテッド Mill equipment
JP4778619B2 (en) * 1999-04-01 2011-09-21 クラフト・フーヅ・リサーチ・アンド・ディベロップメント・インコーポレイテッド Mill device, method for controlling roll mill, and method for analyzing roll condition
JP2006076262A (en) * 2004-09-13 2006-03-23 Sumitomo Chemical Co Ltd Manufacturing method of resin plate
JP4490216B2 (en) * 2004-09-13 2010-06-23 住友化学株式会社 Manufacturing method of resin plate

Similar Documents

Publication Publication Date Title
US5293178A (en) Display screen inspecting apparatus
JP3550874B2 (en) Monitoring device
CN112419261A (en) Visual acquisition method and device with abnormal point removing function
Yuan et al. CLAHE-based low-light image enhancement for robust object detection in overhead power transmission system
JPH07137062A (en) Method of measuring amount of calaneder bank
EP0505729B1 (en) Image binarization system
JPS6376578A (en) Automatic binarization system
JP7469740B2 (en) Belt inspection system and belt inspection program
CN113658135A (en) Fuzzy PID (proportion integration differentiation) -based self-adaptive dimming belt foreign matter detection method and system
Sun et al. Retinex theory‐based shadow detection and removal in single outdoor image
JP2021006854A (en) Belt inspection system and belt inspection program
JPH05164703A (en) Inspecting method for surface of workpiece
JPH0830727A (en) Binarizing method for character image
LU501657B1 (en) A detection method and system of foreign object on coal mine belt in self-adaptive dimming based on Fuzzy PID
JP2535112B2 (en) Image recognition method
JP3947581B2 (en) Image processing device
JPS63155369A (en) Image processing method
JPS6319543A (en) Binarizing processing method for variable density picture in picture processing
JP2022046997A (en) High-level intelligence inspection system for inspecting wall surface of ship
CN118134830A (en) Cable open surface defect detection method and device
JPH09212624A (en) Detector for identification object
JPH0273473A (en) Inspecting method
JP2973153B2 (en) Coil tip shape detection device
JPH06235626A (en) Filtering apparatus with automatic selection of operator
CN112508897A (en) PE box black spot defect detection method