JPS6376578A - Automatic binarization system - Google Patents

Automatic binarization system

Info

Publication number
JPS6376578A
JPS6376578A JP61219595A JP21959586A JPS6376578A JP S6376578 A JPS6376578 A JP S6376578A JP 61219595 A JP61219595 A JP 61219595A JP 21959586 A JP21959586 A JP 21959586A JP S6376578 A JPS6376578 A JP S6376578A
Authority
JP
Japan
Prior art keywords
maximum
image
illuminance
edge line
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61219595A
Other languages
Japanese (ja)
Inventor
Yoshie Nishida
西田 良枝
Seiji Hata
清治 秦
Mitsunobu Isobe
磯部 光庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61219595A priority Critical patent/JPS6376578A/en
Publication of JPS6376578A publication Critical patent/JPS6376578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Facsimile Image Signal Circuits (AREA)
  • Character Input (AREA)

Abstract

PURPOSE:To faithfully reproduce the targeted edge line of an input image in a binary image by calculating, from illuminance distribution, dots that are to form the edge line, and binarizing the illuminance level generated from these points to make it a threshold. CONSTITUTION:The illuminance distribution on one scanning line of an image in a window 16 is obtained, and such a range x1-x2 whose illuminance variation is maximum is calculated. Within the range x1-x2 the absolute values off the differences between neighboring picture elements are obtained; a maximum illumination variation point is obtained through the weight average processing of the results of the above-mentioned operation, and the illuminance level f' of thus obtained maximum variation point x' is referred to. This processing is repeated n-times from plural scanning lines to obtain the average value of the illuminance levels of thus n-times-obtained maximum variation points, and the result is made a threshold. As a result, the target edge line of an input image can be faithfully reproduced even in case when the target edge line includes a variation due to such as thin part or blurred part, or is influenced by outdoor daylight, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、2値画像処理に係り、荷に文字等、2値化に
及ぼす影響が照明余件他、印刷状態、対象物の材質1色
等、対象物毎に異なる条件において認識すべき対象に対
して好適な自動2値化方式〔従来の技術〕 従来の方法は、特開昭57−184368号公報に記載
のように、一走査線上のヒストグラムを作成し、出現反
数かピーク島、P!となる画素情報レベルを見つけ、そ
の区間の出現度数が最小値となる画素情報レベルを見つ
けることにより閾値を設定するものである。しかし、出
現度数がビークP、 、 P、となる画素情報レベルが
検出できる場合は良いが、印字品質が悪く、背景・印字
部とも!#素情報レベルにばらつきがある場仕は出炭度
数がピークとなるP、、P、は検出困難である。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to binary image processing, and the effects on binary image conversion include lighting conditions, printing conditions, material of the object, etc. Automatic binarization method suitable for objects to be recognized under conditions that vary depending on the object, such as color [Prior art] The conventional method uses one scan as described in Japanese Patent Laid-Open No. 57-184368. Create a histogram on the line, the occurrence counternumber or peak island, P! The threshold value is set by finding the pixel information level where the frequency of appearance of that section is the minimum value. However, it is good if the pixel information level with the appearance frequency of the peaks P, , P can be detected, but the printing quality is poor, and both the background and the printed part are damaged! #If there are variations in the elementary information level, it is difficult to detect P,,P, where the coal output degree reaches its peak.

〔発明が解決しようどする問題点〕[Problems that the invention attempts to solve]

上記従来技術は、印字状態の良い紙等には適用できるが
、ネジステムの対象であるIC等は表面が梨地状をして
おり、印字文字及び背景にも明るさのばらつきがあり、
さらに低コントラストであ・す、印字のカスレ、にじみ
等文字も変形する。不発明の目的は、上記に示す対象に
対して、最適な閾値を設定し、入力画像の対象のエツジ
機を忠実に2値画像に再現することにある。
The above conventional technology can be applied to paper with good printing quality, but the surface of ICs, etc. that are the targets of screw stems has a matte finish, and the printed characters and background also have variations in brightness.
Furthermore, with low contrast, the characters become distorted, such as blurring, blurring, etc. The object of the present invention is to set an optimal threshold value for the above-mentioned object and faithfully reproduce the object edge of the input image into a binary image.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、一走査線上の明るさの変化が最大である明
るさ最大変化点を算出し、この最大変化点の明るさレベ
ルを閾値とすることにより、入力画像の対象のエツジ線
を忠実に2値化時に再現できる。
The above purpose is to calculate the maximum brightness change point at which the change in brightness on one scanning line is maximum, and use the brightness level of this maximum change point as a threshold to faithfully match the target edge line of the input image. Can be reproduced during binarization.

〔作用」 本方式は、一走査線上の明るさ分布から、直接、対象の
エツジ線となるべき点を算出し、この点の明るさレベル
を閾値として、2値化することによって、エツジ線を忠
実に再現しようとするものである0 〔実施例〕 以下、本発明の一実施例を第2図により説明する。第2
図は、本発明を実現するシステムの一例を示す。システ
ムは、撮像カメラ1.Ic等対象物8を均一に照明する
照明光源2.対象物8を拡大する拡大レンズ9.対象物
8の位置補正を行うXYステージ10.撮像した原画像
あるいは2値化処理した画像を表示するモニタ3.カメ
ラ1よりのデータに基づいてIl!ll1l!を処理す
る画像処理装置4、操作内容を表示するCBr4.デー
タを記憶保存スるフロッピーディスク(F’D)ドライ
ブ6及び各種の指令及びデータを入力づ−るためのキー
ボード7より構Iii、をれる。
[Operation] This method directly calculates the point that should become the target edge line from the brightness distribution on one scanning line, and then binarizes the edge line using the brightness level of this point as a threshold. [Embodiment] An embodiment of the present invention will be described below with reference to FIG. 2. Second
The figure shows an example of a system implementing the invention. The system includes an imaging camera 1. 2. An illumination light source that uniformly illuminates the object 8 such as Ic. A magnifying lens 9 for magnifying the object 8. An XY stage 10 for correcting the position of the object 8. 3. A monitor that displays the captured original image or the binarized image. Based on data from camera 1 Il! ll1l! an image processing device 4 for processing, a CBr 4 for displaying operation details; It consists of a floppy disk (F'D) drive 6 for storing data and a keyboard 7 for inputting various commands and data.

以上の構成において、XYステージ10により適当に位
置決めされたICaの品名をカメラ1により画像処理装
置4に画像を入力し、C几T5とキーボード7による操
作でFDドライブ6中のFDに記憶されている評価用プ
ログラムを起動することにより、工C8の品名を認識す
るものである。
In the above configuration, the image of the product name of the ICa appropriately positioned by the XY stage 10 is inputted to the image processing device 4 by the camera 1, and is stored in the FD in the FD drive 6 by operations using the C-T5 and the keyboard 7. By activating the evaluation program, the product name of Engineering C8 is recognized.

原画像、2値画像の結果はモニタ3に出力される。The results of the original image and the binary image are output to the monitor 3.

本システムの画像処理装置4のハード構成を第3図に示
す。画像処理装置4はカメ21からの画像ヲ入力し、モ
ニタテレビ3に画像を出力するビデオ入出力部12と入
力画像を解析し、白、黒のかたまりごとに領域分けを行
う領域分割回路部11とC几T5よりの操作、FDドラ
イブ6から−の評価プログラムの続出し等の全体の制御
を行うCPU部1部上6成る。これにより、カメラ1よ
り入力された画像はビデオ入出力部12に入力され、C
Br4等の指示により2値化され、2値画像は領域分割
回路s11により解析、さらにCPU部により、FDド
ライブ6に記憶された評価プログラム等により認識され
る。
FIG. 3 shows the hardware configuration of the image processing device 4 of this system. The image processing device 4 includes a video input/output section 12 that inputs an image from a camera 21 and outputs the image to the monitor television 3, and an area division circuit section 11 that analyzes the input image and divides the input image into areas according to white and black clusters. A CPU section 1 (upper section 6) performs overall control such as operations from the C-T5 and continuous output of evaluation programs from the FD drive 6. As a result, the image input from the camera 1 is input to the video input/output unit 12, and
The image is binarized according to an instruction such as Br4, and the binary image is analyzed by the area dividing circuit s11 and further recognized by the evaluation program stored in the FD drive 6 by the CPU section.

次に、1080品名を入力した181I像を第4図に示
す。白い部分はICの品名印刷部15.黒い部分は背景
14である。実際には、第4図で入力された画像は0〜
255の256の階調で表わぜれている。
Next, FIG. 4 shows a 181I image in which 1080 product names have been input. The white part is the IC product name printing part 15. The black part is the background 14. In reality, the input image in Figure 4 is 0~
It is expressed in 255 to 256 gradations.

IC8の入力画像を2値化する場合、同じ対象であって
も照明や外向の影響により、第5図に示すような変化が
ある。第4図中のウィンドウ16内の画像を例として説
明する。ウィンドウ16内の画像の一走査線17上の明
るさ分布を第5図に示す。同じ対象に対しても外向那の
影響によりコントラストの大きい場合18とコントラス
トの小さい場合19になる。このような場合、同一閾値
での2値化は離しく、適切な閾値による2値化が必要で
ある。
When the input image of the IC 8 is binarized, even if it is the same object, there are changes as shown in FIG. 5 due to the influence of illumination and outward direction. The image in the window 16 in FIG. 4 will be explained as an example. The brightness distribution on one scanning line 17 of the image within the window 16 is shown in FIG. Even for the same object, due to the influence of extraversion, the value is 18 when the contrast is high and 19 when the contrast is low. In such a case, binarization using the same threshold value is difficult, and binarization using an appropriate threshold value is required.

、特に、本システムの対象のように、印字状態(カメラ
、にじみ等)により、同一対象に対しても形がやせたり
、太ったり変形する可能性のある場合従来の閾値の決足
に用いる面積1周凹長等のパラメータでの同定は困難で
あり、上記パラメータにより求めた2値化後の対象のエ
ツジ憩を忠実に再現したものでない。そこで、本システ
ムでは、以下に示す方法により対象のエツジ線を忠実に
再現する2値化法を開発した。
In particular, as with the target of this system, the area used to determine the conventional threshold value is Identification using parameters such as the concavity length of one circumference is difficult, and the edge deflection of the object after binarization determined using the above parameters is not faithfully reproduced. Therefore, in this system, we have developed a binarization method that faithfully reproduces the target edge line using the method described below.

以下その概略図を第6図に示し、フローを第1図に示し
説明する。
A schematic diagram thereof is shown in FIG. 6, and a flow thereof is shown in FIG. 1 and will be explained below.

まず、画像を入力しくSl)第6図(a) 、 (b)
に示すように、 (1)  ウィンドウ16内の1面像の一走査線上の明
るさ分布をとる(S2)。
First, input the image (Sl) Figure 6 (a), (b)
As shown in (1) the brightness distribution on one scanning line of the one-plane image within the window 16 is taken (S2).

(2)第6図(b)に示すように、明るさの変化が最大
となる区間(x、〜x雪)を算出する。(S5)。
(2) As shown in FIG. 6(b), calculate the section (x, to x snow) where the change in brightness is maximum. (S5).

(3)明るさ変化が最大となる区間(z、〜x、)で微
X分処理(隣り画素との明るさの差の絶対値をとる)を
行5(84)。その結果を第6図(C)に示す。
(3) Line 5 (84) performs differential X-minute processing (takes the absolute value of the difference in brightness with an adjacent pixel) in the section (z, to x,) where the brightness change is maximum. The results are shown in FIG. 6(C).

(4)微分処理結果なX座標値に重み付けを行っfこ下
式で示し加重平均処理により、明るさ最大変化点を求め
る(S5)。
(4) The X coordinate value resulting from the differential processing is weighted and represented by the following formula, and the point of maximum brightness change is determined by weighted averaging processing (S5).

加重平均、テ=−発ジ」ノエニノ匡二づ」−Σ(fL−
fL−1) 明るさ最大変化点:: X座標:X乙 xiでの明るさレベル:fL (5)  (4)で求めた明るさ最大変化点(テ)の明
るさレベル(ア)を参照する(S6)。
Weighted average,
fL-1) Brightness maximum change point:: Brightness level at X coordinate: (S6).

明るさレベルの参照方法を、第7図に示す。A method of referencing the brightness level is shown in FIG.

求めた最大変化点(=)はその前後画素(xl。The obtained maximum change point (=) is the pixels before and after it (xl).

xt)間の内分点であり、極小的には明るさと座標は線
形であるものとして、最大変化点(=)の前後画素(x
’、 、 x’、 )の明るさレベルf’+*f’x間
を、r:1〜−Z’ : !; −J  と同等の割合
で分割した点の明るさレベル7を最大変化点の明るさレ
ベルとする。
xt), and assuming that the brightness and coordinates are linear in the minimum, the pixels before and after the maximum change point (=) (x
', , x', ) between the brightness levels f'+*f'x, r: 1 to -Z': ! ; The brightness level 7 of the point divided at the same ratio as −J is set as the brightness level of the maximum change point.

(6)  (1)〜(5)の処理を複数走査線によりル
回行ない(S7)、ル回の明るさ最大変化点の明るさレ
ベルの平均値p (= Xf” )を求め、閾値とする
(S8)。これにより、対象に、かすれ、にじみ等変化
があり、さらに外向等の影響を受けた場合にも、入力画
像の対象のエツジ線を忠実に再現できる2値化閾値を決
定することができる。
(6) Perform the processes of (1) to (5) twice using multiple scanning lines (S7), calculate the average value p (= (S8). This determines a binarization threshold that can faithfully reproduce the edge line of the target in the input image even if the target has changes such as blurring or blurring, and is also affected by externalization. be able to.

(発明の効果〕 本発明によれば、明るさ分布から対象のエツジ線となる
べき点を算出し、この点の明るさレベルを閾値として2
値化することにより、入力画像の対象のエツジ線を忠実
に2値画像に再現することができる。
(Effects of the Invention) According to the present invention, a point that should become an edge line of interest is calculated from the brightness distribution, and the brightness level of this point is set as a threshold value of 2.
By converting into a value, the target edge line of the input image can be faithfully reproduced into a binary image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の概略フロー図、第2図は本発
明の一実施例の構成図、第3図は本発明一実施例のハー
ドウェア構成図、第4図は第1図fcsの入力画像の説
明図、第5図は第4図ウィンドウ16内の明るさ分布図
、第6図は本発明の概略図、第7図は第6図(b)の最
大変化区間の拡大図016・ウィンドウ、17・・・走
査線、  18.19・・明るさ分布、 1・・カメラ
、 2・・照明、 6・−モニタテレビ、 4・・・画
像処理装置、5・ CRT。 6・・・FL)ドライブ、 7・・キーボード。 8・・・IC,9・・・拡大レンズ、10・・・XYス
テージ。
FIG. 1 is a schematic flow diagram of an embodiment of the present invention, FIG. 2 is a configuration diagram of an embodiment of the invention, FIG. 3 is a hardware configuration diagram of an embodiment of the invention, and FIG. 4 is a diagram similar to the one shown in FIG. An explanatory diagram of the fcs input image, Figure 5 is a brightness distribution diagram in the window 16 in Figure 4, Figure 6 is a schematic diagram of the present invention, and Figure 7 is an enlargement of the maximum change section of Figure 6 (b). Figure 016: Window, 17: Scanning line, 18.19: Brightness distribution, 1: Camera, 2: Lighting, 6: Monitor television, 4: Image processing device, 5: CRT. 6...FL) drive, 7...keyboard. 8...IC, 9...Magnifying lens, 10...XY stage.

Claims (1)

【特許請求の範囲】[Claims] 1、2値画像処理における閾値決定法において、一走査
線上の明るさの変化が最大となる区間を求め、その区間
内で微分処理を行い、その結果を荷重平均により明るさ
最大変化点を算出し、その最大変化点の明るさレベルを
参照し、これらのステップをくり返し複数の走査線によ
り行い、その平均値を閾値とすることを特徴とする自動
2値化方式。
1. In the threshold determination method in binary image processing, find the section where the change in brightness on one scanning line is maximum, perform differential processing within that section, and calculate the maximum brightness change point by weighted averaging of the results. The automatic binarization method is characterized in that the brightness level at the point of maximum change is referred to, these steps are repeated for a plurality of scanning lines, and the average value is used as the threshold.
JP61219595A 1986-09-19 1986-09-19 Automatic binarization system Pending JPS6376578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61219595A JPS6376578A (en) 1986-09-19 1986-09-19 Automatic binarization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61219595A JPS6376578A (en) 1986-09-19 1986-09-19 Automatic binarization system

Publications (1)

Publication Number Publication Date
JPS6376578A true JPS6376578A (en) 1988-04-06

Family

ID=16737994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61219595A Pending JPS6376578A (en) 1986-09-19 1986-09-19 Automatic binarization system

Country Status (1)

Country Link
JP (1) JPS6376578A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268388A (en) * 1989-04-10 1990-11-02 Hitachi Ltd Character recognizing method
US4991871A (en) * 1989-12-11 1991-02-12 Nippon Seiko Kabushiki Kaisha Collapsible steering column apparatus
US5209135A (en) * 1990-04-23 1993-05-11 Nippon Seiko Kabushiki Kaisha Impact absorbing type steering column device
US5230533A (en) * 1990-11-02 1993-07-27 Nsk Ltd. Shock absorbing steering apparatus
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus
US5547221A (en) * 1994-03-25 1996-08-20 Nsk, Ltd. Energy absorbing member for shock absorbing steering column apparatus
EP0750272A2 (en) * 1995-06-23 1996-12-27 Kabushiki Kaisha Toshiba Image binarization apparatus and method
JP2000247242A (en) * 1999-02-26 2000-09-12 Daumal Castellon Melchor Continuous energy absorption system
US6237955B1 (en) 1998-09-21 2001-05-29 Nsk Ltd. Shock absorbing type steering column apparatus
US6349610B2 (en) * 1998-05-02 2002-02-26 Daimlerchrysler Ag Steering column for a motor vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268388A (en) * 1989-04-10 1990-11-02 Hitachi Ltd Character recognizing method
US4991871A (en) * 1989-12-11 1991-02-12 Nippon Seiko Kabushiki Kaisha Collapsible steering column apparatus
US5209135A (en) * 1990-04-23 1993-05-11 Nippon Seiko Kabushiki Kaisha Impact absorbing type steering column device
US5230533A (en) * 1990-11-02 1993-07-27 Nsk Ltd. Shock absorbing steering apparatus
US5378021A (en) * 1992-03-13 1995-01-03 Nsk Ltd. Collapsible steering column apparatus
US5547221A (en) * 1994-03-25 1996-08-20 Nsk, Ltd. Energy absorbing member for shock absorbing steering column apparatus
EP0750272A2 (en) * 1995-06-23 1996-12-27 Kabushiki Kaisha Toshiba Image binarization apparatus and method
EP0750272A3 (en) * 1995-06-23 1997-12-29 Kabushiki Kaisha Toshiba Image binarization apparatus and method
US6349610B2 (en) * 1998-05-02 2002-02-26 Daimlerchrysler Ag Steering column for a motor vehicle
US6237955B1 (en) 1998-09-21 2001-05-29 Nsk Ltd. Shock absorbing type steering column apparatus
JP2000247242A (en) * 1999-02-26 2000-09-12 Daumal Castellon Melchor Continuous energy absorption system

Similar Documents

Publication Publication Date Title
JP3083918B2 (en) Image processing device
US7978903B2 (en) Defect detecting method and defect detecting device
KR20010020668A (en) Method and apparatus for calibrating a computer-generated projected image
JP3545506B2 (en) Specific color area extraction method and specific color area removal method
KR100734935B1 (en) Area segmentation of an image
JPH0425741A (en) Optical axis adjusting method for headlight
JPS6376578A (en) Automatic binarization system
JPH03257304A (en) Position recognizing apparatus
JP2004038885A (en) Image feature learning type defect detection method, defect detection device and defect detection program
WO1992010810A1 (en) Method of correcting shading and device therefor
JP2005283197A (en) Detecting method and system for streak defect of screen
JP2004219291A (en) Line defect detection method and device for screen
JPH06223177A (en) Improvement of image processing
JP3036103B2 (en) Image processing apparatus and method
JPH03121571A (en) Color picture processor
JP3941403B2 (en) Image density unevenness detection method and inspection apparatus
JPH06203147A (en) Shading correcting method for image
JP2004219072A (en) Method and apparatus for detecting streak defect of screen
JP3648495B2 (en) Defect inspection method and apparatus
JPH09210789A (en) Nonuniformity of color inspection system
JP2000341704A (en) Device for detecting target position of color image
JP2971793B2 (en) Position detection device
JPS61156485A (en) Slice level determining method of visual device
JP2005142951A (en) Image reader and image evaluation program
CN117611554A (en) Shadow detection method based on fusion of YUV color space and gradient characteristics