JPH07136749A - Continuous casting method of ni containing steel - Google Patents

Continuous casting method of ni containing steel

Info

Publication number
JPH07136749A
JPH07136749A JP31114793A JP31114793A JPH07136749A JP H07136749 A JPH07136749 A JP H07136749A JP 31114793 A JP31114793 A JP 31114793A JP 31114793 A JP31114793 A JP 31114793A JP H07136749 A JPH07136749 A JP H07136749A
Authority
JP
Japan
Prior art keywords
slab
continuous casting
heating
temperature
long side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31114793A
Other languages
Japanese (ja)
Inventor
Masayuki Kawamoto
正幸 川本
Toru Kato
徹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31114793A priority Critical patent/JPH07136749A/en
Publication of JPH07136749A publication Critical patent/JPH07136749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the surface crack of cast slab in the continuous casting of Ni contained steel. CONSTITUTION:A reducing flame burner 2 is arranged between rollers 1, 1 placed in the roller apron zone of continuous casting machine. The surface of a cast slab 3 passed through the roller apron zone is directly heated by reducing flame. By reducing/removing the oxidized scale generated on the surface of cast slab 3, the cast slab 3 is made uniformly, cooled also heating the surface of cast slab 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋳片の表面割れを減少
させることができる含Ni鋼の連続鋳造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for Ni-containing steel capable of reducing surface cracking of a slab.

【0002】[0002]

【従来の技術】鋼の連続鋳造においては、ローラエプロ
ン帯での曲げ・矯正によって、鋳片の表面に割れが生じ
る場合がある。特に、そのローラエプロン帯通過時の温
度域で延性が低下する含Ni鋼において、この表面割れ
は著しい。そのため、含Ni鋼の連続鋳造においては、
表面割れを防止するための対策が種々提案されている。
2. Description of the Related Art In continuous casting of steel, cracking may occur on the surface of a slab due to bending and straightening in a roller apron band. Particularly, in Ni-containing steel whose ductility decreases in the temperature range when passing through the roller apron zone, this surface cracking is remarkable. Therefore, in continuous casting of Ni-containing steel,
Various measures have been proposed to prevent surface cracks.

【0003】例えば、材料そのものの高温延性を高める
観点から、鋼中のAlとNの濃度を適正化する対策が、
特開昭57−26141号公報により提案されている。
また、曲げ・矯正域を通過する際の鋳片温度が脆化温度
域に入らないように、冷却パターンを制御する対策が、
特開昭57−32862号公報、特開平1−22864
4号公報等により提案されている。
For example, from the viewpoint of enhancing the high temperature ductility of the material itself, measures for optimizing the concentrations of Al and N in steel are as follows.
It is proposed by JP-A-57-26141.
In addition, measures to control the cooling pattern so that the temperature of the slab when passing through the bending / straightening zone does not enter the embrittlement temperature zone,
JP-A-57-32862, JP-A-1-22864
It is proposed by the publication No. 4 and the like.

【0004】[0004]

【発明が解決しようとする課題】これらの対策は、確か
に表面割れの防止に有効であるが、実際の連続鋳造にお
いて十分な効果を挙げるまでには至っていない。その理
由としては次のようなことが考えられる。
Although these measures are certainly effective in preventing surface cracks, they have not been sufficiently effective in actual continuous casting. The reason is considered as follows.

【0005】鋼中成分の調整では、鋳片に所定の機械的
性質を付与する必要上、割れ防止のための成分の量や調
整範囲が限られることが考えられる。冷却パターンの制
御では、その制御範囲に限界がある上、鋳片のコーナー
部とその以外の部分とで温度が大きく異なるため、鋳片
の表面全体を適正な温度に管理することが難しいことが
考えられる。
In adjusting the components in the steel, it is considered that the amount and adjustment range of the components for preventing cracking are limited because it is necessary to impart predetermined mechanical properties to the slab. In the control of the cooling pattern, there is a limit to the control range, and since the temperatures of the corners of the slab and other parts greatly differ, it is difficult to manage the entire surface of the slab to an appropriate temperature. Conceivable.

【0006】このような事情のため、含Ni鋼の連続鋳
造においては、未だに表面割れを完全に防止することが
できていない。そのため鋳造後の鋳片の表面に精整手入
れを行わなければならず、これによる製造コストの上昇
等を余儀なくされている。
Due to such circumstances, surface cracking cannot be completely prevented in continuous casting of Ni-containing steel. Therefore, the surface of the cast slab after casting has to be refined and maintained, which results in an increase in manufacturing cost.

【0007】本発明の目的は、成分調整や冷却制御に見
られるような制約がなく、鋳片表面の割れ疵を従来より
格段に減少させることができる含Ni鋼の連続鋳造方法
を提供することにある。
An object of the present invention is to provide a continuous casting method for Ni-containing steel, which does not have the restrictions found in the component adjustment and cooling control, and can significantly reduce the crack defects on the surface of the slab as compared with the prior art. It is in.

【0008】[0008]

【課題を解決するための手段】含Ni鋼の連続鋳造にお
いて、鋳片の表面割れが生じる原因が鋳片の表面温度に
関係していることは、先にも述べたよう良く知られた事
実であるが、その鋳片の表面温度については、コーナ部
とそれ以外の部分とには温度差があっても、コーナ部以
外の平面部においては大きな温度差はないと考えられて
きた。
As described above, in the continuous casting of Ni-containing steel, it is well known that the cause of the surface crack of the slab is related to the surface temperature of the slab. However, regarding the surface temperature of the cast slab, it has been considered that even if there is a temperature difference between the corner portion and the other portion, there is no large temperature difference in the flat portion other than the corner portion.

【0009】ところが、本発明者らの調査によれば、含
Ni鋼の連続鋳造においては、含Ni鋼特有の剥離しに
くい酸化スケールが鋳片表面に生成し、酸化スケールが
剥離しない部分では表面の沸騰状態が変化するため、熱
伝達係数が大きくなり、そのためスケール残存部分が部
分的に低温になって、この部分に表面割れを顕著に発生
させるという事実が判明した。
However, according to the investigation by the present inventors, in continuous casting of Ni-containing steel, an oxide scale, which is peculiar to Ni-containing steel and is hard to peel off, is generated on the surface of the cast slab, and the oxide scale does not peel on the surface. It was found that the heat transfer coefficient becomes large due to the change in the boiling state of, so that the remaining scale part becomes partly low in temperature, and the surface crack is remarkably generated in this part.

【0010】一方、実公昭58−18007号公報に開
示されているような低NOX バーナーでは、低空気比で
安定な燃焼が可能であり、その低空気比により還元雰囲
気の炎が安定に得られるという事実が知られている。そ
して、この還元炎バーナーを用いた直火加熱により、種
々の無酸化加熱が行われている。
On the other hand, in the low NO x burner disclosed in Japanese Utility Model Publication No. 58-18007, stable combustion is possible at a low air ratio, and a flame in a reducing atmosphere can be stably obtained due to the low air ratio. It is known that it is possible. Then, various non-oxidizing heatings are performed by direct flame heating using this reducing flame burner.

【0011】本発明者らは、これらの事実から、連続鋳
造機のローラエプロン帯に還元炎バーナーを設置し、含
Ni鋼の鋳片表面を還元炎バーナーで直火加熱すれば、
表面割れの原因となる酸化スケールを除去できると考
え、その考えを種々の実験によって裏付けることによ
り、本発明を完成させるに至った。
From these facts, the inventors of the present invention installed a reducing flame burner in the roller apron zone of a continuous casting machine and directly heat the surface of the Ni-containing steel slab with the reducing flame burner.
The present invention has been completed by thinking that it is possible to remove the oxide scale that causes surface cracking, and by supporting the idea by various experiments.

【0012】本発明は、含Ni鋼の連続鋳造において、
連続鋳造機の鋳型下方に配置されたローラーエプロン帯
を通過する鋳片の表面を、還元炎バーナーにより直火加
熱することを特徴とする含Ni鋼の連続鋳造方法を要旨
とする。
The present invention relates to the continuous casting of Ni-containing steel,
A gist of a continuous casting method for Ni-containing steel is characterized in that the surface of a slab passing through a roller apron band disposed below a mold of a continuous casting machine is heated by an open flame with a reducing flame burner.

【0013】[0013]

【作用】鋳片の表面を還元炎バーナーで直火加熱するこ
とにより、鋳片表面に生成された含Ni鋼特有の剥離し
にくい酸化スケールが還元除去され、ローラエプロン帯
での鋳片表面の冷却が均一化されると共に、その加熱に
より鋳片の表面温度が上昇し、これらにより鋳片の表面
割れが防止される。
[Function] By directly heating the surface of the slab with a reducing flame burner, the oxide scale that is generated on the surface of the slab and is hard to peel off, which is peculiar to Ni-containing steel, is reduced and removed, and the surface of the slab in the roller apron zone is removed. While the cooling is made uniform, the surface temperature of the slab rises due to its heating, and these prevent surface cracks in the slab.

【0014】還元炎バーナーによる直火加熱は、鋳片の
長辺面に対する加熱と、コーナー部に対する加熱とに大
別される。
The direct flame heating by the reducing flame burner is roughly classified into heating for the long side surface of the slab and heating for the corner portion.

【0015】長辺面の加熱は、図1に示すように、ロー
ラエプロン帯の隣接するローラ1,1間に還元炎バーナ
ー2を設置して、鋳片3の長辺面、通常は両面に還元炎
を直接当てることにより行う。この長辺面の直火加熱に
より、長辺面から酸化スケールが還元除去され、長辺面
の冷却が均一化されると共に、その温度低下が抑えられ
て、表面割れの発生が抑えられる。
As shown in FIG. 1, the long side surface is heated by installing a reducing flame burner 2 between the adjacent rollers 1 and 1 of the roller apron band so that the long side surface of the cast slab 3, usually both sides. This is done by directly applying a reducing flame. By heating the long side surface with an open flame, oxide scale is reduced and removed from the long side surface, the cooling of the long side surface is made uniform, and the temperature decrease is suppressed, and the occurrence of surface cracks is suppressed.

【0016】長辺面の直火加熱では、鋳片3の幅方向全
域に還元炎を当てるために、還元炎バーナー2を幅方向
に複数配列するのがよい。加熱位置は、鋳型下のなるべ
く高い位置、具体的には鋳型直下からスプレー冷却開始
までの範囲が良い。これは、酸化スケールを除去した時
点から均一冷却が始まるため、曲げ・矯正域の近くで酸
化スケールを除去しても、曲げ・矯正時に鋳片の表面温
度が均一化されないからである。しかし、実際にはブレ
ークアウト等の問題から下方にずらした方が良い場合も
少なくない。
In the case of direct flame heating of the long side surface, it is preferable to arrange a plurality of reducing flame burners 2 in the width direction in order to apply the reducing flame to the entire width direction of the slab 3. The heating position is preferably as high as possible under the mold, specifically, in the range from immediately below the mold to the start of spray cooling. This is because the uniform cooling starts from the time when the oxide scale is removed, so that even if the oxide scale is removed near the bending / straightening area, the surface temperature of the slab cannot be made uniform during bending / straightening. However, there are many cases where it is actually better to shift downward due to problems such as breakout.

【0017】長辺面を直火加熱すれば、鋳片の表面温度
が全体的に上昇するが、それでもコーナー部が、他の部
分より冷却が進むことは避け得ない。このコーナー部の
部分的な冷却を抑えるのがコーナー部に対する加熱であ
る。
When the long side surface is heated by direct flame, the surface temperature of the slab rises as a whole, but it is unavoidable that the corner portion is cooled more than other portions. Heating the corner portion suppresses partial cooling of the corner portion.

【0018】コーナー部の直火加熱は、長辺面の加熱と
共に行うのが望ましい。加熱位置は、その加熱が昇温を
主たる目的とするので、曲げ・矯正等の力が加わる直
前、具体的には矯正ロール直前が望ましい。この加熱で
は、4つのコーナー部を4つのバーナーで直火加熱する
他、鋳片の短辺の長さによっては短辺面を直火加熱して
もよい。
It is desirable that the direct flame heating of the corner portion is performed together with the heating of the long side surface. The heating position is mainly aimed at raising the temperature, so that it is desirable that the heating position is immediately before a force such as bending or straightening is applied, specifically, immediately before the straightening roll. In this heating, the four corners may be directly heated by the four burners, or the short side surface may be directly heated depending on the length of the short side of the slab.

【0019】還元炎バーナーとしては、低空気比で安定
な燃焼を行うことができるバーナーであれば、特に種類
を問わない。還元炎形成の点から、空気比は1.1〜0.8
が望ましい。燃料としては例えばCガス等を使用するこ
とができる。鋳片の表面に還元炎が充分に当たるよう
に、その表面までの距離が選択されることは言うまでも
ない。
The reducing flame burner may be of any type as long as it is a burner capable of performing stable combustion at a low air ratio. From the viewpoint of reducing flame formation, the air ratio is 1.1 to 0.8.
Is desirable. As the fuel, for example, C gas can be used. It goes without saying that the distance to the surface of the slab is selected so that the reducing flame hits the surface sufficiently.

【0020】含Ni鋼については、鋼中にNiが微量で
も含有されれば酸化スケールが剥離しにくくなり、その
酸化スケールによる表面割れが発生するので、具体的な
鋼種は特に問わず、その表面割れが顕著な5〜10%N
i鋼にも本発明は有効である。
With regard to Ni-containing steel, if even a small amount of Ni is contained in the steel, the oxide scale will be less likely to peel off and surface cracks will occur due to the oxide scale. 5-10% N with remarkable cracking
The present invention is also effective for i steel.

【0021】また、前述した成分調整や冷却制御と本発
明の組み合わせが可能なことは言うまでもない。
Needless to say, the above-described component adjustment and cooling control can be combined with the present invention.

【0022】[0022]

【実施例】以下に本発明の実施例を説明し、従来例と対
比させて、本発明の効果を明らかにする。
EXAMPLES Examples of the present invention will be described below, and the effects of the present invention will be clarified by comparison with conventional examples.

【0023】0.7%Ni鋼を連続鋳造する際に、鋳型直
下(メニスカスから1m)のローラエプロン帯において
鋳片の長辺面(両面)を還元炎バーナーにより直火加熱
した。また、矯正域手前(メニスカスから16m)のロ
ーラエプロン帯において、鋳片の4つのコーナーを還元
炎バーナーにより直火加熱した。鋼種を表1に示す。鋳
片寸法は1800mm(長辺)×300mm(短辺)で
ある。
During continuous casting of 0.7% Ni steel, the long side surfaces (both sides) of the slab were heated directly by a reducing flame burner in the roller apron zone immediately below the mold (1 m from the meniscus). Further, in the roller apron band in front of the straightening zone (16 m from the meniscus), four corners of the cast slab were directly heated by a reducing flame burner. Table 1 shows the steel types. The slab size is 1800 mm (long side) × 300 mm (short side).

【0024】[0024]

【表1】 [Table 1]

【0025】還元炎バーナーは、実公昭58−1800
7号公報に示された低NOX バーナーを使用した。長辺
面の加熱では、これを鋳片幅方向に5基設置し、コーナ
ー部の加熱では、各コーナーに1基をそれぞれ対向させ
た。バーナー1基当たりの燃料はCガス65Nm3
h、空気は246Nm3 /hとし、空気比は0.80とし
た。排ガス成分はCO:3.7%、CO2 :8%、O2
0%であった。
[0025] The reducing flame burner is based on Jitsuko Sho-58-1800.
The low NO x burner shown in Japanese Patent No. 7 was used. Five units were installed in the width direction of the slab for heating the long side surface, and one unit was opposed to each corner for heating the corners. The fuel per burner is C gas 65 Nm 3 /
h, the air was 246 Nm 3 / h, and the air ratio was 0.80. Exhaust gas components are CO: 3.7%, CO 2 : 8%, O 2 :
It was 0%.

【0026】「加熱なし」、「長辺面のみ加熱」、「コ
ーナー部のみ加熱」、「長辺面およびコーナー部を加
熱」の4つのパターンについて、長辺面の温度推移およ
びコーナー部表面の温度推移を調査した結果を図2に示
す。また、各パターンについて鋼片の表面割れの発生状
況を調査した結果を図3に示す。「加熱なし」が従来
例、他は本発明例である。
With respect to four patterns of "no heating", "heating only long side surface", "heating only corner portion", and "heating long side surface and corner portion", temperature transition of the long side surface and corner surface The results of investigation of the temperature transition are shown in FIG. Moreover, the result of having investigated the occurrence state of the surface crack of the steel slab for each pattern is shown in FIG. “No heating” is the conventional example, and the others are the present invention examples.

【0027】図2および図3において、ケース1は「加
熱なし」、ケース2は「長辺面のみ加熱」、ケース3は
「コーナー部のみ加熱」、ケース4は「長辺面およびコ
ーナー部を加熱」の場合をそれぞれ示している。
2 and 3, the case 1 has "no heating", the case 2 has "only the long side surface", the case 3 has "only the corner portion", and the case 4 has "the long side surface and the corner portion". The case of "heating" is shown.

【0028】加熱なしのケース1では、矯正域の入口で
長辺面の温度が800℃近くまで低下し、コーナー部の
表面温度はそれより更に低い約700℃まで低下した。
また、長辺面の表示温度は平均温度であるので、酸化ス
ケールが剥離していない部分では800℃より低い温度
まで低下した。その結果、鋳造後の鋳片の表面には、片
面1mあたり50個の表面割れが発生した。
In the case 1 without heating, the temperature of the long side surface at the entrance of the straightening region dropped to near 800 ° C, and the surface temperature of the corner portion dropped to about 700 ° C, which is lower than that.
Further, since the display temperature of the long side surface is the average temperature, the temperature was lowered to below 800 ° C. in the portion where the oxide scale was not peeled off. As a result, on the surface of the cast piece after casting, 50 surface cracks were generated per 1 m of one side.

【0029】長辺面のみを加熱したケース2では、加熱
から後の長辺面温度がケース1に比して上昇し、矯正域
では850℃以上に維持された。コーナー部の表面温度
も約100℃上昇したが、長辺面の温度に比べるとかな
り低く、矯正域では約800℃である。長辺面の表示温
度は酸化スケールが除去されているので、長辺面全体に
わたって適用される。その結果、表面割れは片面1mあ
たり0.02個に激減した。
In case 2 in which only the long side surface was heated, the temperature of the long side surface after heating increased as compared with case 1, and was maintained at 850 ° C. or higher in the straightening region. Although the surface temperature of the corner portion also increased by about 100 ° C, it is considerably lower than the temperature of the long side surface, and is about 800 ° C in the straightening region. Since the oxide scale is removed, the display temperature of the long side surface is applied to the entire long side surface. As a result, the number of surface cracks was drastically reduced to 0.02 per meter on one side.

【0030】コーナー部のみを加熱したケース3では、
矯正域手前の加熱位置まではケース1と同じ傾向を示す
が、加熱域ではコーナー部の温度が約100℃上昇し、
長辺面の温度も若干上昇した。その結果、表面割れは片
面1mあたり0.1個となった。これはケース2より多い
が、加熱なしのケース1に比べると著しく少ない。
In case 3 in which only the corners are heated,
Up to the heating position before the correction area, the same tendency as in case 1 is shown, but in the heating area, the corner temperature rises by about 100 ° C,
The temperature on the long side also rose slightly. As a result, the number of surface cracks was 0.1 per 1 m on one side. This is more than in case 2, but significantly less than in case 1 without heating.

【0031】長辺面およびコーナー部を加熱したケース
4では、長辺面の加熱より後で長辺面の温度およびコー
ナー部の温度が上昇し、更にコーナー部の加熱より後で
コーナー部の温度が約100℃上昇した。その結果、表
面割れは片面1mあたり0.012個と最も少なくなっ
た。
In case 4 in which the long side surface and the corner portion are heated, the temperature of the long side surface and the temperature of the corner portion rise after the heating of the long side surface and further the temperature of the corner portion after the heating of the corner portion. Increased by about 100 ° C. As a result, the number of surface cracks was the smallest, 0.012 per 1 m on one side.

【0032】[0032]

【発明の効果】以上の説明から明らかなように、本発明
の含Ni鋼の連続鋳造方法は、鋳片表面を還元炎バーナ
ーで直火加熱することにより、含Ni鋼の連続鋳造で問
題となる表面割れを大幅に減少させることができる。従
って、精整手入れ工程における手数、あるいはその工程
そのものを減らして、製品コスト低減に寄与する。ま
た、表面割れにより鋳造が困難であった鋼種についても
鋳造を容易にし、その効果は多大である。
As is apparent from the above description, the continuous casting method for Ni-containing steel according to the present invention has a problem in continuous casting of Ni-containing steel by directly heating the surface of the slab with a reducing flame burner. It is possible to significantly reduce the surface cracks. Therefore, the number of steps in the adjusting and maintenance process or the process itself is reduced, which contributes to a reduction in product cost. Further, for steel types that were difficult to cast due to surface cracking, casting is facilitated, and the effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施態様を示すローラエプロン帯の側
面図である。
FIG. 1 is a side view of a roller apron belt showing an embodiment of the present invention.

【図2】鋳片の表面温度の推移を本発明例と従来例とに
ついて示したグラフである。
FIG. 2 is a graph showing the transition of the surface temperature of a slab for the present invention example and the conventional example.

【図3】表面割れの発生率を本発明例と従来例とについ
て比較したグラフである。
FIG. 3 is a graph comparing the occurrence rate of surface cracks between the present invention example and the conventional example.

【符号の説明】[Explanation of symbols]

1 エプロンローラ 2 還元炎バーナー 3 鋳片 1 apron roller 2 reducing flame burner 3 slab

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 含Ni鋼の連続鋳造において、連続鋳造
機の鋳型下方に配置されたローラーエプロン帯を通過す
る鋳片の表面を、還元炎バーナーにより直火加熱するこ
とを特徴とする含Ni鋼の連続鋳造方法。
1. In continuous casting of Ni-containing steel, the surface of the slab that passes through a roller apron zone disposed below the mold of a continuous casting machine is heated by a direct flame with a reducing flame burner. Continuous casting method for steel.
JP31114793A 1993-11-16 1993-11-16 Continuous casting method of ni containing steel Pending JPH07136749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31114793A JPH07136749A (en) 1993-11-16 1993-11-16 Continuous casting method of ni containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31114793A JPH07136749A (en) 1993-11-16 1993-11-16 Continuous casting method of ni containing steel

Publications (1)

Publication Number Publication Date
JPH07136749A true JPH07136749A (en) 1995-05-30

Family

ID=18013682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31114793A Pending JPH07136749A (en) 1993-11-16 1993-11-16 Continuous casting method of ni containing steel

Country Status (1)

Country Link
JP (1) JPH07136749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041436A (en) * 2014-08-18 2016-03-31 新日鐵住金株式会社 CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041436A (en) * 2014-08-18 2016-03-31 新日鐵住金株式会社 CONTINUOUS CASTING METHOD FOR Ni-CONTAINING STEEL

Similar Documents

Publication Publication Date Title
JP2003062647A (en) Direct rolling method for continuous cast steel piece
JP5271512B2 (en) Hot rolling equipment
JPH07136749A (en) Continuous casting method of ni containing steel
JP5893766B2 (en) Method for producing normalized silicon steel substrate
US4898628A (en) Hot working method for producing grain oriented silicon steel with improved glass film formation
JP2007245232A (en) Method for preventing surface crack of continuously cast slab
JP3453990B2 (en) Cooling method for continuous casting bloom
JP3083247B2 (en) Method for producing stainless steel strip by continuous casting hot rolling and heat treatment furnace for continuous casting hot rolling of stainless steel strip
JP2006274409A (en) Apparatus for manufacturing galvannealed steel sheet
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JP3127278B2 (en) Manufacturing method of controlled cooling steel
JPH08257694A (en) Mold for continuous casting
JP2910180B2 (en) Direct rolling method of steel
JPH0460741B2 (en)
JP4298210B2 (en) Heating method for continuous casting bloom
JP3389451B2 (en) Continuous casting method of unidirectional electromagnetic steel slab
JP4333523B2 (en) Manufacturing method of hot-rolled steel sheet
JP2007245178A (en) Method for continuously casting steel
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
JP3197638B2 (en) Scale control method in heating furnace
JPH07241613A (en) Method for controlling camber shape in width direction of steel plate
JP4150222B2 (en) Manufacturing method of thin steel sheet
JP2003305539A (en) Continuous casting method for high carbon special steel
CN113877963A (en) Control method for pressing in iron scale on surface of hot-rolled silicon-controlled strip steel
JPH09241743A (en) Production of iron-nickel alloy sheet for shadow mask