JPH07136632A - Method of recovering soil by microorganism - Google Patents

Method of recovering soil by microorganism

Info

Publication number
JPH07136632A
JPH07136632A JP5288253A JP28825393A JPH07136632A JP H07136632 A JPH07136632 A JP H07136632A JP 5288253 A JP5288253 A JP 5288253A JP 28825393 A JP28825393 A JP 28825393A JP H07136632 A JPH07136632 A JP H07136632A
Authority
JP
Japan
Prior art keywords
soil
solution
pce
contaminated
days
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288253A
Other languages
Japanese (ja)
Other versions
JP3402699B2 (en
Inventor
Kinya Kato
欽也 加藤
Shinya Furusaki
眞也 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP28825393A priority Critical patent/JP3402699B2/en
Publication of JPH07136632A publication Critical patent/JPH07136632A/en
Application granted granted Critical
Publication of JP3402699B2 publication Critical patent/JP3402699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To provide a method of recovering soil wherein the viability, growth and decomposing abilities of the anaerobic bacteria in the contaminated soil are enhanced. CONSTITUTION:A method of recovering soil by microorganism featuring the implantation into the contaminated soil of a solution having reducing power, a solution having oxygen dissolving ability or gas comprises scattering the aforesaid material over the surface of the contaminated soil for dispersion therein or drilling a well in the soil to disperse the aforesaid material therein through its bore.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は微生物を用いる汚染土壌
の浄化に関し、特に汚染土壌中における嫌気性菌による
土壌修復方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to purification of contaminated soil using microorganisms, and more particularly to a soil remediation method using anaerobic bacteria in contaminated soil.

【0002】[0002]

【従来の技術】近年、様々な産業活動の進行にともな
い、土壌に廃水や廃棄物が漏出され汚染を引き起こすに
至っている。例えば、石油等の炭化水素系化合物、トリ
クロロエチレン等の有機塩素系化合物等に見られるよう
に、土壌汚染は環境汚染のひとつとして深刻な問題とな
ってきている。したがって、汚染の拡大を防止していく
と共に、汚染された環境を再生していく技術の確立が強
く望まれている。環境修復技術の一例として、土壌中の
微生物の機能を利用して汚染物質を分解、無害化する技
術があり、生態系の自浄能力を強化することにより、汚
染物質の分解を促進することを狙いとしている。
2. Description of the Related Art In recent years, with the progress of various industrial activities, waste water and waste materials have leaked to the soil and cause pollution. For example, as seen in hydrocarbon compounds such as petroleum and organic chlorine compounds such as trichlorethylene, soil pollution has become a serious problem as one of environmental pollution. Therefore, it is strongly desired to establish a technique for preventing the spread of pollution and regenerating the polluted environment. As an example of environmental restoration technology, there is a technology that decomposes and detoxifies pollutants by utilizing the function of microorganisms in soil, and aims to promote the decomposition of pollutants by strengthening the self-cleaning ability of the ecosystem. I am trying.

【0003】ガス製造プラントサイト、製油所汚染土
壌、石油精製所跡地、燃料基地跡地、パルプ工場跡地、
半導体工場など土壌の修復のニーズは高く、また、土壌
の汚染は土地の再利用を妨げるばかりだけでなく、汚染
物質が地下水に流れ込むことにより一層の汚染の拡大を
引き起こす危険性がある。土壌汚染修復手段として、土
中より汚染物質を吸引する真空抽出法などがあるが、コ
スト、感度、操作性、さらに土壌中ということを考慮す
ると微生物による分解が強く望まれている。
Gas production plant site, refinery contaminated soil, oil refinery site, fuel base site, pulp factory site,
There is a great need for soil restoration such as in semiconductor factories, and soil pollution not only hinders the reuse of land, but also poses a risk of causing pollution to spread further by flowing into the groundwater. As a soil pollution restoration means, there is a vacuum extraction method in which a pollutant is sucked from the soil. However, in consideration of cost, sensitivity, operability, and in the soil, decomposition by microorganisms is strongly desired.

【0004】[0004]

【発明が解決しようとする課題】汚染土壌中で汚染を引
き起こしている難分解性化合物、例えば芳香族炭化水素
や、有機塩素系化合物を分解する微生物が該土壌中に存
在することは数多く知られている。
It is well known that microorganisms that decompose persistent compounds such as aromatic hydrocarbons and organochlorine compounds causing pollution in contaminated soil exist in the soil. ing.

【0005】事実、微生物を用いた土壌汚染の処理は最
近いろいろな形態で行われているようになっている。し
かしそのほとんどが好気性菌を使用したものであり、嫌
気性菌による分解はもっぱらバイオリアクタによる閉鎖
系の形態が主であり、in−situの土壌汚染の修復
に応用した例は殆ど皆無である。唯一、例外的に良く知
られているのがメタン資化菌を用いたTCE(トリクロ
ロエチレン)の分解である。この例ではメタン資化菌の
活性を高めるため土壌中に栄養素たり得るメタンを導入
している。
In fact, the treatment of soil pollution using microorganisms has recently been carried out in various forms. However, most of them use aerobic bacteria, and decomposition by anaerobic bacteria is mainly in the form of closed system by bioreactor, and there are almost no examples of application to repair in-situ soil pollution. . The only thing that is exceptionally well known is the decomposition of TCE (trichloroethylene) using methane-utilizing bacteria. In this example, methane, which can be a nutrient, is introduced into the soil in order to enhance the activity of methane-utilizing bacteria.

【0006】このように嫌気性菌を土壌汚染の修復に用
いた例は極めて少ないが、これは汚染物質の分解に関し
て嫌気性菌が好気性菌に比べて劣るというわけではな
い。それどころかある種の汚染物質(例えばテトラクロ
ロエチレン)の分解に関しては嫌気性菌のほうがより一
層分解に威力を発揮する。
As described above, there are very few cases where the anaerobic bacterium is used for repairing soil pollution, but this does not mean that the anaerobic bacterium is inferior to the aerobic bacterium in terms of decomposition of pollutants. On the contrary, anaerobic bacteria are more effective in decomposing certain pollutants (eg, tetrachloroethylene).

【0007】そこで、これら嫌気性菌の能力をより有効
に使うため、汚染土壌中において嫌気性菌の生存/増殖
及び分解能力の維持、向上を促進する技術の開発が求め
られている。
Therefore, in order to more effectively use the ability of these anaerobic bacteria, it is required to develop a technique for promoting the maintenance / improvement of the survival / proliferation and decomposing ability of the anaerobic bacteria in contaminated soil.

【0008】前述のように、多くの嫌気性菌の分解能力
は十分土壌汚染の修復に活用されていない現状にある。
そこで先ず、何故嫌気性菌が土壌中に成育しにくいかの
原因を追求し、成育を促進する方策を工夫する必要があ
る。
As described above, the degrading ability of many anaerobic bacteria is not sufficiently utilized for repairing soil pollution.
Therefore, first of all, it is necessary to investigate the reason why anaerobic bacteria are difficult to grow in soil and devise a measure to promote the growth.

【0009】図1は土壌中における分解菌の分布状況を
示した図であり、(a)は好気性菌について、(b)は
嫌気性菌について、それぞれ希釈平板法による菌数測定
により測定したデータである。
FIG. 1 is a diagram showing the distribution of degrading bacteria in soil. (A) is an aerobic bacterium, and (b) is an anaerobic bacterium, which were measured by the dilution plate method. The data.

【0010】嫌気性菌の成育を目論む環境は必ずしもこ
れらの菌に対して好適とはいえない。図1に示すように
好気性菌は土壌中の比較的深部までかなり分布している
が、嫌気性菌にとっては必ずしも良好な環境とは言えな
いことを見いだした。
The environment for the growth of anaerobic bacteria is not necessarily suitable for these bacteria. As shown in FIG. 1, aerobic bacteria are considerably distributed to a relatively deep part in soil, but it was found that it is not necessarily a good environment for anaerobic bacteria.

【0011】本発明者らは、上述、土壌中が意外にも嫌
気性菌が成育しにくい環境にあるということを見いだ
し、本発明を完成するに至った。
The present inventors have found that the above-mentioned soil is unexpectedly in an environment where it is difficult for anaerobic bacteria to grow, and have completed the present invention.

【0012】本発明の目的は、汚染土壌中における嫌気
性菌の生存/増殖及び分解能力を高める土壌修復方法を
提供することである。
[0012] It is an object of the present invention to provide a soil remediation method which enhances the ability of anaerobic bacteria to survive / grow and decompose in contaminated soil.

【0013】[0013]

【課題を解決するための手段】本発明は、汚染土壌に還
元力を持つ溶液を導入することを特徴とする微生物によ
る土壌修復方法であり、汚染土壌に酸素溶解能力を持つ
溶液を導入することを特徴とする微生物による土壌修復
方法であり、さらに汚染土壌中に気体を導入することを
特徴とする微生物による土壌修復方法である。これらは
ともに土壌環境を嫌気的条件にし、嫌気性菌の生存/増
殖及び分解能力を高める汚染土壌の修復方法である。
The present invention is a microbial soil remediation method characterized by introducing a solution having a reducing power into a contaminated soil, and introducing a solution having an oxygen-dissolving ability into a contaminated soil. Is a method for remediating soil with microorganisms, and a method for remediating soil with microorganisms is characterized by introducing gas into contaminated soil. Both of these are methods for repairing contaminated soil, which makes the soil environment anaerobic and enhances the survival / proliferation and decomposing ability of anaerobic bacteria.

【0014】それぞれの特徴を有する土壌修復方法につ
いて、詳細に説明する。上記還元力を持つ溶液としては
Fe2+を含む塩,ギ酸、シュウ酸のうちから1つ以上を
含む溶液を用いる土壌修復方法である。
The soil remediation method having each characteristic will be described in detail. The soil remediation method uses a solution containing one or more of a salt containing Fe 2+ , formic acid, and oxalic acid as the solution having a reducing power.

【0015】土壌中に還元力を持つ溶液を導入し、これ
により土壌環境を嫌気的条件にし嫌気性菌の生存/増殖
及び分解能力を高め、土壌汚染の修復を行う土壌修復法
である。
This is a soil remediation method in which a solution having a reducing power is introduced into the soil to make the soil environment anaerobic and enhance the survival / proliferation and decomposing ability of anaerobic bacteria to remediate soil pollution.

【0016】本発明で用いる還元力を持つ溶液は、生態
系にダメージを与えるものでなければいかなるものでも
良いが、例えばMg、Ca、Zn、Fe2+、Sn、ギ
酸、シュウ酸等を含む溶液などがある。
The solution having reducing power used in the present invention may be any solution as long as it does not damage the ecosystem. For example, Mg, Ca, Zn, Fe 2+ , Sn, formic acid, oxalic acid and the like are included. Solutions etc.

【0017】導入の仕方としては、土壌に掘削した井戸
孔より還元力を持つ溶液を土壌内に拡散させても良い
し、また土壌表面領域に該還元力を持つ溶液を散布し土
壌内に拡散させても良い。これら溶液に栄養素などと混
在させて導入しても良いし、分解菌を混在させてもよ
い。
As a method of introduction, a solution having a reducing power may be diffused into the soil from a well hole drilled in the soil, or a solution having the reducing power may be sprayed on the surface area of the soil to diffuse into the soil. You may let me. Nutrients or the like may be mixed and introduced into these solutions, or degrading bacteria may be mixed.

【0018】分解菌と分解対象物は特に種類を限定する
ものではないが、分解菌としては嫌気性菌を対象とす
る。土壌中にすでに存在している分解菌を対象としても
よいし、外来から導入した菌でも構わない。未同定の
菌、単離がなされていない菌、共生系でも全く問題はな
い。例えば、芳香族炭化水素系化合物、有機溶剤、有機
塩素化合物等を分解するものとして、例えば、「ANAERO
BIC TRANSFORMATION PROCESSES;A REVIEW OF THE MICR
OBIOLOGICAL LITERATURE by John E. Rogers, Biology
Branch, Environmental Research Laboratory, August
1986.」頁48〜頁61.によれば、Acetobacterium wo
odii、PelobacTer acidigallici 、Proteusvulgaris、P
seudomonas sp. strain PN-1 、Rhodopseudomonas palu
stris等その他が知られており、これらを利用すること
ができる。また、分解対象物を培地に混入させて土壌な
どから新たにスクリーニングして用いても構わない。
The decomposing bacteria and the substances to be decomposed are not particularly limited in kind, but the decomposing bacteria are anaerobic bacteria. The degrading bacterium already existing in the soil may be the target, or the bacterium introduced from the outside may be used. There is no problem even with unidentified bacteria, bacteria that have not been isolated, and symbiotic systems. For example, as a compound that decomposes an aromatic hydrocarbon compound, an organic solvent, an organic chlorine compound, etc., for example, "ANAERO
BIC TRANSFORMATION PROCESSES ; A REVIEW OF THE MICR
OBIOLOGICAL LITERATURE by John E. Rogers, Biology
Branch, Environmental Research Laboratory, August
1986. "p. 48-p. 61. According to Acetobacterium wo
odii, PelobacTer acidigallici, Proteus vulgaris, P
seudomonas sp. strain PN-1, Rhodopseudomonas palu
Others such as stris are known, and these can be used. Alternatively, the substance to be decomposed may be mixed with the medium and newly screened from soil or the like for use.

【0019】上記の分解菌と分解対象物の説明について
は、酸素溶解能を持つ溶液の導入、気体を導入する土壌
修復方法の場合も同様である。
The above description of the degrading bacterium and the degrading object is the same in the case of the soil remediation method in which a solution having an oxygen-dissolving ability is introduced and a gas is introduced.

【0020】次に、汚染土壌に酸素溶解能を持つ溶液を
導入し土壌環境を嫌気的条件にし嫌気性菌の生存/増殖
及び分解能力を高め、土壌汚染の修復を行う方法につい
て説明する。
Next, a method of repairing soil contamination by introducing a solution having an oxygen-dissolving ability into the contaminated soil to make the soil environment anaerobic to enhance the survival / proliferation and decomposing ability of anaerobic bacteria will be described.

【0021】本発明で用いる酸素溶解能を持つ溶液は、
生態系にダメージを与えるものでなければいかなるもの
でも良いが、例えば、水、特にこれを脱気したものが望
ましい。
The solution capable of dissolving oxygen used in the present invention is
Any material may be used as long as it does not damage the ecosystem. For example, water, especially deaerated water is preferable.

【0022】導入の仕方としては、土壌に掘削した井戸
孔より酸素溶解能を持つ溶液を持つ溶液を土壌内に拡散
させても良いし、また土壌表面領域に該酸素溶解能を持
つ溶液を持つ溶液を散布し土壌内に拡散させても良い。
これら溶液に栄養素などと混在させて導入しても良い
し、分解菌を混在させてもよい。
As a method of introduction, a solution having an oxygen-dissolving ability may be diffused into the soil from a well hole drilled in the soil, or the solution having the oxygen-dissolving ability may be provided in the soil surface region. The solution may be sprayed and dispersed in the soil.
Nutrients or the like may be mixed and introduced into these solutions, or degrading bacteria may be mixed.

【0023】さらに、土壌中を嫌気的状況とするよう気
体を導入する土壌修復方法であり、特に該気体が窒素で
あることを特徴とする土壌修復方法である。
Furthermore, it is a soil restoration method of introducing a gas so as to make the soil anaerobic, and in particular, the soil restoration method is characterized in that the gas is nitrogen.

【0024】本発明で用いる土壌環境を嫌気的条件にす
る気体としては、生態系にダメージを与えるものでなけ
ればいかなるものでも良いが、例えば、窒素、その他の
不活性ガス、二酸化炭素などがある。もちろん場合によ
っては、これらの気体を大気と組み合わせて用いてもよ
い。
Any gas may be used as the gas for making the soil environment anaerobic in the present invention as long as it does not damage the ecosystem. Examples of the gas include nitrogen, other inert gases and carbon dioxide. . Of course, in some cases, these gases may be used in combination with the atmosphere.

【0025】導入の仕方としては、いかなる方法でもよ
いが、例えば土壌に掘削した井戸孔より気体を土壌内に
拡散させてもよい。
Any method may be used for introducing the gas. For example, gas may be diffused into the soil through a well hole excavated in the soil.

【0026】以下に実施例をもって本発明を詳細に説明
するが、これらは本発明の範囲をなんら限定するもので
はない。
The present invention is described in detail below with reference to examples, but these do not limit the scope of the present invention in any way.

【0027】[0027]

【実施例】【Example】

実施例1 PCE(テトラクロロエチレン)で20年間にわたって
汚染された日本の関東の土壌を攪乱を最小限に抑えるよ
うサンプリングし、2m四方、深さ3mのモデル土壌槽
に充填し密封状態にして1か月放置した。
Example 1 Soil in Japan's Kanto region, which had been contaminated with PCE (tetrachloroethylene) for 20 years, was sampled so as to minimize disturbance, filled in a model soil tank of 2 m by 3 m, and sealed for 1 month. I left it.

【0028】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを降ろし、それぞ
れのホールに、外径5cmで先端1mの間に、直径0.
5cmの給水用ピットを多数設けた塩化ビニルパイプ4
本を挿入し、挿入部のパイプ外周を粘土で密封して給水
用ラインとした。さらに、直径5cmの同様のパイプを
土壌槽の中央部に給水用ラインと同様にして設置し吸引
用ラインとする。給水用ラインを給水ポンプに接続し約
0.5L/hrで給水し、吸引用ラインをポンプに接続
しポンプ容量約1L/hrで吸引する。給水溶液(還元
性溶液)として0.5%FeSO4 ・7H2 O溶液を用
いた。
A water supply hole having a depth of 2.5 m and a diameter of 5 cm was lowered at each of the four corners of this soil tank, and each hole had a diameter of 0.
Vinyl chloride pipe 4 with many 5 cm water supply pits
A book was inserted, and the outer circumference of the pipe at the insertion portion was sealed with clay to form a water supply line. Further, a similar pipe having a diameter of 5 cm is installed in the center of the soil tank in the same manner as the water supply line to form a suction line. The water supply line is connected to a water supply pump to supply water at about 0.5 L / hr, and the suction line is connected to the pump to suck at a pump capacity of about 1 L / hr. A 0.5% FeSO 4 .7H 2 O solution was used as a feed solution (reducing solution).

【0029】還元性溶液接種後、4日毎に給水ライン近
傍の土壌を掘削して、5カ所からそれぞれ10gの土壌
サンプルを取り出し、この試験土壌を先に示した培養液
に懸濁させ、この懸濁液をvortexで振蘯させた。
この懸濁液に存在する嫌気性菌の菌数をMPN法によっ
て求め5カ所の平均値を算出した。またPCE濃度はヘ
キサン抽出法とECDガスクロによって測定した。この
ようにして算出した平均菌数及びPCE濃度の除去率を
見た結果を図2に示す。
After inoculation with the reducing solution, the soil near the water supply line was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 locations, and the test soil was suspended in the above-mentioned culture medium and suspended. The suspension was vortexed.
The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 2 shows the results of looking at the average number of bacteria and the removal rate of PCE concentration calculated in this way.

【0030】図2(a)は培養日数(日)とPCE除去
率(%)を示し、図2(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 2 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 2 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0031】比較例1 実施例1に示した土壌槽に、実施例1と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
濃度の変化を実施例1に記した方法で算出した。この結
果を図2に示す。
Comparative Example 1 The soil tank shown in Example 1 was filled with contaminated soil in the same manner as in Example 1, and then the average number of anaerobic bacteria and PCE.
The change in concentration was calculated by the method described in Example 1. The result is shown in FIG.

【0032】実施例2 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ3mのモデル土壌槽に充填し密封状態にして1
か月放置した。
Example 2 Soil in Japan's Kanto region, which had been contaminated with PCE for 20 years, was sampled so as to minimize disturbance, and then filled in a model soil tank of 2 m square and 3 m deep and sealed 1
Left for a month.

【0033】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを槽の4隅にそれ
ぞれ降ろし、それぞれのホールに、外径5cmで先端1
mの間に、直径0.5cmの給水用ピットを多数設けた
塩化ビニルパイプ4本を挿入し、挿入部のパイプ外周を
粘土で密封して給水用ラインとした。さらに、直径5c
mの同様のパイプを土壌槽の中央部に給水用ラインと同
様にして設置し吸引用ラインとする。給水用ラインを給
水ポンプに接続し約0.5L/hrで給水し、吸引用ラ
インをポンプに接続しポンプ容量約1L/hrで吸引す
る。給水溶液として0.1%ギ酸溶液を用いた。
At each of the four corners of this soil tank, a water supply hole having a depth of 2.5 m and a diameter of 5 cm is lowered into each of the four corners of the tank, and each hole has an outer diameter of 5 cm and a tip 1
Four vinyl chloride pipes provided with a large number of water supply pits having a diameter of 0.5 cm were inserted between m, and the outer circumference of the pipe at the insertion portion was sealed with clay to form a water supply line. Furthermore, diameter 5c
A similar pipe of m is installed in the center of the soil tank in the same manner as the water supply line to form a suction line. The water supply line is connected to a water supply pump to supply water at about 0.5 L / hr, and the suction line is connected to the pump to suck at a pump capacity of about 1 L / hr. A 0.1% formic acid solution was used as a feed solution.

【0034】還元性溶液接種後、4日毎に給水ライン近
傍の土壌を掘削して、5カ所からそれぞれ10gの土壌
サンプルを取り出し、この試験土壌を先に示した培養液
に懸濁させ、この懸濁液をvortexで振蘯させた。
この懸濁液に存在する嫌気性菌の菌数をMPN法によっ
て求め5カ所の平均値を算出した。またPCE濃度はヘ
キサン抽出法とECDガスクロによって測定した。この
ようにして算出した平均菌数及びPCEの除去率を図3
に示す。
After inoculation of the reducing solution, the soil near the water supply line was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 locations, and the test soil was suspended in the culture solution shown above. The suspension was vortexed.
The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. The average number of bacteria and the PCE removal rate calculated in this way are shown in FIG.
Shown in.

【0035】図3(a)は培養日数(日)とPCE除去
率(%)を示し、図3(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 3 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 3 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0036】比較例2 実施例2に示した土壌槽に、実施例1と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
の除去率を実施例1に記した方法で算出した。この結果
を図3に示す 実施例3 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ3mのモデル土壌槽に充填し密封状態にして1
か月放置した。
Comparative Example 2 The soil tank shown in Example 2 was filled with contaminated soil in the same manner as in Example 1, and then the average number of anaerobic bacteria and PCE.
The removal rate was calculated by the method described in Example 1. The results are shown in FIG. 3. Example 3 Soil in Japan's Kanto region, which had been contaminated with PCE for 20 years, was sampled so as to minimize disturbance, and filled in a model soil tank of 2 m square and 3 m deep and sealed. 1
Left for a month.

【0037】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを槽の4隅にそれ
ぞれ降ろし、それぞれのホールに、外径5cmで先端1
mの間に、直径0.5cmの給水用ピットを多数設けた
塩化ビニルパイプ4本を挿入し、挿入部のパイプ外周を
粘土で密封して給水用ラインとした。さらに、直径5c
mの同様のパイプを土壌槽の中央部に給水用ラインと同
様にして設置し吸引用ラインとする。給水用ラインを給
水ポンプに接続し約0.5L/hrで給水し、吸引用ラ
インをポンプに接続しポンプ容量約1L/hrで吸引す
る。給水溶液として0.1%ギ酸溶液、0.1%シュウ
酸溶液を用いた。
At each of the four corners of this soil tank, a water supply hole having a depth of 2.5 m and a diameter of 5 cm was lowered into each of the four corners of the tank, and each hole had an outer diameter of 5 cm and a tip 1
Four vinyl chloride pipes provided with a large number of water supply pits having a diameter of 0.5 cm were inserted between m, and the outer circumference of the pipe at the insertion portion was sealed with clay to form a water supply line. Furthermore, diameter 5c
A similar pipe of m is installed in the center of the soil tank in the same manner as the water supply line to form a suction line. The water supply line is connected to a water supply pump to supply water at about 0.5 L / hr, and the suction line is connected to the pump to suck at a pump capacity of about 1 L / hr. As a feed solution, a 0.1% formic acid solution and a 0.1% oxalic acid solution were used.

【0038】還元性溶液接種後、4日毎に給水ライン近
傍の土壌を掘削して、5カ所からそれぞれ10gの土壌
サンプルを取り出し、この試験土壌を先に示した培養液
に懸濁させ、この懸濁液をvortexで振蘯させた。
この懸濁液に存在する嫌気性菌の菌数をMPN法によっ
て求め5カ所の平均値を算出した。またPCE濃度はヘ
キサン抽出法とECDガスクロによって測定した。この
ようにして算出した平均菌数及びPCEの除去率の変化
を図4に示す。
After inoculation of the reducing solution, the soil near the water supply line was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 locations, and the test soil was suspended in the above-mentioned culture solution. The suspension was vortexed.
The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. Changes in the average number of bacteria and the PCE removal rate calculated in this way are shown in FIG.

【0039】図4(a)は培養日数(日)とPCE除去
率(%)を示し、図4(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 4 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 4 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0040】比較例3 実施例3に示した土壌槽に、実施例3と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
の除去率の変化を実施例3に記した方法で算出した。こ
の結果を図4に示す 実施例4 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ1.5mのモデル土壌槽に充填し密封状態にし
て1か月放置した。
Comparative Example 3 The soil tank shown in Example 3 was filled with contaminated soil in the same manner as in Example 3, and thereafter, the average number of anaerobic bacteria and PCE.
The change in the removal rate was calculated by the method described in Example 3. The results are shown in FIG. 4. Example 4 Soil in Japan's Kanto region, which had been contaminated with PCE for 20 years, was sampled so as to minimize disturbance, and filled in a model soil tank of 2 m square and 1.5 m deep and sealed. It was left in a state and left for one month.

【0041】この土壌槽の土壌表面領域に還元性溶液と
して0.5%FeSO4 ・7H2 O溶液を5L/日まん
べんなく散布した。還元性溶液接種後、4日毎に土壌を
掘削して、5カ所からそれぞれ10gの土壌サンプルを
取り出し、この試験土壌を先に示した培養液に懸濁さ
せ、この懸濁液をvortexで振蘯させた。この懸濁
液に存在する嫌気性菌の菌数をMPN法によって求め5
カ所の平均値を算出した。またPCE濃度はヘキサン抽
出法とECDガスクロによって測定した。このようにし
て算出した平均菌数及びPCE除去率の変化を見た結果
を図5に示す。
A 0.5% FeSO 4 .7H 2 O solution as a reducing solution was uniformly sprayed on the soil surface area of this soil tank at 5 L / day. After inoculating the reducing solution, the soil was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 places, the test soil was suspended in the culture medium shown above, and this suspension was shaken with vortex. Let Determine the number of anaerobic bacteria present in this suspension by MPN method 5
The average value of the points was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 5 shows the results of observing changes in the average number of bacteria and PCE removal rate calculated in this way.

【0042】図5(a)は培養日数(日)とPCE除去
率(%)を示し、図5(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 5 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 5 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0043】比較例4 実施例4に示した土壌槽に、実施例4と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
の除去率の変化を実施例4に記した方法で算出した。こ
の結果を図5に示す 実施例5 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ1.5mのモデル土壌槽に充填し密封状態にし
て1か月放置した。
Comparative Example 4 The soil tank shown in Example 4 was filled with contaminated soil in the same manner as in Example 4, and then the average number of anaerobic bacteria and PCE.
The change in the removal rate was calculated by the method described in Example 4. The results are shown in Fig. 5. Example 5 Soil in Japan's Kanto region that had been contaminated with PCE for 20 years was sampled so as to minimize disturbance, and then filled in a model soil tank of 2 m square and 1.5 m deep and sealed. It was left in a state and left for one month.

【0044】この土壌槽の土壌表面領域に還元性溶液と
して0.1%ギ酸溶液、0.1%シュウ酸溶液を5L/
日まんべんなく散布した。還元性溶液接種後、4日毎に
土壌を掘削して、5カ所からそれぞれ10gの土壌サン
プルを取り出し、この試験土壌を先に示した培養液に懸
濁させ、この懸濁液をvortexで振蘯させた。この
懸濁液に存在する嫌気性菌の菌数をMPN法によって求
め5カ所の平均値を算出した。またPCE濃度はヘキサ
ン抽出法とECDガスクロによって測定した。このよう
にして算出した平均菌数及びPCE除去率の変化を見た
結果を図6に示す。
On the soil surface area of this soil tank, 5 L / 0.1% formic acid solution and 0.1% oxalic acid solution were used as reducing solutions.
Sprayed evenly throughout the day. After inoculating the reducing solution, the soil was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 places, the test soil was suspended in the culture medium shown above, and this suspension was shaken with vortex. Let The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 6 shows the results of observing the changes in the average number of bacteria and the PCE removal rate calculated in this way.

【0045】図6(a)は培養日数(日)とPCE除去
率(%)を示し、図6(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 6 (a) shows the culture days (days) and the PCE removal rate (%), and FIG. 6 (b) shows the culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0046】比較例5 実施例5に示した土壌槽に、実施例5と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
の除去率の変化を実施例5に記した方法で算出した。こ
の結果を図6に示す 実施例6 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ3mのモデル土壌槽に充填し密封状態にして1
か月放置した。
Comparative Example 5 The soil tank shown in Example 5 was filled with contaminated soil in the same manner as in Example 5, and then the average number of anaerobic bacteria and PCE.
The change in the removal rate was calculated by the method described in Example 5. The results are shown in FIG. 6. Example 6 Soil in Japan's Kanto region, which had been contaminated with PCE for 20 years, was sampled to minimize disturbance and filled in a model soil tank of 2 m square and 3 m deep and sealed. 1
Left for a month.

【0047】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを槽の4隅にそれ
ぞれ降ろし、それぞれのホールに、外径5cmで先端1
mの間に、直径0.5cmの給水用ピットを多数設けた
塩化ビニルパイプ4本を挿入し、挿入部のパイプ外周を
粘土で密封して給水用ラインとした。さらに、直径5c
mの同様のパイプを土壌槽の中央部に給水用ラインと同
様にして設置し吸引用ラインとする。給水用ラインを給
水ポンプに接続し約0.5L/hrで給水し、吸引用ラ
インをポンプに接続しポンプ容量約1L/hrで吸引す
る。
At each of the four corners of this soil tank, a water supply hole having a depth of 2.5 m and a diameter of 5 cm was lowered into each of the four corners of the tank, and each hole had an outer diameter of 5 cm and a tip 1
Four vinyl chloride pipes provided with a large number of water supply pits having a diameter of 0.5 cm were inserted between m, and the outer circumference of the pipe at the insertion portion was sealed with clay to form a water supply line. Furthermore, diameter 5c
A similar pipe of m is installed in the center of the soil tank in the same manner as the water supply line to form a suction line. The water supply line is connected to a water supply pump to supply water at about 0.5 L / hr, and the suction line is connected to the pump to suck at a pump capacity of about 1 L / hr.

【0048】酸素溶解能を持つ溶液接種後、4日毎に給
水ライン近傍の土壌を掘削して、5カ所からそれぞれ1
0gの土壌サンプルを取り出し、この試験土壌を先に示
した培養液に懸濁させ、この懸濁液をvortexで振
蘯させた。この懸濁液に存在する嫌気性菌の菌数をMP
N法によって求め5カ所の平均値を算出した。またPC
E濃度はヘキサン抽出法とECDガスクロによって測定
した。このようにして算出した平均菌数及びPCE濃度
の変化を見た結果を図7に示す。
After inoculation with a solution having an oxygen-dissolving ability, the soil near the water supply line was excavated every 4 days, and 1 out of 5 locations
A 0 g soil sample was removed, the test soil was suspended in the culture medium indicated above and the suspension was vortexed. MP of the number of anaerobic bacteria present in this suspension
The average value at 5 points was calculated by the N method. Also PC
The E concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 7 shows the results of observing changes in the average number of bacteria and PCE concentration calculated in this way.

【0049】図7(a)は培養日数(日)とPCE除去
率(%)を示し、図7(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 7 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 7 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0050】比較例6 実施例6に示した土壌槽に、実施例6と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
濃度の変化を実施例6に記した方法で算出した。この結
果を図7に示す 実施例7 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ3mのモデル土壌槽に充填し密封状態にして1
か月放置した。
Comparative Example 6 The soil tank shown in Example 6 was filled with contaminated soil in the same manner as in Example 6, and then the average number of anaerobic bacteria and PCE.
The change in concentration was calculated by the method described in Example 6. The results are shown in Fig. 7. Example 7 Soil in Japan's Kanto region, which had been contaminated with PCE for 20 years, was sampled so as to minimize disturbance, and filled in a model soil tank of 2 m square and 3 m deep and sealed. 1
Left for a month.

【0051】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを槽の4隅にそれ
ぞれ降ろし、それぞれのホールに、外径5cmで先端1
mの間に、直径0.5cmの給水用ピットを多数設けた
塩化ビニルパイプ4本を挿入し、挿入部のパイプ外周を
粘土で密封して給水用ラインとした。さらに、直径5c
mの同様のパイプを土壌槽の中央部に給水用ラインと同
様にして設置し吸引用ラインとする。給水用ラインを給
水ポンプに接続し約0.5L/hrで脱気水を給水し、
吸引用ラインをポンプに接続しポンプ容量約1L/hr
で吸引する。
At each of the four corners of this soil tank, a water supply hole having a depth of 2.5 m and a diameter of 5 cm was lowered into each of the four corners of the tank, and each hole had an outer diameter of 5 cm and a tip 1
Four vinyl chloride pipes provided with a large number of water supply pits having a diameter of 0.5 cm were inserted between m, and the outer circumference of the pipe at the insertion portion was sealed with clay to form a water supply line. Furthermore, diameter 5c
A similar pipe of m is installed in the center of the soil tank in the same manner as the water supply line to form a suction line. Connect the water supply line to the water supply pump and supply deaerated water at about 0.5 L / hr.
Connect the suction line to the pump and pump capacity is about 1L / hr
Aspirate.

【0052】酸素溶解能を持つ溶液接種後、4日毎に給
水ライン近傍の土壌を掘削して、5カ所からそれぞれ1
0gの土壌サンプルを取り出し、この試験土壌を先に示
した培養液に懸濁させ、この懸濁液をvortexで振
蘯させた。この懸濁液に存在する嫌気性菌の菌数をMP
N法によって求め5カ所の平均値を算出した。またPC
E濃度はヘキサン抽出法とECDガスクロによって測定
した。このようにして算出した平均菌数及びPCE濃度
の変化を見た結果を図8に示す。
After inoculation with a solution having an oxygen-dissolving ability, the soil near the water supply line was excavated every 4 days, and 1 out of 5 locations
A 0 g soil sample was removed, the test soil was suspended in the culture medium indicated above and the suspension was vortexed. MP of the number of anaerobic bacteria present in this suspension
The average value at 5 points was calculated by the N method. Also PC
The E concentration was measured by the hexane extraction method and ECD gas chromatography. The results of observing changes in the average number of bacteria and PCE concentration calculated in this way are shown in FIG.

【0053】図8(a)は培養日数(日)とPCE除去
率(%)を示し、図8(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 8 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 8 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0054】比較例7 実施例7に示した土壌槽に、実施例7と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
濃度の変化を実施例7に記した方法で算出した。この結
果を図8に示す 実施例8 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ1.5mのモデル土壌槽に充填し密封状態にし
て1か月放置した。
Comparative Example 7 The soil tank shown in Example 7 was filled with contaminated soil in the same manner as in Example 7, and then the average number of anaerobic bacteria and PCE.
The change in concentration was calculated by the method described in Example 7. The results are shown in Fig. 8. Example 8 Soil in Japan's Kanto region contaminated with PCE for 20 years was sampled so as to minimize disturbance, and filled in a model soil tank of 2 m square and 1.5 m deep and sealed. It was left in a state and left for one month.

【0055】この土壌槽の土壌表面領域に脱気水を5L
/日まんべんなく散布した。その後4日毎に土壌を掘削
して、5カ所からそれぞれ10gの土壌サンプルを取り
出し、この試験土壌を先に示した培養液に懸濁させ、こ
の懸濁液をvortexで振蘯させた。この懸濁液に存
在する嫌気性菌の菌数をMPN法によって求め5カ所の
平均値を算出した。またPCE濃度はヘキサン抽出法と
ECDガスクロによって測定した。このようにして算出
した平均菌数及びPCE濃度の変化を見た結果を図9に
示す。
5 L of deaerated water was added to the soil surface area of this soil tank.
/ Spread evenly every day. After that, the soil was excavated every 4 days, and 10 g of soil samples were taken out from each of the 5 locations, the test soil was suspended in the above-mentioned culture solution, and this suspension was shaken with a vortex. The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 9 shows the results of observing changes in the average number of bacteria and PCE concentration calculated in this way.

【0056】図9(a)は培養日数(日)とPCE除去
率(%)を示し、図9(b)は培養日数(日)と嫌気性
菌の菌数(Cells/g)を示している。
FIG. 9 (a) shows the culture days (days) and the PCE removal rate (%), and FIG. 9 (b) shows the culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0057】比較例8 実施例6に示した土壌槽に、実施例6と同様にして汚染
土壌を充填し、その後、嫌気性菌の平均菌数及びPCE
濃度の変化を実施例6に記した方法で算出した。この結
果を図9に示す 実施例9 PCEで20年間にわたって汚染された日本の関東の土
壌を攪乱を最小限に抑えるようサンプリングし、2m四
方、深さ3mのモデル土壌槽に充填し密封状態にして1
か月放置した。
Comparative Example 8 The soil tank shown in Example 6 was filled with the contaminated soil in the same manner as in Example 6, and then the average number of anaerobic bacteria and PCE.
The change in concentration was calculated by the method described in Example 6. The results are shown in Fig. 9. Example 9 Soils in Kanto, Japan, which had been contaminated with PCE for 20 years, were sampled to minimize disturbance and filled in a model soil tank of 2 m square and 3 m deep and sealed. 1
Left for a month.

【0058】この土壌槽の4隅の各隅にそれぞれ、深さ
2.5m、直径5cmの給水用ホールを槽の4隅にそれ
ぞれ降ろし、それぞれのホールに、外径5cmで先端1
mの間に、直径0.5cmの給気用ピットを多数設けた
塩化ビニルパイプ4本を挿入し、挿入部のパイプ外周を
粘土で密封して給気用ラインとした。さらに、直径5c
mの同様のパイプを土壌槽の中央部に給気用ラインと同
様にして設置し吸引用ラインとする。給気用ラインを給
気ポンプに接続し約0.5L/minで窒素100%を
給気し、吸引用ラインをポンプに接続しポンプ容量約1
L/minで吸引した。
At each of the four corners of this soil tank, a water supply hole having a depth of 2.5 m and a diameter of 5 cm was lowered into each of the four corners of the tank, and each hole had an outer diameter of 5 cm and a tip 1
Four vinyl chloride pipes provided with a large number of air supply pits each having a diameter of 0.5 cm were inserted between m, and the pipe outer periphery of the insertion portion was sealed with clay to form an air supply line. Furthermore, diameter 5c
A similar pipe of m is installed in the center of the soil tank in the same manner as the air supply line to form a suction line. Connect the air supply line to the air supply pump to supply 100% nitrogen at about 0.5 L / min, connect the suction line to the pump and pump capacity about 1
Suctioned at L / min.

【0059】窒素の導入後、4日毎に給水ライン近傍の
土壌を掘削して、5カ所からそれぞれ10gの土壌サン
プルを取り出し、この試験土壌を先に示した培養液に懸
濁させ、この懸濁液をvortexで振蘯させた。この
懸濁液に存在する嫌気性菌の菌数をMPN法によって求
め5カ所の平均値を算出した。またPCE濃度はヘキサ
ン抽出法とECDガスクロによって測定した。このよう
にして算出した平均菌数及びPCE濃度の変化を見た結
果を図10に示す。
After the introduction of nitrogen, the soil near the water supply line was excavated every 4 days, and 10 g of soil samples were taken from each of the 5 locations, and the test soil was suspended in the above-mentioned culture solution and suspended. The liquid was shaken with vortex. The number of anaerobic bacteria present in this suspension was determined by the MPN method, and the average value at 5 locations was calculated. The PCE concentration was measured by the hexane extraction method and ECD gas chromatography. FIG. 10 shows the results of observing changes in the average number of bacteria and the PCE concentration calculated in this way.

【0060】図10(a)は培養日数(日)とPCE除
去率(%)を示し、図10(b)は培養日数(日)と嫌
気性菌の菌数(Cells/g)を示している。
FIG. 10 (a) shows the number of culture days (days) and the PCE removal rate (%), and FIG. 10 (b) shows the number of culture days (days) and the number of anaerobic bacteria (Cells / g). There is.

【0061】比較例9 実施例9に示した土壌槽に、実施例9と同様にして汚染
土壌を充填し放置し、その後、嫌気性菌の平均菌数及び
PCE濃度の変化を実施例9に記した方法で算出した。
この結果を図10に示す
Comparative Example 9 The soil tank shown in Example 9 was filled with contaminated soil in the same manner as in Example 9 and allowed to stand, and then changes in the average number of anaerobic bacteria and the PCE concentration were taken in Example 9. It was calculated by the method described.
The result is shown in FIG.

【0062】[0062]

【発明の効果】以上説明したように、本発明の微生物に
よる土壌修復方法は、汚染土壌中に還元力を持つ溶液を
導入、酸素溶解能を持つ溶液を導入または嫌気的状況と
するように気体を導入するので、土壌中における嫌気性
菌を活性化し、土壌汚染化合物の分解が促進され、汚染
土壌の修復が可能になった。
Industrial Applicability As described above, the method for repairing soil by the microorganism of the present invention introduces a solution having a reducing power into a contaminated soil, introduces a solution having an oxygen-dissolving ability, or introduces it into a gas in an anaerobic state. , Which activated anaerobic bacteria in the soil, promoted the decomposition of soil pollutant compounds, and enabled the repair of contaminated soil.

【図面の簡単な説明】[Brief description of drawings]

【図1】土壌中における分解菌の分布状況を示した図で
ある。
FIG. 1 is a diagram showing the distribution of degrading bacteria in soil.

【図2】実施例1,比較例1における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 2 is a diagram showing the results of average number of bacteria and PCE removal rate with respect to culture days in Example 1 and Comparative Example 1.

【図3】実施例2,比較例2における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 3 is a diagram showing the results of average number of bacteria and PCE removal rate with respect to culture days in Example 2 and Comparative Example 2.

【図4】実施例3,比較例3における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 4 is a diagram showing the results of average bacterial count and PCE removal rate with respect to culture days in Example 3 and Comparative Example 3.

【図5】実施例4,比較例4における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 5 is a diagram showing the results of average number of bacteria and PCE removal rate with respect to culture days in Example 4 and Comparative Example 4.

【図6】実施例5,比較例5における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 6 is a graph showing the results of average number of bacteria and PCE removal rate with respect to culture days in Example 5 and Comparative Example 5.

【図7】実施例6,比較例6における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 7 is a diagram showing the results of average number of bacteria and PCE removal rate with respect to culture days in Example 6 and Comparative Example 6.

【図8】実施例7,比較例7における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 8 is a graph showing the results of average bacterial count and PCE removal rate with respect to culture days in Example 7 and Comparative Example 7.

【図9】実施例8,比較例8における培養日数に対する
平均菌数及びPCE除去率の結果を示した図である。
FIG. 9 is a diagram showing the results of average bacterial count and PCE removal rate with respect to culture days in Example 8 and Comparative Example 8.

【図10】実施例9,比較例9における培養日数に対す
る平均菌数及びPCE除去率の結果を示した図である。
FIG. 10 is a diagram showing the results of average bacterial count and PCE removal rate with respect to culture days in Example 9 and Comparative Example 9.

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 汚染土壌に還元力を持つ溶液を導入する
ことを特徴とする微生物による土壌修復方法。
1. A method for remediating soil with microorganisms, which comprises introducing a solution having reducing power into contaminated soil.
【請求項2】 還元力を持つ溶液としてFe2+を含む
塩,ギ酸、シュウ酸のうちから1つ以上を含む溶液を用
いることを特徴とする請求項1の土壌修復方法。
2. The soil remediation method according to claim 1, wherein a solution containing one or more of a salt containing Fe 2+ , formic acid, and oxalic acid is used as the solution having a reducing power.
【請求項3】 汚染土壌表面領域に還元力を持つ溶液を
散布し汚染土壌に拡散させることを特徴とする請求項1
又は2の土壌修復方法。
3. A solution having a reducing power is sprayed on the surface area of the contaminated soil to diffuse into the contaminated soil.
Or the soil restoration method of 2.
【請求項4】 汚染土壌に井戸孔を掘削し、この井戸孔
から還元力を持つ溶液を該土壌内に拡散させることを特
徴とする請求項1、2又は3の土壌修復方法。
4. The soil remediation method according to claim 1, 2 or 3, wherein a well hole is excavated in the contaminated soil, and a solution having a reducing power is diffused from the well hole into the soil.
【請求項5】 汚染土壌に酸素溶解能を持つ溶液を導入
することを特徴とする微生物による土壌修復方法。
5. A method for remediating soil with microorganisms, which comprises introducing a solution having an oxygen-dissolving ability into contaminated soil.
【請求項6】 酸素溶解能を持つ溶液として水を用いる
ことを特徴とする請求項5の土壌修復方法。
6. The soil remediation method according to claim 5, wherein water is used as the solution having an oxygen dissolving ability.
【請求項7】 酸素溶解能を持つ溶液として脱気した水
を用いることを特徴とする請求項5又は6の土壌修復方
法。
7. The soil remediation method according to claim 5, wherein deaerated water is used as the solution having an oxygen dissolving ability.
【請求項8】 汚染土壌表面領域に該酸素溶解能を持つ
溶液を散布し汚染土壌内に拡散させることを特徴とする
請求項5、6又は7の土壌修復方法。
8. The soil remediation method according to claim 5, wherein the solution having oxygen-dissolving ability is sprayed on the surface area of the contaminated soil and diffused in the contaminated soil.
【請求項9】 汚染土壌に井戸孔を掘削し、この井戸孔
から酸素溶解能を持つ溶液を該土壌内に拡散させること
を特徴とする請求項5から8いずれか1項に記載の土壌
修復方法。
9. The soil restoration according to claim 5, wherein a well hole is excavated in the contaminated soil, and a solution having an oxygen-dissolving ability is diffused from the well hole into the soil. Method.
【請求項10】 汚染土壌中に気体を導入して嫌気的状
況とすることを特徴とする微生物による土壌修復方法。
10. A method for remediating soil with microorganisms, which comprises introducing gas into contaminated soil to make it anaerobic.
【請求項11】 導入する気体が窒素であることを特徴
とする請求項10の土壌修復方法。
11. The soil remediation method according to claim 10, wherein the gas to be introduced is nitrogen.
JP28825393A 1993-11-17 1993-11-17 Soil remediation method using microorganisms Expired - Fee Related JP3402699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28825393A JP3402699B2 (en) 1993-11-17 1993-11-17 Soil remediation method using microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28825393A JP3402699B2 (en) 1993-11-17 1993-11-17 Soil remediation method using microorganisms

Publications (2)

Publication Number Publication Date
JPH07136632A true JPH07136632A (en) 1995-05-30
JP3402699B2 JP3402699B2 (en) 2003-05-06

Family

ID=17727813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28825393A Expired - Fee Related JP3402699B2 (en) 1993-11-17 1993-11-17 Soil remediation method using microorganisms

Country Status (1)

Country Link
JP (1) JP3402699B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759402A (en) * 1996-01-29 1998-06-02 Nec Corporation Methods for the remediation of polluted soils
WO1998034740A1 (en) * 1997-02-07 1998-08-13 Ebara Corporation Processes for purifying substances polluted with organohalogen compounds
WO2000043138A1 (en) * 1999-01-25 2000-07-27 Ebara Corporation Method and apparatus for purifying polluted substances containing halogenated organic compound
JP2002254061A (en) * 2001-02-28 2002-09-10 Shimizu Corp In situ clarification method and equipment for combined pollution soil
KR101433885B1 (en) * 2012-11-01 2014-08-27 한라산업개발 주식회사 Purification system using leachate recirculation
CN105888567A (en) * 2016-05-23 2016-08-24 西南石油大学 Intelligent control device for preventing vortex-induced vibration of marine riser
JP2021169067A (en) * 2020-04-16 2021-10-28 大成建設株式会社 Purification method of polluted soils

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6828141B2 (en) 1919-02-07 2004-12-07 Ebara Corporation Method for purifying matter contaminated with halogenated organic compounds
US5759402A (en) * 1996-01-29 1998-06-02 Nec Corporation Methods for the remediation of polluted soils
WO1998034740A1 (en) * 1997-02-07 1998-08-13 Ebara Corporation Processes for purifying substances polluted with organohalogen compounds
US6303367B1 (en) 1997-02-07 2001-10-16 Ebara Corporation Method for purifying matter contaminated with halogenated organic compounds
EP0968773A4 (en) * 1997-02-07 2004-04-14 Ebara Corp Processes for purifying substances polluted with organohalogen compounds
WO2000043138A1 (en) * 1999-01-25 2000-07-27 Ebara Corporation Method and apparatus for purifying polluted substances containing halogenated organic compound
US6679992B1 (en) 1999-01-25 2004-01-20 Ebara Corporation Method and apparatus for purifying polluted substances containing halogenated organic compound
KR100729820B1 (en) * 1999-01-25 2007-06-18 가부시키가이샤 에바라 세이사꾸쇼 Method and apparatus for purifying polluted substances containing halogenated organic compound
JP2002254061A (en) * 2001-02-28 2002-09-10 Shimizu Corp In situ clarification method and equipment for combined pollution soil
KR101433885B1 (en) * 2012-11-01 2014-08-27 한라산업개발 주식회사 Purification system using leachate recirculation
CN105888567A (en) * 2016-05-23 2016-08-24 西南石油大学 Intelligent control device for preventing vortex-induced vibration of marine riser
JP2021169067A (en) * 2020-04-16 2021-10-28 大成建設株式会社 Purification method of polluted soils

Also Published As

Publication number Publication date
JP3402699B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
JP3086182B2 (en) Soil purification method
Kensa Bioremediation-an overview
EP0625126B1 (en) Bioremediation of contaminated groundwater
JP3420949B2 (en) Soil purification device and method for repairing contaminated soil
EP0300593A1 (en) Microbiological decomposition of chlorinated aliphatic hydrocarbons
Sivakumar et al. Bioremediation studies on reduction of heavy metals toxicity
Ellis et al. Bioremediation of oil contaminated land
US6524842B1 (en) Biodegradation of gasoline oxygenates
JP3491929B2 (en) Purification method of groundwater contaminated by soil contamination
JP3530588B2 (en) Method of forming in-situ microbial degradation region
JP3402699B2 (en) Soil remediation method using microorganisms
JP3332600B2 (en) Contaminated soil and groundwater purification methods
CN213763431U (en) Pollute good oxygen biological repair system of soil normal position
Ahmed et al. Cost reduction strategies in the remediation of petroleum hydrocarbon contaminated soil
CN102249428B (en) In-situ remediation method of petroleum-polluted groundwater
CA2478919A1 (en) Process for the biodegradation of hydrocarbons and ethers in subsurface soil by introduction of a solid oxygen source by hydraulic fracturing
JPH11207315A (en) Microbial purifying method for contaminated soil and purifying device therefor
Saeed et al. Microbial remediation for environmental cleanup
Prasad et al. Decontamination of polluted water employing bioremediation processes: A Review
JP3645651B2 (en) Purification method for contaminated soil
St. John et al. Complex industrial waste sites
Nyer The Effects of Biochemical Reactions on Investigations and Remediations
JPH11179337A (en) Microbiological purification method and apparatus of polluted soil and underground water using floating granular carrier
Litchfield Practices, potential, and pitfalls in the application of biotechnology to environmental problems
Herrling et al. In situ bioremediation of groundwater containing hydrocarbons, pesticides, or nitrate using the vertical circulation flows (UVB/GZB technique)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080229

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100228

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees