JPH07136457A - Method for removing carbon dioxide in exhaust gas - Google Patents

Method for removing carbon dioxide in exhaust gas

Info

Publication number
JPH07136457A
JPH07136457A JP5288467A JP28846793A JPH07136457A JP H07136457 A JPH07136457 A JP H07136457A JP 5288467 A JP5288467 A JP 5288467A JP 28846793 A JP28846793 A JP 28846793A JP H07136457 A JPH07136457 A JP H07136457A
Authority
JP
Japan
Prior art keywords
exhaust gas
calcium oxide
carbon dioxide
particles
highly active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5288467A
Other languages
Japanese (ja)
Other versions
JP3381226B2 (en
Inventor
Ko Suzuki
香 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Kogyo KK
Original Assignee
Suzuki Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Kogyo KK filed Critical Suzuki Kogyo KK
Priority to JP28846793A priority Critical patent/JP3381226B2/en
Publication of JPH07136457A publication Critical patent/JPH07136457A/en
Application granted granted Critical
Publication of JP3381226B2 publication Critical patent/JP3381226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove CO2 efficiently in a simple method by contacting the CO2 contained exhaust gas with highly active calcium oxide porous particles having a specified specific surface area and a specified particle size at temperature within a specified range. CONSTITUTION:Highly active calcium oxide porous particles are obtained which is characterized by the specific surface area of 5-60m<2>/g or more preferably 10-50m<2>/g, and the diameter 1-10mm, preferably 3-6mm. In order to come in contact with the porous particles, exhaust gas is passed through an apparatus composed of a cylindrical treatment tube which is filled with the particles. A net or glass wool is placed above and under the particles to hold them. A part of the column which is filled with the particles is heated by an appropriate means such as electric heating, infrared heating, and high-frequency heating to heat the particles at 400-700 deg.C preferably 500-650 deg.C. In this way, the CO2 in exhaust gas can be removed efficiently for a long period of time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、産業排ガスや自動車、
船舶の排気ガスなどの排ガス中に含まれる二酸化炭素を
効率よく除去する方法に関するものである。さらに詳し
くいえば、本発明は特殊な方法により製造される高活性
酸化カルシウム多孔質粒子を用いて排ガス中に含まれる
二酸化炭素を迅速かつ高い除去率をもって除去する方法
に関するものである。
The present invention relates to industrial exhaust gas, automobiles,
The present invention relates to a method for efficiently removing carbon dioxide contained in exhaust gas such as exhaust gas from a ship. More specifically, the present invention relates to a method for rapidly removing carbon dioxide contained in exhaust gas with a high removal rate by using highly active calcium oxide porous particles produced by a special method.

【0002】[0002]

【従来の技術】近年、石油や石炭のような化石燃料の燃
焼や各種廃棄物の焼却処理の際に発生する二酸化炭素に
よる地球温暖化が生物環境破壊の元兇として社会的な問
題となっている。
2. Description of the Related Art In recent years, global warming caused by carbon dioxide generated when burning fossil fuels such as oil and coal and incinerating various wastes has become a social problem as a source of destruction of the biological environment. .

【0003】このため、排ガス中から二酸化炭素を除去
する方法が検討され、これまでゼオライトのような吸着
材を用いた物理的吸着法、アミン系吸収剤溶液による化
学的吸収法、高分子膜を用いる膜分離法などの多数の方
法が知られている。
Therefore, a method for removing carbon dioxide from exhaust gas has been studied, and a physical adsorption method using an adsorbent such as zeolite, a chemical absorption method using an amine-based absorbent solution, and a polymer membrane have been used so far. Many methods such as the membrane separation method used are known.

【0004】しかしながら、これらの方法は、処理能力
が低い、使用材料の価格が高い、大規模の設備を必要と
するなど実用化するには、多くの問題点があり、まだ工
業的に実施しうる実用的な方法は知られていない。
However, these methods have many problems to be put into practical use, such as low processing capacity, high cost of materials used, and large scale equipment, and they are still industrially not used. There is no known practical method.

【0005】他方、二酸化炭素含有ガスを加熱した酸化
カルシウムを接触させると炭酸カルシウムを生成し、二
酸化炭素が消費されることは公知である。したがって、
排ガスを酸化カルシウムに接触させて、その中の二酸化
炭素を除去することも考えられるが、これまで得られて
いる通常の酸化カルシウムは比表面積が小さく、吸収能
力が低い上に、二酸化炭素と接触させた場合の除去率が
短時間で急速に低下するため、二酸化炭素吸収剤として
は不適当である。また水酸化カルシウムの微細粉末を原
料として用い、これを真空下300〜390℃の温度で
焼成して110〜133m2/gという大きい比表面積
の酸化カルシウム粉末を製造した例も知られているが
[「ジャーナル・オブ・ジ・アメリカン・セラミック・
ソサエティ(J.Am.Ceramic So
c.)」、第64巻、第2号、第74〜80ページ]、
この方法により得られる粉末は、通常のものに比べ高活
性ではあるとしても、粒径1〜10μmと微細なもので
あるため、取り扱いにくく、実用性はない。
On the other hand, it is known that when carbon dioxide-containing gas is brought into contact with heated calcium oxide, calcium carbonate is produced and carbon dioxide is consumed. Therefore,
It is also possible to contact the exhaust gas with calcium oxide to remove carbon dioxide therein, but conventional calcium oxide obtained so far has a small specific surface area, low absorption capacity, and contact with carbon dioxide. Since the removal rate in the case of making it fall rapidly falls in a short time, it is unsuitable as a carbon dioxide absorbent. It is also known that fine powder of calcium hydroxide is used as a raw material and is calcined under vacuum at a temperature of 300 to 390 ° C. to produce a calcium oxide powder having a large specific surface area of 110 to 133 m 2 / g. ["Journal of the American Ceramic
Society (J. Am. Ceramic So
c. ) ", Vol. 64, No. 2, pp. 74-80],
The powder obtained by this method has a fine particle size of 1 to 10 μm, even though it has a higher activity than ordinary powders, and is therefore difficult to handle and is not practical.

【0006】[0006]

【発明が解決しようとする課題】本発明は、工場や発電
所から発生する排ガスや自動車や船舶のエンジンからの
排気ガスの中に含まれる二酸化炭素を、手軽な処理で、
しかも効率よく除去するための方法を提供することを目
的としてなされたものである。
DISCLOSURE OF THE INVENTION The present invention provides a simple treatment for carbon dioxide contained in exhaust gas generated from factories and power plants and exhaust gas from engines of automobiles and ships,
Moreover, it was made for the purpose of providing a method for efficient removal.

【0007】[0007]

【課題を解決するための手段】本発明者らは、二酸化炭
素との反応性の高い固体アルカリ物質を開発するため
に、種々研究を重ね、先に少なくとも5m2/gの比表
面積及び少なくとも1mmの粒径をもつ水酸化カルシウ
ム又は炭酸カルシウムの造粒体を焼成することにより、
高活性酸化カルシウム多孔質体を得ることに成功したが
(特願平4−345159号)、このようにして得た高
活性酸化カルシウム多孔質体を吸収剤として用い、これ
を特定の条件下で排ガスに接触させると、効率よくその
中に含まれている二酸化炭素を除去しうることを見出
し、この知見に基づいて本発明をなすに至った。
Means for Solving the Problems The present inventors have conducted various studies to develop a solid alkaline substance having high reactivity with carbon dioxide, and have previously conducted a specific surface area of at least 5 m 2 / g and at least 1 mm. By firing a granulated body of calcium hydroxide or calcium carbonate having a particle size of
We have succeeded in obtaining a highly active calcium oxide porous body (Japanese Patent Application No. 4-345159), but using the highly active calcium oxide porous body thus obtained as an absorbent, under a specific condition It was found that the carbon dioxide contained in the exhaust gas can be efficiently removed by contacting with the exhaust gas, and the present invention has been completed based on this finding.

【0008】すなわち、本発明は、二酸化炭素含有排ガ
スを、比表面積5〜60m2/g、粒径1〜10mmの
水酸化カルシウム造粒体から成る高活性酸化カルシウム
多孔質粒子に、400〜700℃の温度において接触さ
せることを特徴とする排ガス中の二酸化炭素除去方法を
提供するものである。
That is, according to the present invention, the carbon dioxide-containing exhaust gas is converted into highly active calcium oxide porous particles composed of calcium hydroxide granules having a specific surface area of 5 to 60 m 2 / g and a particle diameter of 1 to 10 mm, and 400 to 700. The present invention provides a method for removing carbon dioxide in exhaust gas, which is characterized in that contact is performed at a temperature of ° C.

【0009】本発明においては、5〜60m2/gとい
う、通常の酸化カルシウム粉末よりもはるかに大きい比
表面積をもち、しかも1〜10mmという、公知の高活
性酸化カルシウム粉末よりもはるかに大きい粒径をもつ
高活性酸化カルシウム多孔質粒子が用いられる。
In the present invention, particles having a specific surface area of 5 to 60 m 2 / g, which is much larger than that of ordinary calcium oxide powder, and 1 to 10 mm, which is much larger than the known high activity calcium oxide powder. Highly active calcium oxide porous particles having a diameter are used.

【0010】このような高活性酸化カルシウム多孔質粒
子は、例えば粒径300μm以下の水酸化カルシウム粉
末を粒径1〜10mmの顆粒に造粒し、この造粒体を常
圧下加熱し、390〜480℃の間を少なくとも5分間
かけて昇温させて焼成するか、あるいは粒径300μm
以下の水酸化カルシウム粉末を粒径1〜10mmの顆粒
に造粒し、この造粒体を常圧下加熱し、390〜480
℃の間を少なくとも5分間かけて昇温させたのち、さら
に480〜950℃の範囲内の任意の温度において、C
2反応率が40%以下に低下しない範囲内の時間で焼
成することにより製造することができる。
Such highly active calcium oxide porous particles are formed by, for example, granulating calcium hydroxide powder having a particle size of 300 μm or less into granules having a particle size of 1 to 10 mm, and heating the granulated body under atmospheric pressure to 390 to 390. Bake by raising the temperature between 480 ° C over at least 5 minutes, or by using a particle size of 300 μm
The following calcium hydroxide powder is granulated into granules having a particle size of 1 to 10 mm, and the granulated product is heated under normal pressure to give 390 to 480.
After raising the temperature between ℃ for at least 5 minutes, at an arbitrary temperature within the range of 480 to 950 ℃, C
It can be produced by firing for a time within a range in which the O 2 reaction rate does not decrease to 40% or less.

【0011】この際に、原料として用いる水酸化カルシ
ウムは、市販水酸化カルシウム(消石灰)をそのまま用
いてもよいし、市販酸化カルシウム(生石灰)の水和生
成物を用いることもできるが、不純分が混入すると得ら
れる酸化カルシウムの活性度が低下するので、できるだ
け純度の高いものを用いるのが好ましい。この水酸化カ
ルシウムは、平均粒径10〜300μmの粉末として用
いられる。
At this time, as the calcium hydroxide used as a raw material, commercially available calcium hydroxide (slaked lime) may be used as it is, or a hydrated product of commercially available calcium oxide (quick lime) may be used. When calcium is mixed, the activity of the obtained calcium oxide is lowered, so that it is preferable to use the one having the highest purity. This calcium hydroxide is used as a powder having an average particle size of 10 to 300 μm.

【0012】次に、水酸化カルシウム粉末の造粒は、こ
れに水を加えて混練りし、慣用の造粒機を用いて直径1
〜10mm、好ましくは直径3〜6mmの球状、あるい
は直径3〜6mm、長さ3〜6mm程度の円柱状顆粒に
成形することによって行われる。この際添加する水分の
量としては、水酸化カルシウムの重量に基づき5〜25
重量%の範囲が適当である。この造粒に際しては、保形
性を向上させるために、所望に応じ有機バインダーを添
加することもできる。この有機バインダーとしては、カ
ルボキシメチルセルロース(CMC)、ポリビニルアル
コールなどの水溶性高分子物質が用いられる。この有機
バインダーの添加量は、水酸化カルシウムの重量当り
0.5〜5%の範囲が適当である。
Next, for the granulation of the calcium hydroxide powder, water is added to the mixture and the mixture is kneaded, and a diameter of 1 is obtained by using a conventional granulator.
It is carried out by molding into a spherical shape having a diameter of 10 mm, preferably 3 mm to 6 mm, or a cylindrical granule having a diameter of 3 mm to 6 mm and a length of 3 mm to 6 mm. The amount of water added at this time is 5 to 25 based on the weight of calcium hydroxide.
A range of weight percent is suitable. At the time of this granulation, an organic binder may be added, if desired, in order to improve the shape retention. As the organic binder, a water-soluble polymer substance such as carboxymethyl cellulose (CMC) or polyvinyl alcohol is used. The amount of the organic binder added is appropriately in the range of 0.5 to 5% based on the weight of calcium hydroxide.

【0013】このようにして得た造粒体は、次いで例え
ば電気炉を用いて焼成されるが、この焼成条件として
は、水酸化カルシウムの場合、390〜480℃の範囲
の間を少なくとも5分間かけて昇温させることが必要で
ある。これ以外の条件で焼成した場合、比表面積5m2
/g以上の高活性のものを得ることができない。
The granules thus obtained are then calcined using, for example, an electric furnace. The calcining conditions are, in the case of calcium hydroxide, a temperature in the range of 390 to 480 ° C. for at least 5 minutes. It is necessary to raise the temperature. When fired under other conditions, specific surface area of 5m 2
It is not possible to obtain a highly active substance having an activity of / g or more.

【0014】この際の昇温速度としては1〜10℃/分
の範囲が好ましく、また水酸化カルシウムの場合480
℃、炭酸カルシウムの場合780℃の上限に達したなら
ば、できるだけ早く加熱を停止するのが好ましい。細孔
分布スペクトルを測定すると、この時点において、0.
02〜0.2μm付近でピークが認められる。
At this time, the rate of temperature rise is preferably in the range of 1 to 10 ° C./minute, and in the case of calcium hydroxide, 480.
In case of calcium carbonate and calcium carbonate, when the upper limit of 780 ° C. is reached, it is preferable to stop heating as soon as possible. When the pore distribution spectrum was measured, at this point,
A peak is recognized around 02 to 0.2 μm.

【0015】大量処理の際は、仕込原料の完全な焼成を
はかるために、さらに昇温を続行させることが必要にな
るが、この場合は950℃を超えない温度で、しかもC
2反応率が40%未満にならないように注意して行わ
なければならない。これは例えば一定時間経過ごとにサ
ンプルを抜き出し、そのサンプルについてCO2反応率
を測定することによって行われる。
In the case of a large amount of treatment, it is necessary to further raise the temperature in order to complete the firing of the charged raw material, but in this case, the temperature does not exceed 950 ° C. and C
Care must be taken so that the O 2 conversion does not fall below 40%. This is done, for example, by taking out a sample at regular time intervals and measuring the CO 2 reaction rate for the sample.

【0016】この加熱時間が長すぎ、CO2反応率が4
0%以下に低下した状態になると、いったん得られた高
活性酸化カルシウムの凝結が起って、活性度が低下しは
じめ、時間が増加するとともに、この傾向は著しくな
る。
This heating time is too long and the CO 2 reaction rate is 4
When the state is reduced to 0% or less, once the highly active calcium oxide obtained is condensed, the activity begins to decrease and the time increases, and this tendency becomes remarkable.

【0017】このCO2反応率は、サンプルにあらかじ
めCO2濃度が知られているCO2とN2との混合ガス
を、20℃において1分間接触させ、接触前後のCO2
濃度の差を接触前のCO2濃度で除し、100を乗じた
ものとして定義される。
[0017] The CO 2 rate of reaction, a mixed gas of CO 2 and N 2 which are previously CO 2 concentration in the sample is known, is contacted for 1 minute at 20 ° C., before and after contacting CO 2
It is defined as the difference in concentration divided by the CO 2 concentration before contact and multiplied by 100.

【0018】上記の焼成に際しては、フッ化カルシウム
のような低温で分解する還元剤を添加することにより、
焼成時間を短縮することができる。
In the above firing, by adding a reducing agent such as calcium fluoride which decomposes at a low temperature,
The firing time can be shortened.

【0019】また、上記の製造条件を選択することによ
り、活性度を所望の程度に調整された酸化カルシウムを
得ることができる。
Further, by selecting the above-mentioned production conditions, it is possible to obtain calcium oxide whose activity is adjusted to a desired level.

【0020】このようにして、比表面積が5〜60m2
/g以上、好ましくは10〜50m2/gの高活性をも
つ酸化カルシウム多孔質体が、径1〜10mm、好まし
くは3〜6mmの粒状体として得られる。
In this way, the specific surface area is 5 to 60 m 2.
/ G or more, preferably 10 to 50 m 2 / g, a highly active calcium oxide porous body is obtained as a granular body having a diameter of 1 to 10 mm, preferably 3 to 6 mm.

【0021】このものは、200〜2000オングスト
ロームの細孔を有する多孔質体で、そのかさ比重は0.
7〜0.8程度である。
This is a porous material having pores of 200 to 2000 angstrom, and its bulk specific gravity is 0.
It is about 7 to 0.8.

【0022】この高活性酸化カルシウム多孔質粒子に排
ガスを接触させるには、この粒子を円筒状処理管に充て
んし、その上下を網状物又はグラスウールなどで保持し
て構成した装置に、排ガスを通過させる。この際、粒子
の充てん部分を、適当な加熱手段例えば電熱、赤外線照
射、高周波加熱などにより加熱して粒子を400〜70
0℃、好ましくは500〜650℃の温度に加熱するこ
とが必要である。この温度が400℃よりも低いと、酸
化カルシウムと二酸化炭素の反応が不十分で、二酸化炭
素の除去率が低くなる。この二酸化炭素の除去率は40
0〜600℃の間で上昇し、600℃を超えるとしだい
に低下しはじめ、700℃を超えると急激に低下する。
これは、いったん生成した炭酸カルシウムが脱炭酸し、
再び二酸化炭素を放出するためと思われる。
In order to bring the exhaust gas into contact with the highly active calcium oxide porous particles, the exhaust gas is passed through an apparatus constructed by filling the particles in a cylindrical processing tube and holding the upper and lower parts thereof with a mesh or glass wool. Let At this time, the filled portion of the particles is heated by an appropriate heating means such as electric heating, infrared irradiation, high-frequency heating, etc. to make the particles 400 to 70.
It is necessary to heat to a temperature of 0 ° C, preferably 500-650 ° C. If this temperature is lower than 400 ° C., the reaction between calcium oxide and carbon dioxide is insufficient and the carbon dioxide removal rate becomes low. The removal rate of this carbon dioxide is 40
The temperature rises between 0 and 600 ° C., begins to decrease when the temperature exceeds 600 ° C., and sharply decreases when the temperature exceeds 700 ° C.
This is because the calcium carbonate once generated is decarbonated,
It seems to release carbon dioxide again.

【0023】本発明方法を好適に実施するには、高活性
酸化カルシウム多孔質体1キログラム当り、毎分8〜2
0リットルの割合で排ガスが接触するように設計するの
がよい。これよりも接触する量が多くなると、初期にお
ける除去率は高くても、経時的に急速な減少を生じ、約
2時間で当初の1/3以下になる。また、これよりも接
触量が少ない場合は、除去率の低下は少ないが処理速度
が遅くなり実用性を欠く。
In order to suitably carry out the method of the present invention, 8 to 2 per minute per kilogram of the highly active calcium oxide porous body.
It is preferable to design so that the exhaust gas comes into contact with the mixture at a rate of 0 liter. If the contact amount is larger than this, the removal rate in the initial stage is high, but it rapidly decreases with time, and becomes about 1/3 or less of the initial value in about 2 hours. Further, if the contact amount is smaller than this, the removal rate is less decreased, but the processing speed becomes slower, which is impractical.

【0024】次に、本発明方法においては、使用する酸
化カルシウム多孔質体を構成する酸化カルシウムの量と
これにより処理される排ガス中に存在する二酸化炭素の
全量とが特定の割合になるような条件で行うのが好まし
い。
Next, in the method of the present invention, the amount of calcium oxide constituting the calcium oxide porous material to be used and the total amount of carbon dioxide present in the exhaust gas treated by the calcium oxide have a specific ratio. It is preferable to carry out under the conditions.

【0025】すなわち、全処理時間に供給された排ガス
中の二酸化炭素の全モル数をK、酸化カルシウムの充て
んモル数をLとしたとき、両者のモル比R=K/Lが
0.5以下になるように、排ガス流量、酸化カルシウム
量及び処理時間を制御することにより、90%以上の除
去率を保つことができる。例えば自動車の排気ガス中に
は、0.7〜15%の二酸化炭素が含まれているが、本
発明方法によると、90%以上の除去率でこの排気ガス
から二酸化炭素を除去することができる。
That is, when the total number of moles of carbon dioxide in the exhaust gas supplied during the entire treatment time is K and the number of moles of calcium oxide filled is L, the molar ratio R = K / L of both is 0.5 or less. By controlling the flow rate of exhaust gas, the amount of calcium oxide, and the treatment time so that the above, the removal rate of 90% or more can be maintained. For example, the exhaust gas of an automobile contains 0.7 to 15% of carbon dioxide, but according to the method of the present invention, carbon dioxide can be removed from this exhaust gas at a removal rate of 90% or more. .

【0026】また、本発明方法によると、排ガス中に、
ハロゲン、窒素酸化物、硫黄酸化物などの酸性物質が含
有されている場合、これらも同時に除去することができ
る。
Further, according to the method of the present invention, in the exhaust gas,
When acidic substances such as halogens, nitrogen oxides and sulfur oxides are contained, these can be removed at the same time.

【0027】[0027]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。なお、各例におけるCO反応率及び比表面積
は、以下のようにして求めたものである。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The CO 2 reaction rate and specific surface area in each example are obtained as follows.

【0028】(1)CO反応率;試料5gを内径20
mm、長さ600mmの円筒状反応器に装入し、温度2
0℃において100ml/分の割合でCO2ガスとN2
スとの混合物を通過させ、試料と接触する前後における
混合物中のCO2濃度をJIS R6124燃焼容量法
により測定し、得られた結果より次式にしたがって計算
した。
(1) CO 2 reaction rate;
mm, 600 mm long cylindrical reactor, temperature 2
A mixture of CO 2 gas and N 2 gas was passed through the mixture at 0 ° C. at a rate of 100 ml / min, and the CO 2 concentration in the mixture before and after contacting with the sample was measured by the JIS R6124 combustion capacity method. It was calculated according to the following formula.

【0029】[0029]

【数1】 [Equation 1]

【0030】(2)比表面積;各試料0.5gを、モノ
ソープ比表面積測定装置(湯浅アイオニクス社製)を用
いて、BET庶点法により測定したのち、得られた測定
値を2倍して1g当りの表面積とした。
(2) Specific surface area: 0.5 g of each sample was measured by a BET common point method using a monosoap specific surface area measuring device (manufactured by Yuasa Ionics), and the obtained measured value was doubled. The surface area per gram was calculated.

【0031】参考例 粒径75〜150μmの水酸化カルシウム粉末[鈴木工
業(株)製、工業用消石灰、純度95.9%]に水25
重量%を加え、ディスクペレター[(株)不二パウダル
製]を用いて直径3mm、長さ3〜4mmの顆粒に造粒
し、この造粒体を電気炉に入れて、昇温速度10℃/分
で700℃まで加熱し、次いで温度を900℃まで上げ
て1時間焼成した。このようにしてCaOを主成分とす
る比表面積9.0m2/g、CO2反応率94.0%、か
さ比重0.7の白色多孔質体を得た。
Reference Example Calcium hydroxide powder having a particle size of 75 to 150 μm (manufactured by Suzuki Kogyo Co., Ltd., industrial slaked lime, purity 95.9%) and 25 parts of water.
% By weight, and granulated into granules having a diameter of 3 mm and a length of 3 to 4 mm using a disk pelleter [manufactured by Fuji Paudal Co., Ltd.], and the granules were placed in an electric furnace to raise the temperature to 10 It was heated to 700 ° C at ° C / min, then the temperature was raised to 900 ° C and calcined for 1 hour. Thus, a white porous body containing CaO as a main component and having a specific surface area of 9.0 m 2 / g, a CO 2 reaction rate of 94.0% and a bulk specific gravity of 0.7 was obtained.

【0032】実施例1 内径20mm、外径24mm、長さ600mmの円筒状
石英管のほぼ中央部50mmにわたって、参考例で得た
高活性酸化カルシウム多孔質体5gを充てんし、その両
側に厚さ15mmの石英ガラスウール層を設けて固定
し、反応管とした。
Example 1 5 g of the highly active calcium oxide porous body obtained in the reference example was filled over approximately 50 mm in the central portion of a cylindrical quartz tube having an inner diameter of 20 mm, an outer diameter of 24 mm and a length of 600 mm, and the both sides had a thickness. A 15 mm quartz glass wool layer was provided and fixed to obtain a reaction tube.

【0033】次にこの反応管を横型電気炉に装入し、一
方の口からCO2含有量10%の排ガスを、多孔質体1
g当り毎分20gの割合で供給し、200〜800℃に
おけるCO2除去率を測定した。その結果を表1に示
す。
Next, this reaction tube was charged into a horizontal electric furnace, and exhaust gas with a CO 2 content of 10% was passed through one end of the porous body 1.
It was supplied at a rate of 20 g / min and the CO 2 removal rate at 200 to 800 ° C. was measured. The results are shown in Table 1.

【0034】[0034]

【表1】 [Table 1]

【0035】実施例2 実施例1と同様にして、参考例で得た多孔質体を、
(A)2.5g又は(B)10g充てんし、実施例1と
同様にして、温度600℃におけるそれぞれのCO 2
去率の経時的変化を調べた。その結果を表2に示す。
Example 2 In the same manner as in Example 1, the porous body obtained in Reference Example was
(A) 2.5g or (B) 10g filling, and Example 1
Similarly, each CO at a temperature of 600 ° C 2Excluding
The change in the removal rate with time was examined. The results are shown in Table 2.

【0036】[0036]

【表2】 [Table 2]

【0037】実施例3 実施例1と同様に多孔質体5gを用い、600℃に温度
を保ち、排ガスの供給速度を、多孔質体1g当り毎分
(C)15ml又は(D)25mlに定め、それぞれの
CO2除去率の経時的変化を調べた。その結果を表3に
示す。
Example 3 As in Example 1, 5 g of the porous body was used, the temperature was kept at 600 ° C., and the exhaust gas supply rate was set to 15 ml per minute of the porous body (C) or 25 ml (D). , And the time-dependent change in the CO 2 removal rate of each of them was examined. The results are shown in Table 3.

【0038】[0038]

【表3】 [Table 3]

【0039】実施例4 実施例1において、温度600℃に固定し、多孔質体の
量及び排ガスの供給速度を変えることにより、多孔質体
中の酸化カルシウムの量Kモルと排ガス中の二酸化炭素
の全供給量Lモルとの比R=K/Lを0.1〜1.0の
範囲内で変化させて、それぞれのCO2除去率を求め
た。その結果を表4に示す。
Example 4 In Example 1, by fixing the temperature to 600 ° C. and changing the amount of the porous body and the exhaust gas supply rate, the amount of calcium oxide in the porous body, K mol, and the carbon dioxide in the exhaust gas. The ratio R = K / L with respect to the total supply amount L mol of R was varied within the range of 0.1 to 1.0, and the respective CO 2 removal rates were determined. The results are shown in Table 4.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【発明の効果】本発明方法によると、取り扱いやすい乾
式接触法により、排ガス中の二酸化炭素を長時間にわた
って効率よく除去することができるとともに、ハロゲ
ン、窒素酸化物、硫黄酸化物も除去しうるので、工場や
発電所からの燃焼ガスや自動車、船舶のエンジンからの
排気ガスの浄化に好適に利用することができる。
EFFECTS OF THE INVENTION According to the method of the present invention, carbon dioxide in exhaust gas can be efficiently removed over a long period of time and halogen, nitrogen oxides and sulfur oxides can also be removed by a dry contact method which is easy to handle. It can be suitably used for purification of combustion gas from factories and power plants and exhaust gas from engines of automobiles and ships.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二酸化炭素含有排ガスを、比表面積5〜
60m2/g、粒径1〜10mmの水酸化カルシウム造
粒体焼成物から成る高活性酸化カルシウム多孔質粒子
に、400〜700℃の温度において接触させることを
特徴とする排ガス中の二酸化炭素除去方法。
1. The specific surface area of the carbon dioxide-containing exhaust gas is 5 to 5.
Removal of carbon dioxide in exhaust gas, which is characterized in that highly active calcium oxide porous particles composed of a calcined product of calcium hydroxide granules having a particle diameter of 1 to 10 mm and a particle size of 60 m 2 / g are contacted at a temperature of 400 to 700 ° C. Method.
【請求項2】 高活性酸化カルシウム多孔質粒子1キロ
グラム当り毎分8〜20リットルの割合で二酸化炭素含
有排ガスを接触させる請求項1記載の方法。
2. The method according to claim 1, wherein the exhaust gas containing carbon dioxide is contacted at a rate of 8 to 20 liters per minute per 1 kilogram of highly active calcium oxide porous particles.
【請求項3】 高活性酸化カルシウム多孔質粒子中の酸
化カルシウムのモル量Lと全処理時間中の排ガスに含ま
れる二酸化炭素のモル量Kとの比R=K/Lが0.5以
下になるように、排ガス供給量、高活性酸化カルシウム
多孔質粒子量及び接触時間を制御して行う請求項1又は
2記載の方法。
3. The ratio R = K / L of the molar amount L of calcium oxide in the highly active calcium oxide porous particles and the molar amount K of carbon dioxide contained in the exhaust gas during the entire treatment time is 0.5 or less. The method according to claim 1 or 2, wherein the amount of exhaust gas supplied, the amount of highly active calcium oxide porous particles and the contact time are controlled so as to achieve the above.
JP28846793A 1993-11-17 1993-11-17 How to remove carbon dioxide from exhaust gas Expired - Lifetime JP3381226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28846793A JP3381226B2 (en) 1993-11-17 1993-11-17 How to remove carbon dioxide from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28846793A JP3381226B2 (en) 1993-11-17 1993-11-17 How to remove carbon dioxide from exhaust gas

Publications (2)

Publication Number Publication Date
JPH07136457A true JPH07136457A (en) 1995-05-30
JP3381226B2 JP3381226B2 (en) 2003-02-24

Family

ID=17730591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28846793A Expired - Lifetime JP3381226B2 (en) 1993-11-17 1993-11-17 How to remove carbon dioxide from exhaust gas

Country Status (1)

Country Link
JP (1) JP3381226B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006102696A (en) * 2004-10-07 2006-04-20 National Institute Of Advanced Industrial & Technology Carbon dioxide recovery method
JP2009160562A (en) * 2008-01-10 2009-07-23 Yamaguchi Univ Method for fixing carbon of carbon dioxide
JP4808215B2 (en) * 2004-06-16 2011-11-02 コーニング インコーポレイテッド Method for protecting amine-coated surfaces from deteriorating gases
JP2013208588A (en) * 2012-03-30 2013-10-10 National Maritime Research Institute Desulfurizing agent, desulfurizing method, and method for producing desulfurizing agent

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4808215B2 (en) * 2004-06-16 2011-11-02 コーニング インコーポレイテッド Method for protecting amine-coated surfaces from deteriorating gases
JP2006102696A (en) * 2004-10-07 2006-04-20 National Institute Of Advanced Industrial & Technology Carbon dioxide recovery method
JP2009160562A (en) * 2008-01-10 2009-07-23 Yamaguchi Univ Method for fixing carbon of carbon dioxide
JP2013208588A (en) * 2012-03-30 2013-10-10 National Maritime Research Institute Desulfurizing agent, desulfurizing method, and method for producing desulfurizing agent

Also Published As

Publication number Publication date
JP3381226B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
US4312280A (en) Method of increasing the sulfation capacity of alkaline earth sorbents
Yu et al. Activation strategies for calcium-based sorbents for CO2 capture: a perspective
US6093236A (en) Porous pellet adsorbents fabricated from nanocrystals
US7101417B2 (en) Activated carbon for odor control and method for making same
JPH07149580A (en) Calcium oxide porous material having high activity and its production
JP3417490B2 (en) Calcium oxide porous granular composite and method for producing the same
JPH0771616B2 (en) Method for removing sulfur oxides from gas using an absorbent material that can be regenerated by reaction with hydrogen sulfide
KR970002895B1 (en) Alumina aglomerates preparation process and the aglomerates themselves
WO2006113301A1 (en) Method for producing activated lime for removal of acid gases from a combustion gas
JP3381226B2 (en) How to remove carbon dioxide from exhaust gas
KR101502238B1 (en) Carbon dioxide absorbent and carbon dioxide capture process thereof
US3594982A (en) Process for drying unsaturated organic gaseous compounds
KR100888336B1 (en) A desulfurizing sorbent for so2 removal and a process for the preparation thereof
JP3571095B2 (en) Method for producing acid gas absorbent
JP2011200750A (en) Method for removing halogen-based gas
ES2424744T3 (en) Reactive compound for the removal of acidic compounds from high temperature fumes or gases and process for their preparation
JPS6259973B2 (en)
KR100803325B1 (en) Titanium dioxide added alkali-carbonate regenerable sorbent for carbon dioxide removal
JPH01258746A (en) Catalytic filter and production thereof
AU3833199A (en) Method for reducing nitrous oxide in gases and corresponding catalysts
JP2006102561A (en) Carbon dioxide absorption material and carbon dioxide reaction device
JPS58214341A (en) Catalyst for purifying noxious gas
KR101488237B1 (en) Preparation Process of Dry Adsorbent for Selective Capture of Gaseous Carbon Dioxide
JPH074506B2 (en) Exhaust gas purification method
CN116669837A (en) Method for reducing carbon dioxide in living space, carbon dioxide adsorbent, and method for producing same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121220

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131220

Year of fee payment: 11

EXPY Cancellation because of completion of term