JPH0713604A - Controller - Google Patents
ControllerInfo
- Publication number
- JPH0713604A JPH0713604A JP5158599A JP15859993A JPH0713604A JP H0713604 A JPH0713604 A JP H0713604A JP 5158599 A JP5158599 A JP 5158599A JP 15859993 A JP15859993 A JP 15859993A JP H0713604 A JPH0713604 A JP H0713604A
- Authority
- JP
- Japan
- Prior art keywords
- value
- differential
- measured
- set value
- measured value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、生産プロセスの中で、
温度や流量などのプロセス量を所定の値に制御するため
に使用する調節計であって、特にオーバーシュートを防
止した制御を行うために使用するものに関するものであ
る。BACKGROUND OF THE INVENTION The present invention is
The present invention relates to a controller used to control a process amount such as temperature and flow rate to a predetermined value, and particularly to a controller used to perform control while preventing overshoot.
【0002】[0002]
【従来の技術】図2はPID調節計の調節演算機能を示
すブロック構成図である。調節演算回路4はプロセスの
制御量である測定値PVの値とその目標設定値SVとの
偏差に、比例,積分,微分演算(PID演算)を行って
偏差がゼロになるように操作量MVを出力する。工業用
のプロセス調節計又は制御用コンピュータに内蔵した主
要な調節機能を示すものである。2. Description of the Related Art FIG. 2 is a block diagram showing the adjustment calculation function of a PID controller. The adjustment calculation circuit 4 performs proportional, integral, and differential calculations (PID calculation) on the deviation between the value of the measured value PV, which is the control value of the process, and its target set value SV, so that the deviation becomes zero. Is output. It shows the main adjustment functions built into an industrial process controller or control computer.
【0003】原料の仕込み、反応、製品の排出を比較的
短い時間で繰り返すバッチプロセス、例えば重合槽の温
度制御等では、プロセスの立ち上げから、測定値がオー
バーシュートすることなく短い時間で所定の温度に達す
ることを要求されることが多い。また定常運転時にも目
標設定値は時々変更されるが、この操作が制御の外乱と
ならない事が求められている。この様な用途のために、
上記のPID調節計に種々改良が試みられている。In a batch process in which the charging of raw materials, the reaction, and the discharge of products are repeated in a relatively short time, such as the temperature control of a polymerization tank, the measured value does not overshoot and a predetermined value is reached in a short time after the process starts. Often required to reach temperature. In addition, the target set value is sometimes changed during steady operation, but it is required that this operation does not become a control disturbance. For such uses,
Various attempts have been made to improve the above PID controller.
【0004】[0004]
【発明が解決しようとする課題】オーバーシュートを防
止するための調節計の一つとして、バッチスイッチ付き
PID制御調節計が使用される。この動作は、例えば温
度が目標設定値に接近したところでスイッチを動作させ
操作量に変更を加えるものである。しかしプロセスを立
ち上げる時には有効に働く機能であるが、定常運転時に
目標設定値を変更したり、温度の冷却工程等ではオーバ
ーシュートの防止には効果がない。又立ち上げ時や冷却
工程等で制御偏差が大きい場合の制御にも効果が無い。As one of the controllers for preventing overshoot, a PID control controller with a batch switch is used. In this operation, for example, when the temperature approaches the target set value, the switch is operated to change the operation amount. However, although it is a function that works effectively when the process is started up, it has no effect on preventing overshoot in the target setting value changing during steady operation or in the temperature cooling process. Further, there is no effect on the control when the control deviation is large at the start-up or the cooling process.
【0005】一方定常運転時のオーバーシュートを防止
するためには、可変設定値フイルタ機能を持ったPID
調節計が用いられることがある。この動作は設定値を変
更した時にだけ効果がある。しかしプロセスを立ち上げ
たり立ち下げたりす場合のように制御偏差が大きく発生
してしまっている時には効果が期待できない。この他オ
ーバーシュートを防止するためにファジー理論を応用し
た調節計の利用も考えられているが、その構築には経験
的要素を多く必要とし、一般的ではない。On the other hand, in order to prevent overshoot during steady operation, a PID having a variable set value filter function is provided.
A controller may be used. This action is effective only when the set value is changed. However, the effect cannot be expected when a large control deviation occurs, such as when the process is started or stopped. In addition to this, it is considered to use a controller applying fuzzy theory to prevent overshoot, but its construction requires many empirical factors and is not general.
【0006】そこで本発明は、上記のようにバッチプロ
セスを立ち上げ又は立ち下げる際に、又は連続プロセス
の運転中に目標設定値を変更するような際にも、制御量
の測定値がオーバーシュートすることなく、加えて外乱
等に対しても安定な制御結果が得られる調節計を提供す
ることを目的とする。Therefore, according to the present invention, when the batch process is started or stopped as described above, or when the target set value is changed during the operation of the continuous process, the measured value of the control amount overshoots. It is an object of the present invention to provide a controller that can obtain a stable control result against disturbances and the like, without doing so.
【0007】[0007]
【課題を解決するための手段】本発明は、反応槽等化学
プロセスの圧力や温度等のプロセス量を入力として微分
演算をして出力する微分演算手段と、目標設定値から前
記微分演算手段の出力を減算して実効設定値を出力する
第1減算手段と、第1減算手段の出力から前記測定値を
減算して出力する第2減算手段と、前記第2減算手段の
出力を偏差入力として、調節演算を行って調節弁等を駆
動するための操作量を出力する調節演算手段とから構成
したことを特徴とする。According to the present invention, there is provided a differential operation means for performing a differential operation with a process amount such as pressure or temperature of a chemical process such as a reaction tank as an input and outputting the differential operation means from a target set value. First subtraction means for subtracting the output and outputting the effective set value, second subtraction means for subtracting and outputting the measured value from the output of the first subtraction means, and output of the second subtraction means as deviation inputs , And an adjustment calculation means for performing an adjustment calculation and outputting an operation amount for driving a control valve or the like.
【0008】[0008]
【作用】本発明では、微分演算手段により、プロセスの
中で計測した温度等の制御量PVについて微分値pを求
めている。この値pは、測定時刻における測定値の変化
割合に比例した値であるから、測定値変化が大きい時に
は大きい値をとる。この値pは目標設定値SVと測定値
PVとの偏差を小さくする方向に働く。しかしこの偏差
を小さくして調節動作を小さくする作用は次のPID演
算動作で補償することができる。最も注目する効果は測
定値PVが目標設定値SVに接近するにつれて微分値p
が小さくなりSVに達した時には消滅していることであ
る。この効果により測定値はオーバーシュートすること
なく目標設定値に到達する。In the present invention, the differential value p is obtained for the controlled variable PV such as the temperature measured in the process by the differential operation means. This value p is a value proportional to the change rate of the measured value at the measurement time, and therefore takes a large value when the measured value change is large. This value p acts to reduce the deviation between the target set value SV and the measured value PV. However, the effect of reducing this deviation to reduce the adjusting operation can be compensated by the following PID operation operation. The most noticeable effect is the differential value p as the measured value PV approaches the target set value SV.
Is smaller and has reached SV, it has disappeared. Due to this effect, the measured value reaches the target set value without overshooting.
【0009】[0009]
【実施例】以下図面を用いて本発明を説明する。図1は
本発明の調節演算機能を示すブロック構成図である。先
ず使用する符号について説明する。SVは目標設定値を
表す。例えばプロセス(特性式G(t)で表した)の中
の温度等の調節の目標値である。The present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the adjustment calculation function of the present invention. First, the codes used will be described. SV represents a target set value. For example, it is a target value for adjustment of temperature or the like in the process (represented by the characteristic expression G (t)).
【0010】PVはプロセスの中で制御される量であ
り、実際に測定される温度等プロセス量の測定値であ
る。SSVは実効設定値であり次の式で表す。 SSV=目標設定値SV−係数K1 ×測定値PVの微分値(p) 式1 DVは制御偏差を表す。値をxと置き次の式で表す。PV is an amount controlled in the process and is a measured value of a process amount such as temperature actually measured. SSV is an effective set value and is expressed by the following equation. SSV = target set value SV-coefficient K 1 × differential value of measured value PV (p) Formula 1 DV represents a control deviation. The value is set as x and expressed by the following formula.
【0011】 x=SSV−PVである。 式2 MVは操作量である。値をyで表す。制御偏差DVの値
xに調節演算を行った量である。1は微分演算手段であ
り、測定値PVに式3の演算を行って微分値(p)を出
力する。X = SSV-PV. Formula 2 MV is a manipulated variable. The value is represented by y. It is the amount of adjustment calculation performed on the value x of the control deviation DV. Reference numeral 1 denotes a differential operation means, which performs the operation of Expression 3 on the measured value PV and outputs the differential value (p).
【0012】 p=K1×d(PV)/dt 式3 係数K1は式6の調節計のゲインK2とは異なり1に近い
可変数とし、実効設定値SSVを求めるための補正係数
として扱う。2は第1減算手段である。目標設定値SV
から前記微分演算手段1の出力(p)を減算して、実効
設定値SSVとして出力する。P = K 1 × d (PV) / dt Equation 3 The coefficient K 1 is a variable number close to 1 unlike the gain K 2 of the controller of Equation 6, and is treated as a correction coefficient for obtaining the effective set value SSV. 2 is a first subtraction means. Target set value SV
Then, the output (p) of the differential operation means 1 is subtracted from the output and output as the effective set value SSV.
【0013】 SSV=SV−p 式4 3は第2減算手段である。前記実効設定値SSVから測
定値PVを減算して、制御偏差DVの値xとして出力す
る。 x=SSV−PV=SV−p−PV 式5 4は調節演算手段である。前記偏差DVの値xを入力と
して、指定された調節演算を実行して操作量MVを出力
する。その値をyで表す。普通4−20mA電気信号等
に対応させて出力するもので、調節弁等の操作端を駆動
する。SSV = SV-p Formula 4 3 is the second subtraction means. The measured value PV is subtracted from the effective set value SSV and output as the value x of the control deviation DV. x = SSV-PV = SV-p-PV Equation 54 is an adjustment calculation means. The value x of the deviation DV is input, the specified adjustment calculation is executed, and the manipulated variable MV is output. The value is represented by y. Normally, it outputs in response to an electric signal of 4-20 mA, and drives the operating end of a control valve or the like.
【0014】調節演算式の一例を式6に示す。 y=K2{x+1/TI・∫xdt+TD・dx/dt} 式6 式の第1項は比例演算式(P)、第2項は積分演算式
(I)、第3項は微分演算式(D)である。通常は第1
項とその他を組み合わせて使用する。K2は調節計のゲ
インで、100×1/比例帯%の値をとる。An example of the adjustment calculation formula is shown in formula 6. y = K 2 {x + 1 / T I · ∫xdt + T D · dx / dt} Equation 6 The first term of the equation is the proportional equation (P), the second term is the integral equation (I), and the third term is the differential equation (D). Usually first
Use a combination of terms and others. K 2 is the gain of the controller and takes a value of 100 × 1 / proportional band%.
【0015】TIは積分時間である。TDは微分時間であ
る。5は特性式G(t)を持ったプロセスを表す。この
調節計は、通常使用されている図2に示したPID演算
調節計の偏差入力の前段に微分演算手段1及び第1減算
手段2を付加したことを特徴としている。T I is the integration time. T D is the derivative time. Reference numeral 5 represents a process having a characteristic expression G (t). This controller is characterized in that a differential operation means 1 and a first subtraction means 2 are added before the deviation input of the PID operation controller shown in FIG. 2 which is normally used.
【0016】またPID演算調節計図2の微分演算
(D)のみを先行させた形に似ているが、微分係数K1
は式6の調節計のゲインK2とは異なり1に近い可変数
とし、実効設定値を求めるための補正係数として扱う。
こうすることにより特有の動作をする。次に動作を図1
に基づいて説明する。The PID operation controller is similar to the form in which only the differential operation (D) in FIG. 2 is preceded, but the differential coefficient K 1
Is a variable number close to 1 unlike the gain K 2 of the controller of Expression 6, and is used as a correction coefficient for obtaining the effective set value.
By doing so, a specific operation is performed. Next, the operation is
It will be described based on.
【0017】微分演算手段1により、プロセスの中で計
測した温度等の制御量PVについて微分値pを求める。
計算式は式3である。この値pは、測定時刻における測
定値の変化割合に比例した値であるから、測定値変化が
大きい時には大きい値をとる。この値pは式5が示すよ
うに目標設定値SVと測定値PVとの偏差を小さくする
方向に働く。しかしこの偏差を小さくすることによる調
節動作を小さくする効果は次のPID演算動作で補償す
ることができる。最も注目する効果は測定値PVが目標
設定値SVに接近するにつれて微分値pが小さくなりS
Vに達した時には消滅していることである。この効果に
より測定値はオーバーシュートすることなく目標設定値
に到達する。なおこの効果は係数K1により変えること
ができる。The differential calculating means 1 obtains a differential value p with respect to the control amount PV such as temperature measured in the process.
The calculation formula is Formula 3. This value p is a value proportional to the change rate of the measured value at the measurement time, and therefore takes a large value when the measured value change is large. This value p acts to reduce the deviation between the target set value SV and the measured value PV, as shown in Expression 5. However, the effect of reducing the adjustment operation by reducing this deviation can be compensated by the next PID calculation operation. The most noticeable effect is that as the measured value PV approaches the target set value SV, the differential value p decreases and S
It means that when it reaches V, it disappears. Due to this effect, the measured value reaches the target set value without overshooting. This effect can be changed by the coefficient K 1 .
【0018】この動作をグラフで示したのが図3であ
る。測定値(PV)が目標値(SV)に接近するにつれ
て、設定値を小さくする効果を持つ微分値(p)が消滅
してオーバーシュートを防止することが分かる。この動
作を、式7で示す3次遅れ特性のプロセスでシミュレ−
ションして確認したがオーバーシュートが無く良好な結
果を得た。FIG. 3 is a graph showing this operation. It can be seen that as the measured value (PV) approaches the target value (SV), the differential value (p) having the effect of reducing the set value disappears and overshoot is prevented. This operation is simulated by the process of the third-order delay characteristic shown in Expression 7.
However, there was no overshoot and good results were obtained.
【0019】 G(s)=KP×1/(1+T1・s)×1/(1+T2・s) ×1/(1+T3・s)×e-LS 式7 s ラプラス変換の演算子 Kp プロセスゲイン 1.2 T1 1次遅れ時定数 20〜30sec T2 2次遅れ時定数 0〜30sec T3 3次遅れ時定数 0〜30sec L むだ時間 10〜20secG (s) = K P × 1 / (1 + T 1 s) × 1 / (1 + T 2 s) × 1 / (1 + T 3 s) × e −LS Operators Kp process gain of formula 7 s Laplace transform 1. 2 T 1 1-order delay time constant 20~30sec T 2 2-order delay time constant 0 to 30 seconds T 3 3-order delay time constant 0 to 30 seconds L dead time 10~20sec
【0020】[0020]
【発明の効果】本発明によると、上記の制御演算回路を
工業用調節計の中に組み込む事ができるし、プログラム
によるソフトウエア処理を行っても実現できる。何れの
方法によっても非常に安定な動作をするので、信頼性の
高い、オーバーシュート防止のための調節計を容易に構
築することができる優れた効果がある。According to the present invention, the above control arithmetic circuit can be incorporated in an industrial controller, and can also be realized by performing software processing by a program. Since any of the methods makes a very stable operation, there is an excellent effect that a highly reliable controller for preventing overshoot can be easily constructed.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の調節演算機能を示すブロック構成図で
ある。FIG. 1 is a block diagram showing an adjustment calculation function of the present invention.
【図2】PID調節計の調節演算機能を示すブロック構
成図である。FIG. 2 is a block diagram showing a control calculation function of a PID controller.
【図3】本発明の調節演算動作を説明する概念図であ
る。FIG. 3 is a conceptual diagram illustrating an adjustment calculation operation of the present invention.
DV 制御偏差、値はxで表す。 MV 操作量、値はyで表す。 PV 制御量の値(測定値) SV 目標設定値 SSV 実効設定値 G(t)時間函数で表したプロセス特性式 s ラプラス演算子 G(s)ラプラス変換後のプロセス特性式 DV control deviation, value is represented by x. The MV manipulated variable and value are represented by y. PV controlled variable value (measured value) SV target set value SSV effective set value G (t) process characteristic formula expressed in time function s Laplace operator G (s) process characteristic formula after Laplace conversion
Claims (1)
として微分演算する微分演算手段と、目標設定値から前
記微分演算手段の出力を減算して実効設定値を出力する
第1減算手段と、 第1減算手段の出力から前記測定値を減算する第2減算
手段と、 前記第2減算手段の出力を偏差入力として、調節演算を
行って操作量を出力する調節演算手段とから構成し、前
記微分演算手段は下記の演算を行うことを特徴とする調
節計。 微分演算式 K1×d(PV)/dt K1は1に近い可変数とし、実効設定値を求めるための
補正係数として使用する。1. A differential operation means for performing a differential operation using a measured value signal (PV) from a process as an input, and a first subtraction means for subtracting an output of the differential operation means from a target set value and outputting an effective set value. A second subtraction means for subtracting the measured value from the output of the first subtraction means, and an adjustment calculation means for performing an adjustment calculation and outputting a manipulated variable using the output of the second subtraction means as a deviation input, The controller, wherein the differential operation means performs the following operation. The differential operation expression K 1 × d (PV) / dt K 1 is a variable number close to 1 and is used as a correction coefficient for obtaining the effective set value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5158599A JPH0713604A (en) | 1993-06-29 | 1993-06-29 | Controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5158599A JPH0713604A (en) | 1993-06-29 | 1993-06-29 | Controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0713604A true JPH0713604A (en) | 1995-01-17 |
Family
ID=15675217
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5158599A Pending JPH0713604A (en) | 1993-06-29 | 1993-06-29 | Controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0713604A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4076204B2 (en) * | 1998-04-14 | 2008-04-16 | 株式会社日立製作所 | Method and apparatus for controlling engine throttle valve |
CN110273768A (en) * | 2018-03-15 | 2019-09-24 | 丰田自动车株式会社 | Plant control unit |
-
1993
- 1993-06-29 JP JP5158599A patent/JPH0713604A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4076204B2 (en) * | 1998-04-14 | 2008-04-16 | 株式会社日立製作所 | Method and apparatus for controlling engine throttle valve |
CN110273768A (en) * | 2018-03-15 | 2019-09-24 | 丰田自动车株式会社 | Plant control unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0298701A (en) | Controller | |
JP3881593B2 (en) | Control device | |
JP2013069094A (en) | Control method and controller | |
Hesketh et al. | Adaptive mould level control for continuous steel slab casting | |
JPH0713604A (en) | Controller | |
JPH0415706A (en) | Model estimation controller | |
JP2004013511A (en) | Process control device | |
JPH08314504A (en) | Pid-imc interface device and imc controller | |
JPH07319504A (en) | Controller | |
JPH07191709A (en) | Parameter setting method for model estimating control | |
JP4164817B2 (en) | Optimum setting of feedback control based on pure integration operation | |
JPH08241102A (en) | Pid control unit | |
JP3015523B2 (en) | Process control equipment | |
JPH0778001A (en) | Digital controller | |
JP3022050B2 (en) | Control device | |
JP3137449B2 (en) | Adjustment device | |
JP2517616B2 (en) | Parameter adaptation method in fuzzy feedback control. | |
JP2809849B2 (en) | 2-DOF adjustment device | |
JPS6394304A (en) | Discrete time controller | |
JP2002157002A (en) | Process control unit | |
JPH06259102A (en) | Process pid controller | |
Greaves et al. | Neural networks in a hybrid scheme for optimisation of dynamic processes: Application to batch distillation | |
JPH05265515A (en) | Internal model controller | |
JPS63111504A (en) | Discrete time controller | |
Teng | Indirect adaptive pole-assignment controllers with direct implementations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090210 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20100210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110210 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20120210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20130210 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140210 Year of fee payment: 14 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |