JPH0713550B2 - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPH0713550B2
JPH0713550B2 JP60237976A JP23797685A JPH0713550B2 JP H0713550 B2 JPH0713550 B2 JP H0713550B2 JP 60237976 A JP60237976 A JP 60237976A JP 23797685 A JP23797685 A JP 23797685A JP H0713550 B2 JPH0713550 B2 JP H0713550B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion mechanism
refrigeration cycle
gas
solenoid valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60237976A
Other languages
Japanese (ja)
Other versions
JPS6298158A (en
Inventor
章 友沢
武利 望月
泰寛 大西
芳樹 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinmaywa Industries Ltd
Original Assignee
Shinmaywa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinmaywa Industries Ltd filed Critical Shinmaywa Industries Ltd
Priority to JP60237976A priority Critical patent/JPH0713550B2/en
Publication of JPS6298158A publication Critical patent/JPS6298158A/en
Publication of JPH0713550B2 publication Critical patent/JPH0713550B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非共沸混合冷媒冷凍サイクルによる超低温冷凍
サイクルに係り、特に超低温部分(冷却器付近)に堆積
した冷凍機潤滑油を速やかに圧縮機に戻すのに好適な冷
凍サイクルに関する。
Description: TECHNICAL FIELD The present invention relates to an ultra-low temperature refrigerating cycle by a non-azeotropic mixed refrigerant refrigerating cycle, and in particular, it rapidly compresses refrigerating machine lubricating oil accumulated in an ultra-low temperature portion (near the cooler). The present invention relates to a refrigeration cycle suitable for returning to the machine.

(従来技術) 上記のような冷凍サイクルとしては、第1図のようなも
のがある。
(Prior Art) As a refrigeration cycle as described above, there is one as shown in FIG.

すなわち、この冷凍サイクルは、非共沸混合冷媒を圧縮
する圧縮機1と、圧縮機1の吐出側に設けた油分離器2
と、圧縮機1から吐出された高温高圧の冷媒を冷却する
凝縮器3と、冷却された非共沸混合冷媒を液相冷媒と気
相冷媒とに分離する気液分離器4と、液相冷媒を減圧す
る第1膨張機構5と、第1膨張機構5によって減圧、冷
却された冷媒と上記分離された気相冷媒とを熱交換させ
るカスケードコンデンサ6と、冷却された気相冷媒を第
2膨張機構7により減圧、冷却し、被冷却体を超低温に
冷却する冷却器(蒸発器)8と、から構成されている。
That is, this refrigeration cycle includes a compressor 1 for compressing a non-azeotropic mixed refrigerant, and an oil separator 2 provided on the discharge side of the compressor 1.
A condenser 3 for cooling the high temperature and high pressure refrigerant discharged from the compressor 1, a gas-liquid separator 4 for separating the cooled non-azeotropic mixed refrigerant into a liquid phase refrigerant and a gas phase refrigerant, and a liquid phase The first expansion mechanism 5 for decompressing the refrigerant, the cascade condenser 6 for exchanging heat between the refrigerant decompressed and cooled by the first expansion mechanism 5 and the separated vapor phase refrigerant, and the cooled vapor phase refrigerant for the second It comprises a cooler (evaporator) 8 that is decompressed and cooled by the expansion mechanism 7 and cools the object to be cooled to an ultralow temperature.

ところで、このような超低温冷凍サイクルでは、圧縮機
1に使われる潤滑油(以下、油という)が冷凍サイクル
内に冷媒といっしょに吐出され、超低温部分で油がこの
流動点以下に冷やされ流動性を失って配管を詰まらせる
ことにより冷却性能が低下した場合、冷凍サイクルの運
転を止めて超低温部分が油の流動点以上に温度が上がる
のを待って運転を再開し、詰まった油を圧縮機1へ流し
去って冷却性能を回復させていた。
By the way, in such an ultra low temperature refrigeration cycle, the lubricating oil (hereinafter referred to as oil) used in the compressor 1 is discharged into the refrigeration cycle together with the refrigerant, and the oil is cooled below this pour point in the ultra low temperature portion to achieve fluidity. If the cooling performance deteriorates due to loss of oil and clogging of the piping, stop the operation of the refrigeration cycle and wait until the temperature of the ultra-low temperature part rises above the pour point of the oil to restart the operation, and remove the clogged oil from the compressor. It was poured away to 1 to recover the cooling performance.

(解決しようとする課題) しかしこの方法では温度の上昇に時間がかかり、その間
の侵入熱のために庫内温度も上昇する欠点があった。
(Problems to be solved) However, this method has a drawback that it takes time to raise the temperature and the temperature in the refrigerator also rises due to the heat of penetration during that time.

本発明は超低温部分への油の詰まりにより低下した超低
温冷凍サイクルの冷却性能を速やかに回復できる冷凍サ
イクルを提供するものである。
The present invention provides a refrigeration cycle capable of promptly recovering the cooling performance of the ultra-low temperature refrigeration cycle, which is deteriorated due to the oil clogging in the ultra-low temperature portion.

(課題を解決するための手段、作用) 本発明の冷凍サイクルは、超低温部分において、圧縮機
から冷媒といっしょに吐出された油が流動点以下に冷や
されて流動性を失い、堆積し、冷却性能が低下した場
合、高温の未凝縮冷媒(以降ホットガスと言う)をバイ
パス管を通して超低温部分へ流すことによって、速やか
に油の流動性を回復して配管の詰まりを解消し、冷却性
能を回復するものである。
(Means and Actions for Solving the Problem) In the refrigeration cycle of the present invention, in the ultra-low temperature portion, the oil discharged from the compressor together with the refrigerant is cooled to a temperature below the pour point, loses fluidity, accumulates, and cools. When performance deteriorates, high-temperature uncondensed refrigerant (hereinafter referred to as hot gas) is caused to flow through the bypass pipe to the ultra-low temperature part, thereby quickly recovering oil fluidity and eliminating pipe clogging, and recovering cooling performance. To do.

特に非共沸混合冷媒冷凍サイクルでは、気液分離後は、
油の多くは油との混和性のよい高沸点成分(例えばR11,
R12)が多く含まれた液相の高温側サイクル冷媒に溶け
込み、気相には少しか含まれない。また同気相の温度は
油の流動点と比べると高温であるため、ホットガスとし
て使うには気液分離器により分離された気相が適してい
る。
Especially in the non-azeotropic mixed refrigerant refrigeration cycle, after gas-liquid separation,
Most of the oils have high boiling point components (eg R11,
R12) dissolves in the high temperature side cycle refrigerant containing a large amount of R12), and the gas phase contains little. Since the temperature of the vapor phase is higher than the pour point of oil, the vapor phase separated by the gas-liquid separator is suitable for use as hot gas.

(実施例) 以下本発明による一実施例を第2図により説明する。Embodiment An embodiment according to the present invention will be described below with reference to FIG.

第2図は非共沸混合冷媒冷凍サイクルの一例である。FIG. 2 is an example of a non-azeotropic mixed refrigerant refrigeration cycle.

通常運転時は、第1電磁弁18は閉、第2電磁弁19は開で
ある。圧縮機10により吐出された冷媒ガスは油分離器11
により大半と油が分離された後、凝縮器12で冷却され、
気液分離器13で気相に分離される。ここで第3図に示す
ように液相は低沸点成分が少なく(高沸点成分に富
む)、気相は低沸点成分に富む。従って液相は高温側サ
イクルの冷媒として第1膨張機構14で減圧され低温とな
りその冷熱はカスケードコンデンサ15で気相である定温
側サイクルの冷媒を凝縮するのに費やされ蒸発する。
During normal operation, the first solenoid valve 18 is closed and the second solenoid valve 19 is open. The refrigerant gas discharged by the compressor 10 is an oil separator 11
After most of the oil is separated by, it is cooled in the condenser 12,
The gas-liquid separator 13 separates into a gas phase. Here, as shown in FIG. 3, the liquid phase is low in low boiling point components (rich in high boiling point components), and the gas phase is rich in low boiling point components. Accordingly, the liquid phase is decompressed by the first expansion mechanism 14 as a refrigerant in the high temperature side cycle and becomes a low temperature, and the cold heat is consumed by the cascade condenser 15 to condense the constant temperature side refrigerant in the vapor phase and evaporates.

一方カスケードコンデンサ15で凝縮された低温側サイク
ルの冷媒は第2膨張機構16で減圧され冷却器17で超低温
を発生して蒸発する。
On the other hand, the refrigerant of the low temperature side condensed by the cascade condenser 15 is decompressed by the second expansion mechanism 16 and generates an ultra low temperature by the cooler 17 to be evaporated.

それぞれ蒸発した冷媒は吸入管21で圧縮機10に戻り冷凍
サイクルを完成する。
The evaporated refrigerant returns to the compressor 10 through the suction pipe 21 to complete the refrigeration cycle.

つぎに、長時間の運転中に圧縮機10から吐出された油が
超低温部分に堆積し、冷凍サイクルの冷却性能が低下し
た場合、第1電磁弁18を開、第2電磁弁19を閉として気
液分離器13で分離されたホットガスをバイパス管20を通
して低温側の第2膨張機構16に流し、その高温により堆
積した油の温度を上げ油の流動性を回復して圧縮機10へ
押し流すのである。その結果冷凍サイクルの冷却性能も
速やかに回復するのである。このとき圧縮機10、気液分
離器13、バイパス管20、第2膨張機構16、冷却器17から
なる回路においてホットガスサイクル(ガスサイクル)
が形成されている。
Next, when the oil discharged from the compressor 10 accumulates in the ultra-low temperature portion during long-time operation and the cooling performance of the refrigeration cycle deteriorates, the first solenoid valve 18 is opened and the second solenoid valve 19 is closed. The hot gas separated by the gas-liquid separator 13 is caused to flow through the bypass pipe 20 to the second expansion mechanism 16 on the low temperature side, and the temperature of the accumulated oil is raised by the high temperature to restore the fluidity of the oil and push it to the compressor 10. Of. As a result, the cooling performance of the refrigeration cycle is quickly restored. At this time, a hot gas cycle (gas cycle) is performed in the circuit including the compressor 10, the gas-liquid separator 13, the bypass pipe 20, the second expansion mechanism 16, and the cooler 17.
Are formed.

なおホットガスの作動は、タイマにより一定運転時間
毎、あるいは冷却器17の入口、出口間の圧力損失の変化
の測定など適当な手段により油の詰まりを検知あるいは
予測して行なう。
The operation of the hot gas is performed by a timer at regular intervals of operation, or by detecting or predicting oil clogging by an appropriate means such as measuring a change in pressure loss between the inlet and the outlet of the cooler 17.

また第4図に示すごとく第1、第2膨張機構を細管30,3
1で構成し、その細管31の途中にホットガスを流しても
よい。こうすることによって細管31による流路抵抗が減
り、ガスサイクル時の冷媒流量が確保できる。さらに細
管31による減圧機構では出口付近が超低温度となってお
り、入口付近は比較的温度が高いため、ホットガスの温
度を超低温部分に堆積した油に有効に伝え、速やかに流
動性を回復することができる。
Also, as shown in FIG. 4, the first and second expansion mechanisms are provided with thin tubes 30,3.
Alternatively, the hot gas may flow in the middle of the thin tube 31. By doing so, the flow path resistance due to the thin tube 31 is reduced, and the flow rate of the refrigerant during the gas cycle can be secured. Further, in the decompression mechanism by the thin tube 31, the temperature near the outlet is extremely low and the temperature near the inlet is relatively high, so the temperature of the hot gas is effectively transmitted to the oil accumulated in the ultra-low temperature portion, and the fluidity is quickly restored. be able to.

また第5図に示すようにバイパス管20に第3膨張機構33
をもたせてもよい。なお第5図において、符号32は、第
1膨張機構14(または細管30)に該当し、また符号34
は、第2膨張機構16(または細管31の高圧側半分)に該
当している。
In addition, as shown in FIG.
You may let me have. In FIG. 5, reference numeral 32 corresponds to the first expansion mechanism 14 (or the thin tube 30), and reference numeral 34.
Corresponds to the second expansion mechanism 16 (or the high pressure side half of the thin tube 31).

次に、上述しなかった気液分離器が2つ以上の非共沸混
合冷媒冷凍サイクルについて述べる。
Next, a non-azeotropic mixed refrigerant refrigeration cycle having two or more gas-liquid separators not described above will be described.

気液分離器が2つ以上の非共沸混合冷媒冷凍サイクルで
は、第6図に一例を示すように、第2図と同様に1段目
の気液分離器35により分離されたホットガスを流す上述
のホットガスバイパス管20を設け、作動させることによ
り同じ効果が得られる (効果) 以上説明したように超低温冷凍サイクルの長時間に渡る
運転により圧縮機10から吐出された油が超低温部分に堆
積することによる冷凍サイクルの冷却性能低下に対し
て、ホットガスを流すことにより油の温度を上げ、流動
性を回復して圧縮機10へ押し流すため、従来の方法のよ
うに冷凍サイクルの運転を停止して、サイクル高圧側か
ら、および周囲からの侵入熱による温度上昇により、油
の流動性を回復させるのに比べ、冷凍サイクルの性能回
復が短時間に行われる。従って油の流動性回復のための
時間による庫内温度の上昇は、本発明による方法によれ
ば、従来の方法に比べ少なくてすむ。
In a non-azeotropic mixed-refrigerant refrigeration cycle having two or more gas-liquid separators, as shown in FIG. 6, an example of the hot gas separated by the first-stage gas-liquid separator 35 is shown as in FIG. The same effect can be obtained by providing and operating the above-mentioned hot gas bypass pipe 20 that flows (effect) As described above, the oil discharged from the compressor 10 due to the operation of the ultra low temperature refrigeration cycle for a long time is in the ultra low temperature portion. In order to reduce the cooling performance of the refrigeration cycle due to accumulation, the temperature of the oil is raised by flowing hot gas to restore fluidity and push it to the compressor 10. The refrigeration cycle performance is recovered in a short time as compared with the case where the fluidity of the oil is recovered by stopping and then increasing the temperature from the high pressure side of the cycle and the invasion heat from the surroundings. Therefore, according to the method of the present invention, the rise in the temperature inside the chamber due to the time for recovering the fluidity of the oil can be reduced as compared with the conventional method.

【図面の簡単な説明】 第1図は従来の非共沸混合冷媒サイクルの回路図であ
る。第2〜6図は本発明の実施例を示し、第2図は非共
沸混合冷媒を用いた冷凍サイクルの回路図、第3図は非
共沸混合冷媒の気相と液相による成分濃度の違いを説明
するグラフであり、第4図、第5図はそれぞれ本発明の
別の実施例の回路図、第6図は気液分離器が2つ以上の
非共沸混合冷媒冷凍サイクルの場合の回路図である。 図において、1,10……圧縮機、2,11……油分離器、3,12
……凝縮器、6,15……カスケードコンデンサ、5,14,30,
32……第1膨張機構、7,16,31,34……第2膨張機構、33
……第3膨張機構、8,17……冷却器、4,18,35……気液
分離器、21……吸入管、18……第1電磁弁、19……第2
電磁弁、20……バイパス管。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a conventional non-azeotropic mixed refrigerant cycle. 2 to 6 show an embodiment of the present invention, FIG. 2 is a circuit diagram of a refrigeration cycle using a non-azeotropic mixed refrigerant, and FIG. 3 is a component concentration of the non-azeotropic mixed refrigerant in a gas phase and a liquid phase. 4 and 5 are circuit diagrams of another embodiment of the present invention, and FIG. 6 is a non-azeotropic mixed refrigerant refrigeration cycle having two or more gas-liquid separators. It is a circuit diagram in a case. In the figure, 1,10 ... compressor, 2,11 ... oil separator, 3,12
...... Condenser, 6,15 …… Cascade condenser, 5,14,30,
32 …… First expansion mechanism, 7,16,31,34 …… Second expansion mechanism, 33
...... 3rd expansion mechanism, 8,17 ...... Cooler, 4,18,35 …… Gas-liquid separator, 21 …… Suction pipe, 18 …… First solenoid valve, 19 …… Second
Solenoid valve, 20 ... Bypass pipe.

フロントページの続き (56)参考文献 特開 昭55−110860(JP,A) 特開 昭48−72742(JP,A) 実開 昭56−134562(JP,U) 実開 昭56−149861(JP,U)Continuation of the front page (56) Reference JP-A-55-110860 (JP, A) JP-A-48-72742 (JP, A) Actually opened 56-134562 (JP, U) Actually opened 56-149861 (JP , U)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】非共沸混合冷媒を圧縮する圧縮機と、圧縮
機から吐出された非共沸混合冷媒を冷却する凝縮器と、
凝縮器で冷却された非共沸混合冷媒を高沸点成分の多い
液相冷媒と低沸点成分の多い気相冷媒とに分離する気液
分離器と、分離された液相冷媒を減圧する第1膨張機構
と、第1膨張機構により減圧・冷却された冷媒によっ
て、上記分離された気相冷媒を冷却するカスケードコン
デンサと、カスケードコンデンサを経由した上記第1膨
張機構からの冷媒を圧縮機に帰還させる一方、カスケー
ドコンデンサにより冷却された上記気相冷媒を減圧する
第2膨張機構と、第2膨張機構により減圧・冷却された
冷媒により被冷却体を冷却する冷却器とを含む冷凍サイ
クルにおいて、 上記気液分離器の気相出口と上記冷却器の高圧側との間
に設けられ、上記カスケードコンデンサをバイパスする
バイパス管と、バイパス管を開閉可能な第1電磁弁と、
上記気液分離器の気相出口からカスケードコンデンサを
経て第2膨張機構に至る管路を開閉可能な第2電磁弁と
を備え、通常冷却運転時においては、第1電磁弁が閉、
第2電磁弁が開であり、また上記冷却器付近に堆積した
油を除去する際は、第1電磁弁を開、第2電磁弁を閉に
切り換えるべくしたことを特徴とする、上記冷凍サイク
ル。
1. A compressor for compressing a non-azeotropic mixed refrigerant, and a condenser for cooling the non-azeotropic mixed refrigerant discharged from the compressor.
A gas-liquid separator for separating a non-azeotropic mixed refrigerant cooled by a condenser into a liquid-phase refrigerant having a high boiling point component and a gas-phase refrigerant having a high boiling point component, and a first depressurizing the separated liquid-phase refrigerant An expansion mechanism and a cascade condenser that cools the separated vapor-phase refrigerant by the refrigerant that has been decompressed and cooled by the first expansion mechanism, and the refrigerant from the first expansion mechanism that has passed through the cascade condenser is returned to the compressor. On the other hand, in the refrigeration cycle including a second expansion mechanism that depressurizes the vapor-phase refrigerant cooled by the cascade condenser and a cooler that cools the cooled object by the refrigerant depressurized and cooled by the second expansion mechanism, A bypass pipe provided between the gas phase outlet of the liquid separator and the high-pressure side of the cooler and bypassing the cascade condenser; and a first solenoid valve capable of opening and closing the bypass pipe,
A second solenoid valve capable of opening and closing a pipe line from the gas phase outlet of the gas-liquid separator to the second expansion mechanism via the cascade condenser, and the first solenoid valve is closed during normal cooling operation;
The refrigeration cycle described above, wherein the second solenoid valve is open, and when removing the oil accumulated near the cooler, the first solenoid valve is opened and the second solenoid valve is closed. .
【請求項2】上記第2膨張機構を細管で構成するととも
に、上記バイパス管の出口を細管の中間部に接続してな
る、特許請求の範囲第1項記載の冷凍サイクル。
2. The refrigeration cycle according to claim 1, wherein the second expansion mechanism is composed of a thin tube, and the outlet of the bypass tube is connected to an intermediate portion of the thin tube.
【請求項3】上記バイパス管に第3膨張機構を接続する
とともに、バイパス管の出口を第2膨張機構の低圧側に
接続してなる、特許請求の範囲第1項記載の冷凍サイク
ル。
3. The refrigeration cycle according to claim 1, wherein a third expansion mechanism is connected to the bypass pipe, and the outlet of the bypass pipe is connected to the low pressure side of the second expansion mechanism.
JP60237976A 1985-10-23 1985-10-23 Refrigeration cycle Expired - Lifetime JPH0713550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237976A JPH0713550B2 (en) 1985-10-23 1985-10-23 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237976A JPH0713550B2 (en) 1985-10-23 1985-10-23 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS6298158A JPS6298158A (en) 1987-05-07
JPH0713550B2 true JPH0713550B2 (en) 1995-02-15

Family

ID=17023262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237976A Expired - Lifetime JPH0713550B2 (en) 1985-10-23 1985-10-23 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPH0713550B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0710210Y2 (en) * 1988-02-25 1995-03-08 オリオン機械株式会社 Multi-source refrigerator
JPH086977B2 (en) * 1989-02-14 1996-01-29 松下電器産業株式会社 Two-stage compression refrigeration cycle and air conditioner
CN110192070A (en) 2017-01-25 2019-08-30 三菱电机株式会社 Refrigerating circulatory device
JP2019007668A (en) * 2017-06-23 2019-01-17 福島工業株式会社 Refrigeration device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514344B2 (en) * 1971-12-29 1980-04-15
JPS55110860A (en) * 1979-02-20 1980-08-26 Hitachi Ltd Cooling apparatus using mixed refrigerant
JPS6243251Y2 (en) * 1980-03-12 1987-11-09
JPS619315Y2 (en) * 1980-04-09 1986-03-24

Also Published As

Publication number Publication date
JPS6298158A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
JP2006105588A (en) Cryogenic refrigerator with single stage compressor
WO1999010686A1 (en) Cooling cycle
WO2014184931A1 (en) Refrigeration device
JP2009300021A (en) Refrigerating cycle device
JPH0713550B2 (en) Refrigeration cycle
CN111043783B (en) Self-cascade refrigeration system for trapping cryogenic water vapor and control method
JP2711879B2 (en) Low temperature refrigerator
JP2003028518A (en) Air conditioner
JPH0682106A (en) Dual refrigerating apparatus
JPH0642829A (en) Freezer for low temperature freezing
JP3134350B2 (en) Defrost control device
JPH01200156A (en) Freezing cycle device
JP3182598B2 (en) Refrigeration equipment
JP2009156563A (en) Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same
JP2002039637A (en) Freezer and freezing method
JPH0718608B2 (en) Refrigeration equipment
JP2006153287A (en) Ultralow temperature cooling device
JP2002162122A (en) Air conditioner
JP2004271110A (en) Cooling device and cooling method for the same
JPH04281164A (en) Refrigerating device
JPH07234041A (en) Cascade refrigerating equipment
JPH0678850B2 (en) Refrigeration equipment
JPH0719673A (en) Simple coolant recovering apparatus
JP3133536B2 (en) Refrigeration equipment
JPH04350466A (en) Refrigerator