JPH07135370A - Strained quantum well semiconductor laser and its fabrication - Google Patents

Strained quantum well semiconductor laser and its fabrication

Info

Publication number
JPH07135370A
JPH07135370A JP27973993A JP27973993A JPH07135370A JP H07135370 A JPH07135370 A JP H07135370A JP 27973993 A JP27973993 A JP 27973993A JP 27973993 A JP27973993 A JP 27973993A JP H07135370 A JPH07135370 A JP H07135370A
Authority
JP
Japan
Prior art keywords
layer
quantum well
strained quantum
mixed crystal
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27973993A
Other languages
Japanese (ja)
Inventor
Nobuyuki Otsuka
信之 大塚
Masahiro Kito
雅弘 鬼頭
Yasushi Matsui
康 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27973993A priority Critical patent/JPH07135370A/en
Publication of JPH07135370A publication Critical patent/JPH07135370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To provide a stained quantum well semiconductor laser in which high optical output characteristics are realized by fabricating a strained quantum well using a mixed crystal containing Al or an InAsP mixed crystal. CONSTITUTION:A first waveguide layer 2, a multiple quantum well 5 comprising a strained well layer 3 and a barrier layer 4, and a second optical guide layer 6 are grown on a semiconductor single crystal substrate 1. An AlInGaAsP mixed crystal or an InAsP mixed crystal is employed in the strained well layer in order to inhibit relaxing of strain due to ordering and to increase the discontinuity of conductive band thus realizing high optical output.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、歪量子井戸の井戸層に
オーダリングを生じにくいAlを含む混晶として例えば
AlGaInAsを用いることで井戸層に有効に歪を閉
じ込めることを可能とした歪量子井戸半導体レーザおよ
びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strained quantum well capable of effectively confining strain in a well layer of a strained quantum well by using, for example, AlGaInAs as a mixed crystal containing Al which hardly causes ordering. The present invention relates to a semiconductor laser and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来の歪量子井戸の構成を図3に示す(テ
ムキン他、シ゛ャーナル オフ゛ クリスタル ク゛ロース J. Cryst. Growth,93,
353(1988))。1はInP単結晶基板、2は第1の光導波
路層、3は歪井戸層、4はバリア層、5は歪井戸層3と
バリア層4よりなる多重量子井戸、6は第2の光導波路
層、10は多重量子井戸6と2つの光導波路層2と6よ
りなる活性層領域、7は電流狭窄層、8はp側電極、9
はn側電極である。
2. Description of the Related Art The structure of a conventional strained quantum well is shown in FIG. 3 (Temkin et al., Journal of Crystal Growth J. Cryst. Growth, 93,
353 (1988)). 1 is an InP single crystal substrate, 2 is a first optical waveguide layer, 3 is a strain well layer, 4 is a barrier layer, 5 is a multiple quantum well consisting of the strain well layer 3 and the barrier layer 4, and 6 is a second optical waveguide Layer, 10 is an active layer region composed of multiple quantum wells 6 and two optical waveguide layers 2 and 6, 7 is a current confinement layer, 8 is a p-side electrode, 9
Is an n-side electrode.

【0003】以上のように構成された従来の歪量子井戸
レーザにおいてその動作を説明する。電流をp側電極8
からn側電極9へ流すことで多重量子井戸部5に於てレ
ーザ発振を生ずる。歪井戸層3はIn0.7Ga0.3Asの混晶組
成を持ち、1%の圧縮歪を有するようにガスを供給して
MOVPE結晶成長を行っている。
The operation of the conventional strained quantum well laser configured as described above will be described. Current is p-side electrode 8
To the n-side electrode 9 causes laser oscillation in the multiple quantum well portion 5. The strain well layer 3 has a mixed crystal composition of In0.7Ga0.3As and is supplied with gas so as to have a compressive strain of 1% to perform MOVPE crystal growth.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記の図
3ような構成では、歪井戸層3にIn0.7Ga0.3Asを用いて
いるためにオーダリングを生ずる。すなわち、InAs
とGaAsが規則的に配列することで3族元素と5族元
素の結合角を変化させないで混晶が成長するために歪を
発生する混晶組成に於ても結晶中の歪の発生が抑制され
ることになる。特に、In0.5Ga0.5Asにおいて極めて明瞭
なオーダリングが観測されているが、In0.7Ga0.3Asにお
いても局所的にオーダリングを生じてしまうため、閾値
電流密度の低減や外部微分量子効率や緩和振動周波数の
向上といった歪によるレーザ特性の向上が小さいという
問題点を有していた。
However, in the structure shown in FIG. 3, ordering occurs because In0.7Ga0.3As is used for the strain well layer 3. That is, InAs
And GaAs are regularly arranged to generate strain because the mixed crystal grows without changing the bond angle between the group 3 element and the group 5 element. Strain generation in the crystal is suppressed even in the mixed crystal composition. Will be done. In particular, very clear ordering is observed in In0.5Ga0.5As, but in In0.7Ga0.3As, ordering also occurs locally, so the threshold current density is reduced and the external differential quantum efficiency and relaxation oscillation frequency are reduced. However, there is a problem that the improvement of the laser characteristics due to the distortion such as the improvement of the above is small.

【0005】これは、第1にオーダリングを生じた場合
には元素同士の結合角が変化しないため歪が導入される
組成の混晶を成長しても実際には結晶に歪が生じていな
いためである。第2には、図4に示したようにIn0.7Ga
0.3As混晶のエネルギーギャップに占める導伝帯におけ
るエネルギーの不連続がEc=0.2Egと小さいために、レー
ザに電流を注入した場合に電子のエネルギーがバリアの
高さよりも大きくなり、キャリアのオーバーフローを生
じてレーザ発振に寄与する波長λ1の発光以外に波長λ
2の発光も発生して、レーザの光出力が飽和してしまう
という問題点があった。
This is because, firstly, when ordering occurs, the bond angle between elements does not change, so that even if a mixed crystal having a composition in which strain is introduced is grown, no strain actually occurs in the crystal. Is. Secondly, as shown in Fig. 4, In0.7Ga
Since the energy discontinuity in the conduction band occupying the energy gap of the 0.3As mixed crystal is as small as Ec = 0.2Eg, the electron energy becomes larger than the barrier height when a current is injected into the laser, causing carrier overflow. Is generated and contributes to laser oscillation.
There was also a problem that the light output of the laser was saturated because the light emission of 2 also occurred.

【0006】本発明はかかる点に鑑み、In0.7Ga0.3Asに
代えてAlGaInAsなどAlを含む混晶またはInAsP混
晶にて歪量子井戸構造を用いることでオーダリングを抑
制し歪を効果的に井戸層に発生させると共に、導伝帯の
バンド不連続を増大させて、高光出力で高速動作可能な
半導体レーザおよびその製造方法を提供することを目的
とする。
In view of the above point, the present invention uses a strained quantum well structure with a mixed crystal containing Al such as AlGaInAs or an InAsP mixed crystal in place of In0.7Ga0.3As to suppress ordering and effectively suppress strain. It is an object of the present invention to provide a semiconductor laser that can be generated in a layer and can increase the band discontinuity of the conduction band and can operate at high light output at high speed, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、半導体単結晶基板と、前記基板上に積層した
第1の光導波路層と、歪量子井戸層と、第2の光導波路
層を含み、前記歪量子井戸層を構成する井戸層にAlを
含む混晶を用いる歪量子井戸半導体レーザとする。
In order to solve the above problems, the present invention solves the above problems by using a semiconductor single crystal substrate, a first optical waveguide layer laminated on the substrate, a strained quantum well layer, and a second optical waveguide. A strained quantum well semiconductor laser including a layer and using a mixed crystal containing Al for a well layer forming the strained quantum well layer.

【0008】また歪量子井戸層を構成する井戸層にAlxG
ayIn(1-x-y)AszP(1-z)(0.01<x<0.9)混晶を用い、バリア
層にInGaAsP系混晶を用いる歪量子井戸半導体レ
ーザとする。
In addition, AlxG is used as a well layer forming the strained quantum well layer.
A strained quantum well semiconductor laser using an ayIn (1-xy) AszP (1-z) (0.01 <x <0.9) mixed crystal and an InGaAsP-based mixed crystal for the barrier layer is provided.

【0009】また半導体単結晶基板と、前記基板上に積
層した第1の光導波路層と、歪量子井戸層と、第2の光
導波路層を含み、前記歪量子井戸層を構成する井戸層に
InAsP混晶を用いる歪量子井戸半導体レーザとす
る。
In addition, a semiconductor single crystal substrate, a first optical waveguide layer laminated on the substrate, a strain quantum well layer, and a second optical waveguide layer are included in a well layer forming the strain quantum well layer. The strained quantum well semiconductor laser uses an InAsP mixed crystal.

【0010】さらに半導体単結晶基板上に第1の光導波
路と、それぞれ格子定数の異なる井戸層とバリア層を交
互に積層した歪量子井戸層と、第2の光導波路層と、ク
ラッド層とを積層する第1の結晶成長工程と、ストライ
プ状にエッチングするエッチング工程と、ストライプ上
に電流ブロック層を成長する第2の結晶成長工程を含
み、前記井戸層としてAlを含む混晶を結晶成長する歪
量子井戸半導体レーザの製造方法とする。
Further, a first optical waveguide, a strained quantum well layer in which well layers and barrier layers having different lattice constants are alternately laminated, a second optical waveguide layer, and a cladding layer are formed on a semiconductor single crystal substrate. A first crystal growth step of stacking, an etching step of etching in a stripe shape, and a second crystal growth step of growing a current block layer on the stripe are included, and a mixed crystal containing Al as the well layer is crystal-grown. A method of manufacturing a strained quantum well semiconductor laser.

【0011】[0011]

【作用】本発明は前記した構造により、従来のレーザの
井戸層に用いられていたInGaAsに特有のオーダリ
ングを抑制して大きな歪効果を得ることができる。すな
わち、基板に対して井戸層に格子歪を導入していない場
合の組成はIn0.53Ga0.47AsでありIn0.5Ga0.5Asの組成に
近いために大部分がオーダリングしている。ここで、圧
縮歪をいれるためにInの組成を高くするにも拘らず格
子定数の大きいIn−Asの結合が結晶成長方向に配向
し、基板との間に歪を生じないで成長方向に結晶の格子
定数がおおきくなる。これは、InAsとGaAsがほ
ぼ等しく配合されているために、それぞれの原子が交互
に配列したほうがエンタルピーが減少するためにトータ
ルの内部エネルギーが減少して安定となりオーダリング
を生ずる。以下に内部エネルギーに付いて詳細に検討す
る。トータルの内部エネルギーはE=H−TSで示され
る。
With the above-mentioned structure, the present invention can suppress the ordering peculiar to InGaAs used in the well layer of the conventional laser and obtain a large strain effect. That is, when the lattice strain is not introduced into the well layer with respect to the substrate, the composition is In0.53Ga0.47As, which is close to the composition of In0.5Ga0.5As, so most of them are ordered. Here, the In—As bond having a large lattice constant is oriented in the crystal growth direction in spite of increasing the In composition because a compressive strain is introduced, and the crystal is grown in the growth direction without causing strain with the substrate. The lattice constant of is large. This is because InAs and GaAs are blended almost equally, and when the atoms are alternately arranged, the enthalpy decreases, the total internal energy decreases, and the order becomes stable and ordering occurs. The internal energy will be examined in detail below. The total internal energy is represented by E = H-TS.

【0012】Hはエンタルピー、Tは温度、Sはエント
ロピーである。InAsとGaAsがランダムに存在す
ることにより一般的にはエンタルピーHの増大よりエン
トロピーSの増大が大きいために内部エネルギーEは低
減することになってよりランダムな配列をするようにな
る。これは特に温度Tが大きい成長時に顕著であり、通
常格子歪を導入しないような成長に於いてはオーダリン
グはほとんど観測されない。
H is enthalpy, T is temperature, and S is entropy. The random presence of InAs and GaAs generally increases the entropy S more than the increase the enthalpy H, so that the internal energy E is reduced and a more random arrangement occurs. This is particularly noticeable during growth at a large temperature T, and in the growth where lattice strain is not introduced, ordering is hardly observed.

【0013】しかしながら、格子歪を導入することでエ
ンタルピーHが大きく増大する。原子がランダムに配列
した場合にはオーダリングを起こしている場合に対して
格子歪が増大してエンタルピーが急激に大きくなりエン
トロピーの増大による効果を打ち消してしまう。その結
果、内部エネルギーが大きくなって不安定な状況となる
ために内部エネルギーが小さくなるようにオーダリング
の量が大きくなる。結局、格子歪の影響と釣り合う程度
にオーダリングが発生することとなる。
However, the enthalpy H is greatly increased by introducing the lattice strain. When the atoms are arranged randomly, the lattice strain increases and the enthalpy increases sharply as compared with the case where ordering occurs, canceling the effect due to the increase in entropy. As a result, the internal energy becomes large and becomes unstable, so that the amount of ordering becomes large so that the internal energy becomes small. Eventually, ordering will occur to the extent that it balances the effect of lattice distortion.

【0014】いま、InGaAs層にAlを添加するこ
とで、エネルギーバンド幅を一定に保ったままAl0.5Ga
0.2In0.3Asとする。この場合、3族元素が3種類あるた
めにエントロピーが大きい方が結晶の内部エネルギーが
安定となり、オーダリングが抑制される。オーダリング
が抑制される結果、歪結晶は基板と格子整合しながら成
長することが不可能となり、歪結晶と基板との格子不整
合に対応した歪が結晶内に生ずることとなる。
Now, by adding Al to the InGaAs layer, Al0.5Ga is maintained while keeping the energy band width constant.
0.2In0.3As In this case, since there are three types of Group 3 elements, the larger the entropy, the more stable the internal energy of the crystal and the suppression of ordering. As a result of suppressing the ordering, the strained crystal cannot grow while being lattice-matched with the substrate, and the strain corresponding to the lattice mismatch between the strained crystal and the substrate is generated in the crystal.

【0015】さらに、Alの組成を大きくしてAl0.8In
0.2Asとすることで、エネルギーバンド幅を一定とした
まま井戸層とバリア層との間の導伝帯のエネルギーの不
連続を増大することができる。このため、レーザに注入
した電子は歪井戸層内に存在し、バリア層や導波層に電
子が溢れ出さないため、供給した電子が有効的に光とな
って取り出される。特に光出力が大きくなった場合電子
のオーバーフローが問題となり、供給殿流量を増大して
も光出力がほうわしてしまうが、伝導帯のエネルギーの
不連続が大きい場合高い光出力まで飽和しないで発光可
能となる。
Further, by increasing the Al composition, Al0.8In
With 0.2 As, the energy discontinuity in the conduction band between the well layer and the barrier layer can be increased while keeping the energy band width constant. Therefore, the electrons injected into the laser exist in the strain well layer, and the electrons do not overflow into the barrier layer or the waveguide layer, so that the supplied electrons are effectively extracted as light. Especially when the light output becomes large, the electron overflow becomes a problem, and the light output is distorted even if the supply flow rate is increased, but when the energy discontinuity in the conduction band is large, the light output is not saturated up to a high light output. It will be possible.

【0016】[0016]

【実施例】図1は本発明の実施例における歪量子井戸半
導体レーザの構成図を示すものである。1はSnドープ
InP半導体単結晶基板、2はInGaAsP(λg=
1.05)第1の光導波路層、3はAl0.8In0.2As歪井戸
層、4はInGaAsP(λg=1.30)バリア層、5は歪
井戸層3とバリア層4よりなる多重量子井戸、6はInGa
AsP(λg=1.05)第2の光導波路層、7はp-InP,n
-InP,pーInP電流狭窄層、8はp側電極、9はn側電極で
ある。ここで、歪量子井戸層3にGaではなくAl化合
物であるAl0.8In0.2As混晶をもちいることで、AlとI
nの組成が4:1と大きく異なるようにすることができ
るためにオーダリングが抑制された。測定の結果、In
GaAs歪量子井戸に於いては電子線回折によりCu−
Auタイプのオーダリングが確認されたが、Al0.8
0.2As歪量子井戸に於いてはオーダリングによる回
折は確認さず、Al化合物とすることでオーダリングに
よる影響を抑制することができた。。レーザの発振波長
は1.55μmで、最高光出力は300mWとInGa
As歪量子井戸に対して1.2倍向上した。これは、オ
ーダリングが抑制されたために歪の効果が生じたと共に
導伝帯のバンド不連続が増大したために電子の漏れが減
少したためと考えられる。
1 is a block diagram of a strained quantum well semiconductor laser according to an embodiment of the present invention. 1 is a Sn-doped InP semiconductor single crystal substrate, 2 is InGaAsP (λg =
1.05) First optical waveguide layer, 3 is Al0.8In0.2As strain well layer, 4 is InGaAsP (λg = 1.30) barrier layer, and 5 is a multiple quantum well including strain well layer 3 and barrier layer 4. , 6 is InGa
AsP (λg = 1.05) Second optical waveguide layer, 7 is p-InP, n
-InP, p-InP current confinement layer, 8 is a p-side electrode, and 9 is an n-side electrode. Here, by using a mixed crystal of Al0.8In0.2As, which is an Al compound, instead of Ga in the strained quantum well layer 3, Al and I
Ordering was suppressed because the composition of n can be made very different from 4: 1. As a result of the measurement, In
In a GaAs strained quantum well, Cu-
Au type ordering was confirmed, but Al 0.8 I
In the n 0.2 As strained quantum well, diffraction due to ordering was not confirmed, and the influence due to ordering could be suppressed by using an Al compound. . The oscillation wavelength of the laser is 1.55 μm, and the maximum optical output is 300 mW and InGa
It is 1.2 times higher than that of As strained quantum wells. It is considered that this is because the ordering was suppressed, the strain effect was generated, and the band discontinuity of the conduction band was increased, so that the electron leakage was reduced.

【0017】また、発振波長が1.3μmレーザ用歪量
子井戸の結晶組成はAl0.7In0.3As0.4P0.6を用いること
で最高光出力360mWが獲られた。また、緩和振動周
波数は3GHz/mA1/2,線幅増大係数は1.5であ
った。
A maximum optical output of 360 mW was obtained by using Al0.7In0.3As0.4P0.6 as the crystal composition of the strained quantum well for a laser having an oscillation wavelength of 1.3 μm. The relaxation oscillation frequency was 3 GHz / mA 1/2 and the line width increase coefficient was 1.5.

【0018】一方、1.3μmレーザ用歪量子井戸の歪
井戸層としてInAsPを用いた場合にも同様にオーダ
リング抑制効果とバンド不連続拡大効果により最高光出
力は280mWがえられた。InGaAsP混晶を用い
た場合には格子不整合率のみで結晶の組成がわかるた
め、結晶成長の条件出しが容易であるという利点を有す
る。
On the other hand, when InAsP was used as the strain well layer of the strain quantum well for 1.3 μm laser, the maximum light output was 280 mW due to the ordering suppressing effect and the band discontinuity expanding effect. When the InGaAsP mixed crystal is used, the composition of the crystal can be known only by the lattice mismatch rate, which has an advantage that the condition for crystal growth can be easily set.

【0019】以上のようにこの実施例によれば、AlG
aInAsP混晶を用いて歪量子井戸を作製すること
で、オーダリングを抑制すると共に導伝帯のバンド不連
続を増大することで光出力を増大すると共に高速動作お
よび長距離伝送を実現するレーザを実現することが出来
る。
As described above, according to this embodiment, AlG
By creating strained quantum wells using aInAsP mixed crystals, we realized a laser that suppresses ordering and increases band discontinuity in the conduction band, thereby increasing optical output and achieving high-speed operation and long-distance transmission. You can do it.

【0020】図2は本実施例における歪量子井戸の製造
方法を示すものである。半導体単結晶基板としてInP
基板1上に第1の光導波路層2、Al0.8In0.2As歪
井戸層3、バリア層4、多重量子井戸5、第2の光導波
路層6を成長する第1の結晶成長工程(a)と、電流狭
窄層7を成長する第2の結晶成長工程と(b)、p側電
極8、n側電極9を形成する電極形成工程(c)よりな
る。とくに、良好な結晶性を有する歪井戸層3をえるに
は成長温度650℃以上とする必要がある。また、半導
体単結晶基板としては結晶表面が(001)面より2゜
オフのInP基板を用いた。
FIG. 2 shows a method of manufacturing a strained quantum well in this embodiment. InP as a semiconductor single crystal substrate
First crystal growth step (a) of growing the first optical waveguide layer 2, the Al 0.8 In 0.2 As strain well layer 3, the barrier layer 4, the multiple quantum well 5, and the second optical waveguide layer 6 on the substrate 1. And a second crystal growth step of growing the current confinement layer 7 and (b), and an electrode forming step (c) of forming the p-side electrode 8 and the n-side electrode 9. Particularly, in order to obtain the strain well layer 3 having good crystallinity, the growth temperature needs to be 650 ° C. or higher. As the semiconductor single crystal substrate, an InP substrate whose crystal surface is 2 ° off from the (001) plane was used.

【0021】なお、この実施例においてレーザ構造をS
CH(spectrum confinment heterostructure)構造とし
たが、導波路構造などその他のレーザ構造であってもよ
い。また、混晶組成をAl0.8In0.2Asや、Al0.7In0.3As0.4
P0.6,InAs0.4P0.6などとしたが、目的とするレーザの発
振波長や歪井戸層の膜厚により混晶組成は異なるため、
それぞれの用途に応じて組成を設定する必要がある。ま
た、本レーザはファブリペロタイプとしたが、DFBや
DBRタイプなど高付加価値レーザであっても活性層と
して特性改善を実現する。さたに、レーザのみでなく受
光素子に於いても、またHFETなど高速電子素子にお
いても適応することで特性向上が実現される。
In this embodiment, the laser structure is S
Although the CH (spectrum confinment heterostructure) structure is used, other laser structures such as a waveguide structure may be used. In addition, the mixed crystal composition of Al0.8In0.2As and Al0.7In0.3As0.4
P0.6, InAs0.4P0.6, etc. were used, but since the mixed crystal composition differs depending on the target laser oscillation wavelength and the thickness of the strain well layer,
It is necessary to set the composition according to each application. Further, although the present laser is of the Fabry-Perot type, even a high value-added laser such as a DFB or DBR type laser can realize the characteristic improvement as an active layer. Incidentally, not only the laser but also the light receiving element and the high speed electronic element such as the HFET can be applied to improve the characteristics.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
歪量子井戸層としてAlを含む混晶やInAsP系混晶
を用いることでオーダリングを抑制すると共にバンドの
不連続を増大して光出力を増大すると共に、高速動作や
長距離通信を実現する歪量子井戸半導体レーザを提供す
ることができ、その実用的効果はきわめて大きい。
As described above, according to the present invention,
By using a mixed crystal containing Al or an InAsP-based mixed crystal as the strained quantum well layer, ordering is suppressed, band discontinuity is increased, optical output is increased, and a strained quantum that realizes high-speed operation and long-distance communication. A well semiconductor laser can be provided, and its practical effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における歪量子井戸半導体レー
ザの構造断面図
FIG. 1 is a structural sectional view of a strained quantum well semiconductor laser according to an embodiment of the present invention.

【図2】本発明の実施例における歪量子井戸レーザの製
造方法を示す工程断面図
FIG. 2 is a process sectional view showing a method of manufacturing a strained quantum well laser in an example of the present invention.

【図3】従来の歪量子井戸レーザの構造図FIG. 3 is a structural diagram of a conventional strained quantum well laser.

【図4】従来の歪量子井戸レーザのエネルギーバンド構
造図
FIG. 4 is an energy band structure diagram of a conventional strained quantum well laser.

【符号の説明】[Explanation of symbols]

1 単結晶基板 2 第1の導波路層 3 歪井戸層 4 バリア層 5 歪量子井戸構造 6 第1の導波路層 7 電流狭窄層 8 p側電極 9 n側電極 DESCRIPTION OF SYMBOLS 1 Single crystal substrate 2 1st waveguide layer 3 Strain well layer 4 Barrier layer 5 Strain quantum well structure 6 1st waveguide layer 7 Current confinement layer 8 p side electrode 9 n side electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体単結晶基板と、前記基板上に積層し
た第1の光導波路層と、歪量子井戸層と、第2の光導波
路層を含み、前記歪量子井戸層を構成する井戸層にAl
を含む混晶を用いることを特徴とする歪量子井戸半導体
レーザ。
1. A well layer that comprises a semiconductor single crystal substrate, a first optical waveguide layer laminated on the substrate, a strain quantum well layer, and a second optical waveguide layer, and constitutes the strain quantum well layer. To Al
A strained quantum well semiconductor laser characterized by using a mixed crystal containing.
【請求項2】歪量子井戸層を構成する井戸層にAlxGayIn
(1-x-y)AszP(1-z)(0.01<x<0.9)混晶を用い、バリア層に
InGaAsP系混晶を用いることを特徴とする請求項
1記載の歪量子井戸半導体レーザ。
2. AlxGayIn is used as a well layer constituting a strained quantum well layer.
2. The strained quantum well semiconductor laser according to claim 1, wherein a (1-xy) AszP (1-z) (0.01 <x <0.9) mixed crystal is used and an InGaAsP-based mixed crystal is used for the barrier layer.
【請求項3】半導体単結晶基板と、前記基板上に積層し
た第1の光導波路層と、歪量子井戸層と、第2の光導波
路層を含み、前記歪量子井戸層を構成する井戸層にIn
AsP混晶を用いることを特徴とする歪量子井戸半導体
レーザ。
3. A well layer that comprises a semiconductor single crystal substrate, a first optical waveguide layer laminated on the substrate, a strain quantum well layer, and a second optical waveguide layer, and constitutes the strain quantum well layer. To In
A strained quantum well semiconductor laser characterized by using an AsP mixed crystal.
【請求項4】半導体単結晶基板上に第1の光導波路と、
それぞれ格子定数の異なる井戸層とバリア層を交互に積
層した歪量子井戸層と、第2の光導波路層と、クラッド
層とを積層する第1の結晶成長工程と、ストライプ状に
エッチングするエッチング工程と、ストライプ上に電流
ブロック層を成長する第2の結晶成長工程を含み、前記
井戸層としてAlを含む混晶を結晶成長することを特徴
とする歪量子井戸半導体レーザの製造方法。
4. A first optical waveguide on a semiconductor single crystal substrate,
A strained quantum well layer in which well layers and barrier layers having different lattice constants are alternately laminated, a first crystal growth step of laminating a second optical waveguide layer, and a cladding layer, and an etching step of etching in a stripe shape. And a second crystal growth step of growing a current blocking layer on the stripe, and performing crystal growth of a mixed crystal containing Al as the well layer, the method of manufacturing a strained quantum well semiconductor laser.
JP27973993A 1993-11-09 1993-11-09 Strained quantum well semiconductor laser and its fabrication Pending JPH07135370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27973993A JPH07135370A (en) 1993-11-09 1993-11-09 Strained quantum well semiconductor laser and its fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27973993A JPH07135370A (en) 1993-11-09 1993-11-09 Strained quantum well semiconductor laser and its fabrication

Publications (1)

Publication Number Publication Date
JPH07135370A true JPH07135370A (en) 1995-05-23

Family

ID=17615223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27973993A Pending JPH07135370A (en) 1993-11-09 1993-11-09 Strained quantum well semiconductor laser and its fabrication

Country Status (1)

Country Link
JP (1) JPH07135370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics

Similar Documents

Publication Publication Date Title
US5381434A (en) High-temperature, uncooled diode laser
US6426515B2 (en) Semiconductor light-emitting device
Kondow et al. GaInNAs: a novel material for long-wavelength semiconductor lasers
US5363392A (en) Strained quantum well type semiconductor laser device
JPH0422185A (en) Semiconductor optical element
JP2724827B2 (en) Infrared light emitting device
US5260959A (en) Narrow beam divergence laser diode
JP3052552B2 (en) Surface emitting semiconductor laser
JPH0661570A (en) Strain multiple quantum well semiconductor laser
US5107514A (en) Semiconductor optical element
Lu et al. Single-mode operation over a wide temperature range in 1.3/spl mu/m InGaAsP/InP distributed feedback lasers
JP2867819B2 (en) Multiple quantum well semiconductor laser
US5644587A (en) Semiconductor laser device
JPS60260181A (en) Semiconductor luminescent device
Mamijoh et al. Improved operation characteristics of long-wavelength lasers using strained MQW active layers
JPH0677592A (en) Semiconductor laser element
JP3497290B2 (en) Semiconductor crystal structure, semiconductor laser and method of manufacturing the same
JPH07135370A (en) Strained quantum well semiconductor laser and its fabrication
JP2748838B2 (en) Quantum well semiconductor laser device
JP2966982B2 (en) Semiconductor laser
JP2682474B2 (en) Semiconductor laser device
Dutta et al. High power InGaAs/GaAs laser array
JPH1197790A (en) Semiconductor laser
Hashimoto et al. Strain-induced effects on the performance of AlGaInP visible lasers
JP2546381B2 (en) Distributed feedback semiconductor laser and manufacturing method thereof