JPH07135148A - Illuminating equipment and aligner provided with said illuminating equipment - Google Patents

Illuminating equipment and aligner provided with said illuminating equipment

Info

Publication number
JPH07135148A
JPH07135148A JP5159057A JP15905793A JPH07135148A JP H07135148 A JPH07135148 A JP H07135148A JP 5159057 A JP5159057 A JP 5159057A JP 15905793 A JP15905793 A JP 15905793A JP H07135148 A JPH07135148 A JP H07135148A
Authority
JP
Japan
Prior art keywords
light
lens
fly
substantially rectangular
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5159057A
Other languages
Japanese (ja)
Other versions
JP3347405B2 (en
Inventor
Shigeru Hayata
滋 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP15905793A priority Critical patent/JP3347405B2/en
Priority to KR1019940014955A priority patent/KR0165701B1/en
Publication of JPH07135148A publication Critical patent/JPH07135148A/en
Priority to US08/711,307 priority patent/US6055039A/en
Application granted granted Critical
Publication of JP3347405B2 publication Critical patent/JP3347405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Abstract

PURPOSE:To improve the image quality of an illuminating equipment and an aligner, by irradiating a fly-eye lens with a plurality of lights arranged in the long side direction of a lens wherein a plurality of sections are almost rectangu lar. CONSTITUTION:A reticle 12 is illuminated with the light whose section constitutes a rectangular slit type, and a rectangular illumination region is formed on a reticle 12, so that the sectional form of each fine lens of a fly-eye lens 6 is a rectangle similar to the illumination region. The direction of the long side of the fine lens which constitutes the fly-eye lens 6 and has the rectangular section coincides with the arrangement direction of a light emitting part 1a and a focus 41 (image of the light emitting part 1a). The fly-eye lens is irradiated from different directions with two luminous fluxes from the light emitting part la and the focus 41. The intensity distribution of an effective light source formed by the fly-eye lens 6 becomes a distribution having a pair of light sources for each fine lens. As compared with the conventional effective light source, there is little difference between the X direction intensity distribution and the Y direction intensity distribution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明装置及び該照明装置
を備える露光装置に関するものであり、特にIC、LS
I等の半導体デバイス、CCD等の撮像デバイス、液晶
パネル、磁気ヘッド等のデバイスを製造するために使用
される照明装置及び該照明装置を備える走査型投影露光
装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminating device and an exposure apparatus including the illuminating device, and more particularly to an IC and an LS.
The present invention relates to an illuminator used for manufacturing a semiconductor device such as I, an image pickup device such as a CCD, a liquid crystal panel, a device such as a magnetic head, and a scanning projection exposure apparatus including the illuminator.

【0002】[0002]

【従来の技術】図9は従来の走査型投影露光装置を示す
概略図である。
2. Description of the Related Art FIG. 9 is a schematic view showing a conventional scanning projection exposure apparatus.

【0003】図9において、1はHgランプ、Xe-Hg ラン
プ等の紫外線を発する光源であり、1aはその発光部(電
極)である。2は楕円鏡であり、その第1焦点付近に光
源1の発光部1aが置かれており、楕円鏡2は発光部1aを
その第2焦点4に結像される。3は紫外線を反射し赤外
線は透過させるコールドミラーである。
In FIG. 9, 1 is a light source that emits ultraviolet rays, such as an Hg lamp or Xe-Hg lamp, and 1a is its light emitting portion (electrode). Reference numeral 2 denotes an elliptical mirror, and the light emitting portion 1a of the light source 1 is placed near the first focal point thereof, and the elliptic mirror 2 forms an image of the light emitting portion 1a at its second focal point 4. A cold mirror 3 reflects ultraviolet rays and transmits infrared rays.

【0004】楕円鏡2の第2焦点4の発光部1aの像から
の光はコンデンサーレンズ5によりフライアアイレンズ
6より成るオプティカルインテグレーターの光入射面上
に集光される。フライアアイレンズ6は複数の微小レン
ズの集合体である。7は開口絞りである。
Light from the image of the light emitting portion 1a at the second focal point 4 of the elliptic mirror 2 is condensed by the condenser lens 5 on the light incident surface of the optical integrator composed of the fly-eye lens 6. The fly-eye lens 6 is an assembly of a plurality of minute lenses. 7 is an aperture stop.

【0005】この装置では、断面が長方形のスリット状
の光でレチクル12を照明してレチクル12上に長方形
の照明領域を形成するので、フライアイレンズの各微小
レンズの断面形状は、照明領域と相似の長方形となって
いる。
In this apparatus, since the reticle 12 is illuminated with the slit-shaped light having a rectangular cross section to form a rectangular illumination area on the reticle 12, the cross-sectional shape of each minute lens of the fly-eye lens is equal to the illumination area. It is a similar rectangle.

【0006】11はコンデンサーレンズであり、10は
視野絞りであるマスキングブレードで、マスキングブレ
ード10と共役な位置にレチクル12が位置している。
14は投影光学系であり、屈折光学系、反射屈折光学系
等で構成される。15はウェハーであり、レチクル12
とウェハー15は投影光学系14に関して光学的に共役
な関係にある。13、16はそれぞれレチクル12とウ
ェハー15をスキャン方向に動かすための駆動装置であ
り、駆動装置13、16によりレチクル12とウェハー
15を動かしてスリット状の光で走査露光する。
Reference numeral 11 is a condenser lens, 10 is a masking blade which is a field stop, and a reticle 12 is located at a position conjugate with the masking blade 10.
A projection optical system 14 is composed of a refractive optical system, a catadioptric optical system, and the like. 15 is a wafer, and the reticle 12
And the wafer 15 are in an optically conjugate relationship with respect to the projection optical system 14. Drive devices 13 and 16 respectively move the reticle 12 and the wafer 15 in the scanning direction. The drive devices 13 and 16 move the reticle 12 and the wafer 15 to perform scanning exposure with slit-shaped light.

【0007】[0007]

【発明が解決しようとしている課題】上記装置はフライ
アイレンズ6の各微小レンズの断面が長方形であるた
め、フライアイレンズ6の作る有効光源(2次光源)は
図10に示す強度分布を持ち、図10のx方向とy方向
とで照度分布(強度分布)が異なっている。従って、ウ
エハ−15上に形成される像の質がx方向とy方向とで
異なってくるため、像の質が低下するという問題があ
る。
Since the microlenses of the fly-eye lens 6 have a rectangular cross section in the above apparatus, the effective light source (secondary light source) produced by the fly-eye lens 6 has the intensity distribution shown in FIG. The illuminance distribution (intensity distribution) is different between the x direction and the y direction in FIG. Therefore, the quality of the image formed on the wafer-15 is different in the x direction and the y direction, so that there is a problem that the image quality is deteriorated.

【0008】尚、この有効光源はフライアイレンズ6を
構成する個々の微小レンズを通して見える楕円鏡2の開
口の像の集合と成っている。
The effective light source is a set of images of the aperture of the ellipsoidal mirror 2 which can be seen through the individual microlenses forming the fly-eye lens 6.

【0009】[0009]

【課題を解決するための手段】本発明の目的は像質を改
善することが可能な照明装置と露光装置とを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an illuminating device and an exposing device capable of improving image quality.

【0010】本発明の照明装置は複数個の断面が略長方
形のレンズを2次元的に配置したフライアイレンズから
の光で被照明面を照明する装置において、前記レンズの
長辺方向に並んだ複数の光を前記フライアイレンズに照
射する光照射手段を有する。
The illumination device of the present invention is a device for illuminating a surface to be illuminated with light from a fly-eye lens in which a plurality of lenses each having a substantially rectangular cross section are two-dimensionally arranged. It has a light irradiation means for irradiating the fly-eye lens with a plurality of lights.

【0011】本発明の露光装置は複数個の断面が略長方
形のレンズを2次元的に配置したフライアイレンズから
の光で、マスクを介して基板を露光する装置において、
前記レンズの長辺方向に並んだ複数の光を前記フライア
イレンズに照射する光照射手段を有する。
The exposure apparatus of the present invention is an apparatus for exposing a substrate through a mask with light from a fly-eye lens in which a plurality of lenses each having a substantially rectangular cross section are two-dimensionally arranged.
It has a light irradiation means for irradiating the fly-eye lens with a plurality of lights arranged in the long side direction of the lens.

【0012】本発明の照明装置及び露光装置によれば、
前記光照射手段を有することにより、方向によらず像質
がほぼ一定の像を生じせしめることができ、像質を改善
することが可能である。
According to the illumination device and the exposure device of the present invention,
By including the light irradiation means, an image having substantially constant image quality can be produced regardless of the direction, and the image quality can be improved.

【0013】本発明の照明装置及び露光装置の好ましい
形態は、前記光照射手段は光源からの光を分割して前記
複数の光を形成し、前記略長方形レンズの長辺に平行か
つ光軸を含む面で切った断面において前記略長方形レン
ズに入射する光線が光軸となす最大の角度をθa 、前記
略長方形レンズの短辺に平行かつ光軸を含む面で切った
断面において前記略長方形レンズが取り込むことのでき
る光線の光軸となす最大の角度をθbcとする時、前記複
数の光を、θa >θbcを満たす入射角で前記略長方形レ
ンズに入射させることを特徴とする。
In a preferred form of the illuminating device and the exposing device of the present invention, the light irradiating means divides the light from the light source to form the plurality of lights, and is parallel to the long side of the substantially rectangular lens and has an optical axis. The maximum angle that the ray incident on the substantially rectangular lens makes with the optical axis in the section cut along the plane including the angle θa, the substantially rectangular lens in the section cut along the plane parallel to the short side of the substantially rectangular lens and including the optical axis When the maximum angle with respect to the optical axis of the light ray that can be taken by is θbc, the plurality of lights are incident on the substantially rectangular lens at an incident angle satisfying θa> θbc.

【0014】更に本発明の露光装置の好ましい形態は前
記マスクのパタ−ンを前記基板上に結像せしめる投影光
学系を有することを特徴とする。
Further, a preferred embodiment of the exposure apparatus of the present invention is characterized by having a projection optical system for forming an image of the pattern of the mask on the substrate.

【0015】本発明の露光装置を用いてIC、LSI等
の半導体デバイス、CCD等の撮像デバイス、液晶パネ
ル、磁気ヘッド等のデバイスを正確に製造することがで
きる。
By using the exposure apparatus of the present invention, semiconductor devices such as IC and LSI, image pickup devices such as CCD, liquid crystal panels, devices such as magnetic heads can be accurately manufactured.

【0016】[0016]

【実施例】図1は本発明の一実施例を示す概略構成図で
あり、IC、LSI等の半導体デバイス、CCD等の撮
像デバイス、液晶パネル、磁気ヘッド等のデバイスを製
造するための走査型投影露光装置を示している。
1 is a schematic configuration diagram showing an embodiment of the present invention, which is a scanning type for manufacturing a semiconductor device such as an IC or an LSI, an image pickup device such as a CCD, a liquid crystal panel, a magnetic head or the like. 1 shows a projection exposure apparatus.

【0017】図1では簡略化のため図8で図示した折り
曲げミラー、コールドミラーは省略しているが、破線の
位置に、これらのミラ−を設けても構わない。
Although the folding mirror and the cold mirror shown in FIG. 8 are omitted in FIG. 1 for simplification, these mirrors may be provided at positions indicated by broken lines.

【0018】図1において、1はHgランプ、Xe-Hg ラン
プ等の紫外線を発する光源であり、1aはその発光部(電
極)、21は球面鏡であり、球面鏡2の曲率中心から光
軸と直交する方向に少しずれた位置に光源1の発光部1a
が置かれており、球面鏡21は発光部1aをその焦点41
に結像する。従って、光軸を挟んで発光部1aより成る光
源と発光部1aの像より成る光源の2個の光源が供給され
る。
In FIG. 1, 1 is a light source that emits ultraviolet rays such as an Hg lamp or Xe-Hg lamp, 1a is a light emitting portion (electrode) thereof, and 21 is a spherical mirror, which is orthogonal to the optical axis from the center of curvature of the spherical mirror 2. The light emitting part 1a of the light source 1 is slightly displaced in the direction of
Is placed, and the spherical mirror 21 places the light emitting portion 1a at its focal point 41.
Image on. Therefore, two light sources, that is, a light source including the light emitting unit 1a and a light source including an image of the light emitting unit 1a, are provided across the optical axis.

【0019】発光部1aと焦点41(の発光部1aの像)の
2つの光源からの光はコンデンサーレンズ5によりフラ
イアイレンズ6より成るオプティカルインテグレーター
の光入面上に集光される。7は開口絞りである。輪帯照
明や4重極照明のための特殊絞りは開口絞り7の代わり
に置かれる。
Light from the two light sources of the light emitting portion 1a and the focal point 41 (the image of the light emitting portion 1a thereof) is condensed by the condenser lens 5 on the light entrance surface of the optical integrator composed of the fly-eye lens 6. 7 is an aperture stop. A special diaphragm for annular illumination or quadrupole illumination is placed instead of the aperture diaphragm 7.

【0020】本実施例では、断面が長方形のスリット状
の光でレチクル12を照明してレチクル12上に長方形
の照明領域を形成するので、フライアイレンズ6の各微
小レンズの断面形状は、図1に示す通り、照明領域と相
似の長方形である。フライアイレンズには通常球面レン
ズを組み合わせたものが用いられるが、シリンドリカル
レンズを組み合わせたもの、トーリックレンズを組み合
わせたものを用いてもいい。
In this embodiment, since the reticle 12 is illuminated with the slit-shaped light having a rectangular cross section to form a rectangular illumination area on the reticle 12, the cross-sectional shape of each minute lens of the fly-eye lens 6 is as shown in FIG. As shown in 1, the rectangle is similar to the illumination area. As the fly-eye lens, a combination of spherical lenses is usually used, but a combination of cylindrical lenses or a combination of toric lenses may be used.

【0021】8、11はコンデンサーレンズであり、1
0はマスキングブレードであり、マスキングブレード1
0と共役な位置にレチクル12が置かれる。14は投影
光学系であり、屈折光学系や反射屈折光学系で構成され
る。15はウェハーであり、レチクル12とウェハー1
5は投影光学系14に関して光学的に共役な関係にあ
る。13、16はそれぞれレチクル12とウェハー15をス
キャン方向に動かす為の駆動装置であり、駆動装置1
3、16によりレチクル12とウェハー15を動かして
スリット状の光で走査露光する。
Reference numerals 8 and 11 are condenser lenses, and
0 is a masking blade, masking blade 1
The reticle 12 is placed at a position conjugate with 0. A projection optical system 14 is composed of a refractive optical system and a catadioptric optical system. Reference numeral 15 is a wafer, which is a reticle 12 and a wafer 1.
Reference numeral 5 has an optically conjugate relationship with the projection optical system 14. Reference numerals 13 and 16 denote driving devices for moving the reticle 12 and the wafer 15 in the scanning direction, respectively.
The reticle 12 and the wafer 15 are moved by 3 and 16 to perform scanning exposure with slit-shaped light.

【0022】本実施例では、フライアイレンズ6を構成
する断面形状が長方形の微小レンズの長辺の向きと、発
光部1aと焦点41(発光部1aの像)の並び方向とが一致
しており、発光部1aと焦点41からの2光束で互いに異
なる方向からフライアイレンズが照明されるため、フラ
イアイレンズ6の作る有効光源の強度分布は、図2に示
す通り、各微小レンズ毎に一対の光源を持つような分布
に成り、図10の従来の有効光源に比べてx方向とy方
向の強度分布間の差が少ない。
In this embodiment, the direction of the long side of the minute lens having a rectangular cross-section forming the fly-eye lens 6 and the direction in which the light emitting portion 1a and the focal point 41 (image of the light emitting portion 1a) are aligned are aligned. Since the fly-eye lens is illuminated from two directions different from each other by the two light fluxes from the light emitting unit 1a and the focal point 41, the intensity distribution of the effective light source made by the fly-eye lens 6 is, as shown in FIG. The distribution has a pair of light sources, and the difference between the intensity distributions in the x direction and the y direction is smaller than that in the conventional effective light source of FIG.

【0023】図1から球面鏡21とランプ1の向きとフ
ライアイレンズ6の各微小レンズ長辺方向の関係が明白
になる。
From FIG. 1, the relationship between the directions of the spherical mirror 21, the lamp 1 and the long-side direction of each minute lens of the fly-eye lens 6 becomes clear.

【0024】本実施例の装置がフライアイレンズ6を介
して作る図2に示す有効光源は、図10に示た従来の有
効光源に比べ、x方向とy方向の強度分布間の差が少な
い。従って、本実施例の装置によれば、ウエハ−15上
の像のx方向とy方向の解像度の違いも少ない。
The effective light source shown in FIG. 2 produced by the apparatus of this embodiment through the fly-eye lens 6 has a smaller difference between the intensity distributions in the x and y directions than the conventional effective light source shown in FIG. . Therefore, according to the apparatus of this embodiment, the difference in the resolution of the image on the wafer 15 in the x direction and the y direction is small.

【0025】図3は本実施例のフライアイレンズを構成
する微小レンズを示す説明図である。図3(A)に示す
ように、この微小レンズの断面は長方形であり、その長
辺の長さがa、短辺の長さがbである。
FIG. 3 is an explanatory view showing a minute lens forming the fly-eye lens of this embodiment. As shown in FIG. 3A, the microlens has a rectangular cross section, and the long side has a length a and the short side has a length b.

【0026】微小レンズをその長辺に平行かつ光軸を含
む面で切った断面図を断面Aとして図3(B)に、微小
レンズをその短辺に平行かつ光軸を含む面で切った断面
図を断面Bとして図3(C)に示す。
A cross-sectional view of the microlens cut along a plane parallel to its long side and including the optical axis is taken as a section A in FIG. 3B. The microlens is cut along a plane parallel to its short side and including the optical axis. A cross-sectional view is shown as a cross-section B in FIG.

【0027】さて、図3(B)に示す断面Aにおいて微
小レンズに入射する光線の光軸となす最大の角度をθa
、図3(C)に示す断面Bにおいて微小レンズに入射
する光線の光軸となす最大の角度をθb 、断面Aにおい
て微小レンズが取り込むことのできる光線の光軸となす
最大の角度をθac、断面Bにおいて微小レンズが取り込
むことができる光線の光軸となす最大の角度をθbc、と
すると、図10の従来例の場合は、
Now, in the section A shown in FIG. 3 (B), the maximum angle formed with the optical axis of the light beam incident on the minute lens is θa.
, The maximum angle formed with the optical axis of the ray incident on the microlens in section B shown in FIG. 3C is θb, and the maximum angle formed with the optical axis of the ray that can be taken in by the microlens in section A is θac, In the case of the conventional example of FIG. 10, when the maximum angle formed with the optical axis of the light beam that can be captured by the microlens in the cross section B is θbc,

【0028】[0028]

【外1】 という関係にあり、断面Bにおいては光線がけられる最
大の角度θbcにほぼ近い角度の光線が入射しているが、
断面Aにおいては入射光線がけられる最大の角度θacよ
りも小さな角度の光線が入射しており、このため有効光
源の分布の仕方がx、y方向で異なってしまっていた。
[Outer 1] In the cross section B, a light ray having an angle close to the maximum angle θbc at which the light ray is eclipsed is incident,
In the cross section A, a light ray having an angle smaller than the maximum angle θac at which the incident light ray is eclipsed is incident, and therefore, the distribution method of the effective light source is different in the x and y directions.

【0029】これに対し図1〜図3に示す本実施例の場
合は、
On the other hand, in the case of this embodiment shown in FIGS. 1 to 3,

【0030】[0030]

【外2】 という関係になり、有効光源の分布の仕方がx、y方向
で均一化されている。
[Outside 2] Therefore, the distribution of effective light sources is made uniform in the x and y directions.

【0031】フライアイレンズと入射光線は、(式2)
の様な関係を満たせば大きな効果があるが、
The fly-eye lens and the incident light ray are given by (Equation 2)
There is a great effect if the relationship like

【0032】[0032]

【外3】 の様な関係が満たされていれば十分効果がある。即ち、
有効光源のx、y方向の分布の仕方が均一化され、ウェ
ハー15に形成される像のx方向とy方向の像質の違い
も少なくなる。また、光線のけられが小さいので照度も
高く、そのため半導体素子を生産する際のスループット
も向上している。
[Outside 3] If the relationship like above is satisfied, it is sufficiently effective. That is,
The distribution of the effective light sources in the x and y directions is made uniform, and the difference in the image quality between the x direction and the y direction of the image formed on the wafer 15 is reduced. Further, since the light beam is less eclipsed, the illuminance is also high, and therefore, the throughput at the time of producing a semiconductor element is also improved.

【0033】本実施例ではランプ1からの光を2つに分
割したが幾つに分割しても良い。
Although the light from the lamp 1 is divided into two in this embodiment, it may be divided into any number.

【0034】図4は本発明の2番目の実施例を示す概略
構成図であり、IC、LSI等の半導体デバイス、CC
D等の撮像デバイス、液晶パネル、磁気ヘッド等のデバ
イスを製造するための走査型投影露光装置を示してい
る。
FIG. 4 is a schematic configuration diagram showing a second embodiment of the present invention, which is a semiconductor device such as IC or LSI, CC.
1 shows a scanning projection exposure apparatus for manufacturing an image pickup device such as D, a liquid crystal panel, a device such as a magnetic head.

【0035】図4において、1はHgランプ、Xe-Hg ラン
プ等の紫外線を発する光源であり、1aはその発光部(電
極)である。光源1 の左右にはレンズ51、52が置か
れており、発光部1aから左右に出た各光は光源1の左右
にあるレンズ51、52で平行化された後、それぞれ平
面ミラー23、24で反射され、コンデンサーレンズ5
に入射し、2個の光束を互いに異なる方向からフライア
イレンズ6に入射させている。
In FIG. 4, reference numeral 1 is a light source that emits ultraviolet rays, such as an Hg lamp or Xe-Hg lamp, and 1a is a light emitting portion (electrode) thereof. Lenses 51 and 52 are placed on the left and right of the light source 1, and the respective lights emitted from the light emitting unit 1a to the left and right are collimated by the lenses 51 and 52 on the left and right of the light source 1, and then the plane mirrors 23 and 24, respectively. Is reflected by the condenser lens 5
To the fly-eye lens 6 from different directions.

【0036】レンズ51、52に取り込めない光をコン
デンサ−レンズ5に向けるべく設けてあるのが楕円鏡2
2であり、置いても置かなくてもいい。楕円鏡22の第
1焦点と光源1の発光部1aの位置がほぼ一致しており、
光源1から上方に発する光を反射してコンデンサーレン
ズ5に入射させている。楕円鏡22を置くことにより3
個の光束を互いに異なる方向からフライアイレンズ6に
入射させている。
The ellipsoidal mirror 2 is provided to direct light that cannot be captured by the lenses 51 and 52 to the condenser lens 5.
It is 2, and it may or may not be placed. The position of the first focal point of the elliptical mirror 22 and the position of the light emitting portion 1a of the light source 1 are substantially aligned,
The light emitted upward from the light source 1 is reflected and made incident on the condenser lens 5. 3 by placing the elliptical mirror 22
The individual light beams are made incident on the fly-eye lens 6 from different directions.

【0037】7は開口絞りである。輪帯照明や4重極照
明のための特殊絞りは開口絞り7の代わりに置かれる。
Reference numeral 7 is an aperture stop. A special diaphragm for annular illumination or quadrupole illumination is placed instead of the aperture diaphragm 7.

【0038】本実施例でも、断面が長方形のスリット状
の光でレチクル12を照明してレチクル12上に長方形
の照明領域を形成するので、フライアイレンズ6の各微
小レンズの断面形状は、図1に示す通り、照明領域と相
似の長方形である。フライアイレンズには通常球面レン
ズを組み合わせたものが用いられるが、シリンドリカル
レンズを組み合わせたもの、トーリックレンズを組み合
わせたものを用いてもいい。
Also in this embodiment, since the reticle 12 is illuminated with the slit-shaped light having a rectangular cross section to form a rectangular illumination area on the reticle 12, the cross-sectional shape of each minute lens of the fly-eye lens 6 is as shown in FIG. As shown in 1, the rectangle is similar to the illumination area. As the fly-eye lens, a combination of spherical lenses is usually used, but a combination of cylindrical lenses or a combination of toric lenses may be used.

【0039】8、11はコンデンサーレンズであり、1
0はマスキングブレードであり、マスキングブレード1
0と共役な位置にレチクル12が置かれる。14は投影
光学系であり、屈折光学系や反射屈折光学系で構成され
る。15はウェハーであり、レチクル12とウェハー1
5は投影光学系14に関して光学的に共役な関係にあ
る。13、16はそれぞれレチクル12とウェハー15をス
キャン方向に動かす為の駆動装置であり、駆動装置1
3、16によりレチクル12とウェハー15を動かして
スリット状の光で走査露光する。
Denoted at 8 and 11 are condenser lenses.
0 is a masking blade, masking blade 1
The reticle 12 is placed at a position conjugate with 0. A projection optical system 14 is composed of a refractive optical system and a catadioptric optical system. Reference numeral 15 is a wafer, which is a reticle 12 and a wafer 1.
Reference numeral 5 has an optically conjugate relationship with the projection optical system 14. Reference numerals 13 and 16 denote driving devices for moving the reticle 12 and the wafer 15 in the scanning direction, respectively.
The reticle 12 and the wafer 15 are moved by 3 and 16 to perform scanning exposure with slit-shaped light.

【0040】本実施例の装置は、前記実施例の装置と同
じく、分割して得た複数の光の並び方向とフライアイア
レンズ6を構成する断面が長方形の微小レンズの長辺の
向きとが一致している。
In the apparatus of this embodiment, the arrangement direction of a plurality of light beams obtained by division and the direction of the long side of the minute lens having a rectangular cross section which constitutes the fly-ear lens 6 are the same as the apparatus of the above-mentioned embodiment. Match.

【0041】本実施例の装置も前記実施例の装置と同じ
効果を示し、有効光源のx、y方向の分布の仕方を均一
化し、ウェハー15上に形成される像のx、y方向の像
質の違いを少なくしている。
The apparatus of the present embodiment also exhibits the same effect as the apparatus of the above-mentioned embodiment, the distribution of the effective light sources in the x and y directions is made uniform, and the image formed on the wafer 15 in the x and y directions. The difference in quality is reduced.

【0042】本実施例では光源からの光を2つに分割し
たが幾つに分割してもいい。
Although the light from the light source is divided into two in this embodiment, it may be divided into any number.

【0043】図5は本発明の3番目の実施例を示す概略
構成図であり、IC、LSI等の半導体デバイス、CC
D等の撮像デバイス、液晶パネル、磁気ヘッド等のデバ
イスを製造するための走査型投影露光装置を示してい
る。
FIG. 5 is a schematic configuration diagram showing a third embodiment of the present invention, which is a semiconductor device such as IC or LSI, CC.
1 shows a scanning projection exposure apparatus for manufacturing an image pickup device such as D, a liquid crystal panel, a device such as a magnetic head.

【0044】図5において、1はHgランプ、Xe-Hg ラン
プ等の紫外線を発する光源であり、1aはその発光部(電
極)である。2’、2’’は通常の一個の楕円鏡を2つ
に分割したそれぞれの部分である。楕円鏡2’の第2焦
点は4’、楕円鏡2’’の第2焦点は4’’であり、一
個の楕円鏡を分割して配置することにより、光源からの
光を実質的に分割し、第2焦点は4’、4’’の夫々に
発光部1aの像を形成している。第2焦点4’、4’’の
発光部1aの各像からの光は、コンデンサーレンズ5によ
り、フライアイレンズ6の光入射面上に集光している。
In FIG. 5, reference numeral 1 is a light source that emits ultraviolet rays, such as an Hg lamp or Xe-Hg lamp, and 1a is a light emitting portion (electrode) thereof. Reference numerals 2'and 2 '' are respective parts obtained by dividing an ordinary elliptical mirror into two. The elliptic mirror 2'has a second focal point of 4'and the elliptic mirror 2 "has a second focal point of 4". By arranging one elliptic mirror separately, the light from the light source is substantially divided. However, the second focus forms an image of the light emitting portion 1a at each of 4'and 4 ''. The light from each image of the light emitting unit 1a at the second focal points 4 ′ and 4 ″ is condensed on the light incident surface of the fly-eye lens 6 by the condenser lens 5.

【0045】7は開口絞りである。輪帯照明や4重極照
明のための特殊絞りは開口絞り7の代わりに置かれる。
Reference numeral 7 is an aperture stop. A special diaphragm for annular illumination or quadrupole illumination is placed instead of the aperture diaphragm 7.

【0046】本実施例でも、断面が長方形のスリット状
の光でレチクル12を照明してレチクル12上に長方形
の照明領域を形成するので、フライアイレンズ6の各微
小レンズの断面形状は、図1に示す通り、照明領域と相
似の長方形である。フライアイレンズには通常球面レン
ズを組み合わせたものが用いられるが、シリンドリカル
レンズを組み合わせたもの、トーリックレンズを組み合
わせたものを用いてもいい。
Also in this embodiment, since the reticle 12 is illuminated with the slit-shaped light having a rectangular cross section to form a rectangular illumination area on the reticle 12, the cross-sectional shape of each minute lens of the fly-eye lens 6 is as shown in FIG. As shown in 1, the rectangle is similar to the illumination area. As the fly-eye lens, a combination of spherical lenses is usually used, but a combination of cylindrical lenses or a combination of toric lenses may be used.

【0047】8、11はコンデンサーレンズであり、1
0はマスキングブレードであり、マスキングブレード1
0と共役な位置にレチクル12が置かれる。14は投影
光学系であり、屈折光学系や反射屈折光学系で構成され
る。15はウェハーであり、レチクル12とウェハー1
5は投影光学系14に関して光学的に共役な関係にあ
る。13、16はそれぞれレチクル12とウェハー15をス
キャン方向に動かす為の駆動装置であり、駆動装置1
3、16によりレチクル12とウェハー15を動かして
スリット状の光で走査露光する。
Reference numerals 8 and 11 are condenser lenses, and
0 is a masking blade, masking blade 1
The reticle 12 is placed at a position conjugate with 0. A projection optical system 14 is composed of a refractive optical system and a catadioptric optical system. Reference numeral 15 is a wafer, which is a reticle 12 and a wafer 1.
Reference numeral 5 has an optically conjugate relationship with the projection optical system 14. Reference numerals 13 and 16 denote driving devices for moving the reticle 12 and the wafer 15 in the scanning direction, respectively.
The reticle 12 and the wafer 15 are moved by 3 and 16 to perform scanning exposure with slit-shaped light.

【0048】本実施例の装置は、前記実施例の装置と同
じく、分割して得た複数の光の並び方向(第2焦点
4’、4’’の並び方向)とフライアイアレンズ6を構
成する断面が長方形の微小レンズの長辺の向きとが一致
している。
In the apparatus of this embodiment, the fly-ear lens 6 and the arrangement direction of a plurality of light beams obtained by division (the arrangement direction of the second focal points 4 ', 4'') and the fly-ear lens 6 are configured as in the apparatus of the above-mentioned embodiment. The direction of the long side of the minute lens having a rectangular cross section is the same.

【0049】本実施例の装置も前記実施例の装置と同じ
効果を示し、有効光源のx、y方向の分布の仕方を均一
化し、ウェハー15上に形成される像のx、y方向の像
質の違いを少なくしている。
The apparatus of the present embodiment also exhibits the same effect as the apparatus of the previous embodiment, uniformizes the distribution of the effective light sources in the x and y directions, and the image formed on the wafer 15 in the x and y directions. The difference in quality is reduced.

【0050】また、光線のケラレも少ないので、照度が
高く、そのため半導体素子を生産する際のスループット
も向上する。
Further, since the vignetting of light rays is small, the illuminance is high, and therefore, the throughput at the time of producing a semiconductor element is also improved.

【0051】本実施例では光源からの光を2つに分割し
たが幾つに分割してもいい。
Although the light from the light source is divided into two in this embodiment, it may be divided into any number.

【0052】図6は本発明の4番目の実施例を示す概略
構成図であり、IC、LSI等の半導体デバイス、CC
D等の撮像デバイス、液晶パネル、磁気ヘッド等のデバ
イスを製造するための走査型投影露光装置を示してい
る。
FIG. 6 is a schematic configuration diagram showing a fourth embodiment of the present invention, which is a semiconductor device such as IC or LSI, CC.
1 shows a scanning projection exposure apparatus for manufacturing an image pickup device such as D, a liquid crystal panel, a device such as a magnetic head.

【0053】図6において、100はエキシマレーザー
等のレーザー光源である。101、102はハ−フミラ
−、103はミラーであり、これら複数のミラ−により
レ−ザ−光源100からのレ−ザ−光を3分割し、3個
のレ−ザ−光をフライアイレンズ6に入射させている。
In FIG. 6, reference numeral 100 is a laser light source such as an excimer laser. Reference numerals 101 and 102 are half mirrors, and 103 is a mirror. The plurality of mirrors divide the laser light from the laser light source 100 into three, and the three laser lights are fly-eye. It is incident on the lens 6.

【0054】本実施例でも、断面が長方形のスリット状
の光でレチクル12を照明してレチクル12上に長方形
の照明領域を形成するので、フライアイレンズ6の各微
小レンズの断面形状は、図1に示す通り、照明領域と相
似の長方形である。フライアイレンズには通常球面レン
ズを組み合わせたものが用いられるが、シリンドリカル
レンズを組み合わせたもの、トーリックレンズを組み合
わせたものを用いてもいい。
Also in this embodiment, since the reticle 12 is illuminated with the slit-shaped light having a rectangular cross section to form a rectangular illumination area on the reticle 12, the cross-sectional shape of each minute lens of the fly-eye lens 6 is as shown in FIG. As shown in 1, the rectangle is similar to the illumination area. As the fly-eye lens, a combination of spherical lenses is usually used, but a combination of cylindrical lenses or a combination of toric lenses may be used.

【0055】8、11はコンデンサーレンズであり、1
0はマスキングブレードであり、マスキングブレード1
0と共役な位置にレチクル12が置かれる。14は投影
光学系であり、屈折光学系や反射屈折光学系で構成され
る。15はウェハーであり、レチクル12とウェハー1
5は投影光学系14に関して光学的に共役な関係にあ
る。13、16はそれぞれレチクル12とウェハー15をス
キャン方向に動かす為の駆動装置であり、駆動装置1
3、16によりレチクル12とウェハー15を動かして
スリット状の光で走査露光する。
Reference numerals 8 and 11 are condenser lenses, and
0 is a masking blade, masking blade 1
The reticle 12 is placed at a position conjugate with 0. A projection optical system 14 is composed of a refractive optical system and a catadioptric optical system. Reference numeral 15 is a wafer, which is a reticle 12 and a wafer 1.
Reference numeral 5 has an optically conjugate relationship with the projection optical system 14. Reference numerals 13 and 16 denote driving devices for moving the reticle 12 and the wafer 15 in the scanning direction, respectively.
The reticle 12 and the wafer 15 are moved by 3 and 16 to perform scanning exposure with slit-shaped light.

【0056】本実施例の装置は、前記実施例の装置と同
じく、分割して得た複数の光の並び方向とフライアイア
レンズ6を構成する断面が長方形の微小レンズの長辺の
向きとが一致している。
In the apparatus of this embodiment, the arrangement direction of a plurality of light beams obtained by division and the direction of the long side of the minute lens having a rectangular cross section which constitutes the fly-ear lens 6 are the same as the apparatus of the above-mentioned embodiment. Match.

【0057】本実施例の装置も前記実施例の装置と同じ
効果を示し、有効光源のx、y方向の分布の仕方を均一
化し、ウェハー15上に形成される像のx、y方向の像
質の違いを少なくしている。
The apparatus of the present embodiment also exhibits the same effect as the apparatus of the above-mentioned embodiment, uniformizes the distribution of the effective light sources in the x and y directions, and images of the image formed on the wafer 15 in the x and y directions. The difference in quality is reduced.

【0058】本実施例では光源からの光を2つに分割し
たが幾つに分割してもいい。
Although the light from the light source is divided into two in this embodiment, it may be divided into any number.

【0059】本発明によれば、複数の長方形の微小レン
ズから構成されるハエの目レンズを用いた長方形の照明
範囲を持つスキャン型投影露光装置において光源を分割
することにより、有効光源の分布の仕方を縦横で同等に
し、レチクルパターンの縦横の像性能の差がなくなると
いう効果がある。
According to the present invention, by dividing a light source in a scan-type projection exposure apparatus having a rectangular illumination range using a fly-eye lens composed of a plurality of rectangular microlenses, the effective light source distribution There is an effect that the method is the same vertically and horizontally, and there is no difference in image performance between the reticle pattern vertically and horizontally.

【0060】また、光線のケラレも少ないので、照度が
高く、そのため半導体素子を生産する際のスループット
も向上する。これは特に、輪帯照明や4重極照明などの
変形照明を用いるときに有効である。
Further, since the vignetting of light rays is small, the illuminance is high, and therefore, the throughput at the time of producing a semiconductor element is also improved. This is particularly effective when using modified illumination such as annular illumination or quadrupole illumination.

【0061】次に図1〜図6の走査型露光装置を利用し
た半導体素子の製造方法の実施例を説明する。図7は半
導体素子(ICやLSI等の半導体チップ、液晶パネル
やCCD)の製造フロ−を示す。ステップ1(回路設
計)では半導体装置の回路設計を行なう。ステップ2
(マスク製作)では設計した回路パタ−ンを形成したマ
スク(レチクル304)を製作する。一方、ステップ3
(ウエハ−製造)ではシリコン等の材料を用いてウエハ
−(ウエハ−306)を製造する。ステップ4(ウエハ
−プロセス)は前工程と呼ばれ、上記用意したマスクと
ウエハ−とを用いて、リソグラフィ−技術によってウエ
ハ−上に実際の回路を形成する。次のステップ5(組み
立て)は後工程と呼ばれ、ステップ4よって作成された
ウエハ−を用いてチップ化する工程であり、アッセンブ
リ工程(ダイシング、ボンデ ング)、パッケ−ジング
工程(チップ封入)等の工程を含む。ステップ6(検
査)ではステップ5で作成された半導体装置の動作確認
テスト、耐久性テスト等の検査を行なう。こうした工程
を経て半導体装置が完成し、これが出荷(ステップ7)
される。
Next, an embodiment of a method of manufacturing a semiconductor device using the scanning type exposure apparatus of FIGS. 1 to 6 will be described. FIG. 7 shows a manufacturing flow of semiconductor elements (semiconductor chips such as IC and LSI, liquid crystal panels and CCDs). In step 1 (circuit design), the circuit of the semiconductor device is designed. Step two
In (mask manufacturing), a mask (reticle 304) on which the designed circuit pattern is formed is manufactured. On the other hand, step 3
In (wafer-manufacturing), a wafer (wafer-306) is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by the lithography technique using the mask and the wafer prepared above. The next step 5 (assembly) called a post-process, Step 4 thus wafer created - a step of chip the, assembly process (dicing, Bonde b ring), package - managing step (chip encapsulation) Etc. are included. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).
To be done.

【0062】図8は上記ウエハ−プロセスの詳細なフロ
−を示す。ステップ11(酸化)ではウエハ−(ウエハ
−306)の表面を酸化させる。ステップ12(CV
D)ではウエハ−の表面に絶縁膜を形成する。ステップ
13(電極形成)ではウエハ−上に電極を蒸着によって
形成する。ステップ14(イオン打ち込み)ではウエハ
−にイオンを打ち込む。ステップ15(レジスト処理)
ではウエハ−にレジスト(感材)を塗布する。ステップ
16(露光)では上記走査型露光装置によってマスク
(レチクル304)の回路パタ−ンの像でウエハ−を露
光する。ステップ17(現像)では露光したウエハ−を
現像する。ステップ18(エッチング)では現像したレ
ジスト以外の部分を削り取る。ステップ19(レジスト
剥離)ではエッチングが済んで不要となったレジストを
取り除く。これらステップを繰り返し行なうことにより
ウエハ−上に回路パタ−ンが形成される。
FIG. 8 shows a detailed flow chart of the wafer process. In step 11 (oxidation), the surface of the wafer (wafer 306) is oxidized. Step 12 (CV
In D), an insulating film is formed on the surface of the wafer. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. Step 15 (resist processing)
Then, a resist (sensitive material) is applied to the wafer. In step 16 (exposure), the scanning exposure apparatus exposes the wafer with an image of the circuit pattern of the mask (reticle 304). In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist are scraped off. In step 19 (resist stripping), the resist that is no longer needed after etching is removed. By repeating these steps, a circuit pattern is formed on the wafer.

【0063】本実施例の製造方法を用いれば、高集積度
の半導体素子を製造することが可能になる。
By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated semiconductor device.

【0064】[0064]

【発明の効果】以上、本発明によれば、方向によらず像
質がほぼ一定の像を生じせしめることでき、像質を改善
することが可能になる。
As described above, according to the present invention, an image having substantially constant image quality can be produced regardless of the direction, and the image quality can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

【図2】図1の装置のフライアイレンズと有効光源の光
強度分布とを示す図である。
FIG. 2 is a diagram showing a fly's eye lens of the apparatus of FIG. 1 and a light intensity distribution of an effective light source.

【図3】図1の装置のフライアイレンズの微小レンズの
構造を示す図である。
FIG. 3 is a diagram showing a structure of a minute lens of a fly-eye lens of the apparatus shown in FIG.

【図4】本発明の他の実施例を示す部分的概略図であ
る。
FIG. 4 is a partial schematic view showing another embodiment of the present invention.

【図5】本発明の他の実施例を示す部分的概略図であ
る。
FIG. 5 is a partial schematic view showing another embodiment of the present invention.

【図6】本発明の他の実施例を示す部分的概略図であ
る。
FIG. 6 is a partial schematic view showing another embodiment of the present invention.

【図7】半導体装置の製造工程を示すフロ−チャ−ト図
である。
FIG. 7 is a flowchart showing a manufacturing process of a semiconductor device.

【図8】図7の工程中のウエハ−プロセスの詳細を示す
フロ−チャ−ト図である。
FIG. 8 is a flowchart showing details of the wafer process during the process of FIG.

【図9】従来の走査型投影露光装置を示す概略構成図で
ある。
FIG. 9 is a schematic configuration diagram showing a conventional scanning projection exposure apparatus.

【図10】図8の装置のフライアイレンズと有効光源の
光強度分布とを示す図である。
10 is a diagram showing the fly-eye lens and the light intensity distribution of an effective light source of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 ランプ 1a 発光部 4 第2焦点(位置) 6 フライアイレンズ 12 マスク 14 投影光学系 15 ウエハ− 21 球面鏡 41 球面鏡の焦点 1 Lamp 1a Light Emitting Part 4 Second Focus (Position) 6 Fly-Eye Lens 12 Mask 14 Projection Optical System 15 Wafer 21 Spherical Mirror 41 Focus of Spherical Mirror

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G03F 7/20 521 9122−2H ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G03F 7/20 521 9122-2H

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 複数個の断面が略長方形のレンズを2次
元的に配置したフライアイレンズからの光で被照明面を
照明する装置において、前記レンズの長辺方向に並んだ
複数の光を前記フライアイレンズに照射する光照射手段
を有することを特徴とする照明装置。
1. A device for illuminating a surface to be illuminated with light from a fly-eye lens in which a plurality of lenses each having a substantially rectangular cross section are two-dimensionally arranged, An illuminating device comprising a light irradiating means for irradiating the fly-eye lens.
【請求項2】 前記光照射手段は光源からの光を分割し
て前記複数の光を形成し、前記略長方形レンズの長辺に
平行かつ光軸を含む面で切った断面において前記略長方
形レンズに入射する光線が光軸となす最大の角度をθa
、前記略長方形レンズの短辺に平行かつ光軸を含む面
で切った断面において前記略長方形レンズが取り込むこ
とのできる光線の光軸となす最大の角度をθbcとする
時、前記複数の光を、θa >θbcを満たす入射角で前記
略長方形レンズに入射させることを特徴とする請求項1
の照明装置。
2. The light irradiating means divides light from a light source to form the plurality of lights, and the substantially rectangular lens in a cross section cut along a plane parallel to the long side of the substantially rectangular lens and including the optical axis. The maximum angle that the ray incident on the optical axis makes with the optical axis is θa
When the maximum angle formed with the optical axis of the light beam that can be captured by the substantially rectangular lens is θbc in a cross section that is cut by a plane that is parallel to the short side of the substantially rectangular lens and that includes the optical axis, then the plurality of lights are , Θa> θbc, the light is incident on the substantially rectangular lens at an incident angle.
Lighting equipment.
【請求項3】 複数個の断面が略長方形のレンズを2次
元的に配置したフライアイレンズからの光でマスクを介
して基板を露光する装置において、前記レンズの長辺方
向に並んだ複数の光を前記フライアイレンズに照射する
光照射手段を有することを特徴とする露光装置。
3. An apparatus for exposing a substrate through a mask with light from a fly-eye lens in which a plurality of lenses each having a substantially rectangular cross section are two-dimensionally arranged, and a plurality of lenses arranged in a long side direction of the lenses are exposed. An exposure apparatus comprising a light irradiation means for irradiating the fly-eye lens with light.
【請求項4】 前記光照射手段は光源からの光を分割し
て前記複数の光を形成し、前記略長方形レンズの長辺に
平行かつ光軸を含む面で切った断面において前記略長方
形レンズに入射する光線が光軸となす最大の角度をθa
、前記略長方形レンズの短辺に平行かつ光軸を含む面
で切った断面において前記略長方形レンズが取り込むこ
とのできる光線の光軸となす最大の角度をθbcとする
時、前記複数の光を、θa >θbcを満たす入射角で前記
略長方形レンズに入射させることを特徴とする請求項3
の露光装置。
4. The light irradiating means splits light from a light source to form the plurality of lights, and the substantially rectangular lens is formed in a cross section taken along a plane parallel to a long side of the substantially rectangular lens and including an optical axis. The maximum angle that the ray incident on the optical axis makes with the optical axis is θa
When the maximum angle formed with the optical axis of the light beam that can be captured by the substantially rectangular lens is θbc in a cross section that is cut by a plane that is parallel to the short side of the substantially rectangular lens and that includes the optical axis, then the plurality of lights are , Θa> θbc, the light is incident on the substantially rectangular lens at an incident angle.
Exposure equipment.
【請求項5】 前記マスクのパタ−ンを前記基板上に結
像せしめる投影光学系を有することを特徴とする請求項
4の露光装置。
5. The exposure apparatus according to claim 4, further comprising a projection optical system for forming an image of the pattern of the mask on the substrate.
【請求項6】 請求項4、5の露光装置を用いてデバイ
スを製造することを特徴とするデバイス製造方法。
6. A device manufacturing method comprising manufacturing a device using the exposure apparatus according to claim 4.
JP15905793A 1993-06-29 1993-06-29 Illumination device and exposure apparatus including the illumination device Expired - Fee Related JP3347405B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15905793A JP3347405B2 (en) 1993-06-29 1993-06-29 Illumination device and exposure apparatus including the illumination device
KR1019940014955A KR0165701B1 (en) 1993-06-29 1994-06-28 Illumination system and exposure apparatus using the same
US08/711,307 US6055039A (en) 1993-06-29 1996-09-03 Illumination system and exposure apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15905793A JP3347405B2 (en) 1993-06-29 1993-06-29 Illumination device and exposure apparatus including the illumination device

Publications (2)

Publication Number Publication Date
JPH07135148A true JPH07135148A (en) 1995-05-23
JP3347405B2 JP3347405B2 (en) 2002-11-20

Family

ID=15685283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15905793A Expired - Fee Related JP3347405B2 (en) 1993-06-29 1993-06-29 Illumination device and exposure apparatus including the illumination device

Country Status (1)

Country Link
JP (1) JP3347405B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227973A (en) * 2007-05-29 2007-09-06 Nikon Corp Optical delay element, illumination optical device, exposure device and method, and method for manufacturing semiconductor device
JP2011124374A (en) * 2009-12-10 2011-06-23 Drc Kk Ultraviolet irradiation device
US9223122B2 (en) 2012-02-13 2015-12-29 Canon Kabushiki Kaisha Illumination optical system and image projection apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227973A (en) * 2007-05-29 2007-09-06 Nikon Corp Optical delay element, illumination optical device, exposure device and method, and method for manufacturing semiconductor device
JP4534210B2 (en) * 2007-05-29 2010-09-01 株式会社ニコン Optical delay device, illumination optical device, exposure apparatus and method, and semiconductor device manufacturing method
JP2011124374A (en) * 2009-12-10 2011-06-23 Drc Kk Ultraviolet irradiation device
US9223122B2 (en) 2012-02-13 2015-12-29 Canon Kabushiki Kaisha Illumination optical system and image projection apparatus

Also Published As

Publication number Publication date
JP3347405B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
JP2946950B2 (en) Illumination apparatus and exposure apparatus using the same
US6903801B2 (en) Illumination optical system for use in projection exposure apparatus
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JPH11271619A (en) Illumination optical device and exposure device provided with illumination optical device
JP3576685B2 (en) Exposure apparatus and device manufacturing method using the same
JPH10135123A (en) Projection aligenr and manufacturing semiconductor device, using the same
JPH1041225A (en) Illuminating equipment and projection aligner using the same
JP3559694B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP2000021712A (en) Illuminating optical system and aligner provided with the system
JPH1070070A (en) Illuminator and projection aligner using the illuminator
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP3507459B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JP2000182933A (en) Illumination optical device and aligner equipped therewith
JP3347405B2 (en) Illumination device and exposure apparatus including the illumination device
KR0165701B1 (en) Illumination system and exposure apparatus using the same
JP3566318B2 (en) Scanning exposure apparatus and device manufacturing method
JP2003232901A (en) Optical device, illuminator and exposure device
JP3236193B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it
JPH07135145A (en) Aligner
JP3571945B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPH09213618A (en) Projection exposure system and manufacture of device using the same
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same
JP3563888B2 (en) Illumination apparatus and projection exposure apparatus using the same
JPH09232226A (en) Scan type aligner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080906

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090906

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100906

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110906

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120906

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees