JPH07134410A - Resist material - Google Patents

Resist material

Info

Publication number
JPH07134410A
JPH07134410A JP5180806A JP18080693A JPH07134410A JP H07134410 A JPH07134410 A JP H07134410A JP 5180806 A JP5180806 A JP 5180806A JP 18080693 A JP18080693 A JP 18080693A JP H07134410 A JPH07134410 A JP H07134410A
Authority
JP
Japan
Prior art keywords
resist
acid
acids
chemically amplified
acid generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5180806A
Other languages
Japanese (ja)
Inventor
Kunihiko Kasama
邦彦 笠間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5180806A priority Critical patent/JPH07134410A/en
Publication of JPH07134410A publication Critical patent/JPH07134410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To provide a resist material capable of improving dimensional uniformity and resolution by eliminating the T-shaped top shape of a positive resist or the round top shape of a negative resist, which arises along with the disappearance of acid on the surface of the resist, in the chemically amplifying resist. CONSTITUTION:The chemically amplifying resist contains an acid generating agent generating an acid dimer or polymer by the light irradiation though an acid generating agent contained in the conventional chemically amplifying resist generates an acid monomer. Then, even if one of the acids is neutralized by a base entering from air, the acid catalytic reaction is not impaired because at least one of the acids remains. Since the acids are placed close to each other eve if two or more acids are present, the acid catalytic reaction is not accelerated too. The dimensional accuracy and the process margin are increased because the diffusion is suppressed by polymerizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置製造時のリソ
グラフィー工程において使用されるレジスト材料に関
し、特にパターン解像性の優れた化学増幅系レジスト材
料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resist material used in a lithography process in manufacturing a semiconductor device, and more particularly to a chemically amplified resist material excellent in pattern resolution.

【0002】[0002]

【従来の技術】近年、LSIの高集化に伴い、微細パタ
ーン形成に対する要求が高まっている。従来、この微細
パターン形成技術(リソグラフィ技術)の主力は水銀ラ
ンプのg線あるいはi線を用いる露光装置、ステッパー
とノボラック系レジストを組み合わせた紫外線露光技術
であり、ステッパーの性能向上(レンズの高NA化、重
ね合せ精度の改善等)と合わせ、ノボラック系レジスト
の高解像度化が図られてきた。しかしながら、さらに解
像力を向上させるため露光波長を短波長化すると(例え
ばKrFエキシマレーザー光、250nm付近の水銀アー
クランプ光等の深紫外光)、ノボラック系レジストは樹
脂およびナフトキノンジアジド感光剤の吸収が大きく矩
形のレジスト形状が得られない(テーパー状になる)。
また、ノボラックレジストの感度(通常100mJ〜20
0mJ/cm2 )では狭帯域化したKrFマキシマレーザー
光源の光強度がg,i線に比較して弱く(1/5〜1/
10)露光時間が長くかかる。この状況を克服するため
に提案されたのが化学増幅系レジストである[参考文献
H.Ito and C.W.Wilson, ACS Symposium Series, 242,
pp.11(1984).]。この種のレジストは感光性の酸発生剤
から生成する酸の触媒反応を利用するため、必要な酸濃
度は少量ですみ(μmole/gram のオーダー)、従って高
感度のレジスト設計が可能となる。また低濃度の酸発生
剤と透明性の高い樹脂を選択することによりレジスト形
状も大幅に改善できる。
2. Description of the Related Art In recent years, the demand for fine pattern formation has increased with the increasing integration of LSIs. Conventionally, the main focus of this fine pattern forming technology (lithography technology) is an exposure apparatus that uses g-line or i-line of a mercury lamp, and an ultraviolet exposure technology that combines a stepper and a novolac-based resist. And the improvement of overlay accuracy, etc.), the resolution of novolac resists has been improved. However, when the exposure wavelength is shortened in order to further improve the resolution (eg, KrF excimer laser light, deep ultraviolet light such as mercury arc lamp light around 250 nm), novolac-based resists have large absorption of resin and naphthoquinonediazide photosensitizer. A rectangular resist shape cannot be obtained (tapered).
In addition, the sensitivity of novolac resist (usually 100 mJ-20
At 0 mJ / cm 2 , the light intensity of the narrow band KrF maxima laser light source is weaker than that of g and i lines (1/5 to 1/1).
10) Exposure time is long. Chemically amplified resists have been proposed to overcome this situation [references
H. Ito and CW Wilson, ACS Symposium Series, 242,
pp.11 (1984).]. Since this type of resist utilizes the catalytic reaction of the acid generated from the photosensitive acid generator, a small amount of acid concentration is required (on the order of μmole / gram), and therefore a highly sensitive resist design is possible. The resist shape can be greatly improved by selecting a low concentration acid generator and a highly transparent resin.

【0003】図4はPVP(ポリビニルフェノール樹
脂)とメラミン架橋剤からなる化学増幅系ネガレジス
ト、図5は、tert−ブトキシカルボニルオキシスチレン
からなる化学増幅系ポジレジストの酸触媒反応の一例を
示したものである。[参考文献 J.W.Thackeray et al.,
Proc. SPIE, 1086, pp.34 (1989), C.G.Wilson et a
l.,J.Electrochem. Soc., 133, pp.181 (1986).]。ネ
ガ型レジストはポリビニルフェノール樹脂、メラミン架
橋剤、および酸発生剤の3成分からなり、酸により架橋
反応が促進し、露光部が不溶化する。一方、ポジ型の場
合は、現像液に可溶なポリビニールフェノールをtert−
ブトキシカルボニル基で保護した樹脂と、酸発生剤の2
成分からなり、酸により保護基が除去されアルカリ現像
液に可溶となる。図6は従来用いられてきた酸発生剤を
示したものである。即ち、各種オニウム塩として、ベン
ゼンジアゾニウム塩、ジフェニルヨードニウム塩、トリ
フェニルスルフォニウム塩があり(式中M=As,S
b,P)、また、有機系酸発生剤として、2,4−ジト
リクロロメチルトリアジン誘導体、2,6−ジニトロベ
ンジルトシレート、p−ニトロベンジル−9,10−ジ
エトキシアントラセン2−スルフォネート、を示したも
のである。いずれの酸発生剤も光励起反応によって強酸
を発生するが、いずれも酸単量体である[参考文献 T.
X.Neeran et al., Proc. SPIE, 1086, pp.2 (1989). H.
Ito, Proc, SPIE, 920, pp.33 (1988). A.Bruns, Micro
electronic Eng., 6, pp.467 (1987). M.Nishiki et a
l., 1st Micro Process. Conference, pp.62 (1988).]
FIG. 4 shows an example of an acid-catalyzed reaction of a chemically amplified negative resist composed of PVP (polyvinylphenol resin) and a melamine crosslinking agent, and FIG. 5 shows an acid catalyzed reaction of a chemically amplified positive resist composed of tert-butoxycarbonyloxystyrene. It is a thing. [Reference JWThackeray et al.,
Proc. SPIE, 1086, pp.34 (1989), CGWilson et a
l., J. Electrochem. Soc., 133, pp.181 (1986).]. The negative resist is composed of three components of polyvinylphenol resin, melamine cross-linking agent, and acid generator, and the acid accelerates the cross-linking reaction to insolubilize the exposed area. On the other hand, in the case of positive type, tert-
Resin protected with butoxycarbonyl group and acid generator 2
It is composed of components, and the protective group is removed by acid to make it soluble in an alkaline developer. FIG. 6 shows a conventionally used acid generator. That is, as various onium salts, there are benzenediazonium salts, diphenyliodonium salts, and triphenylsulfonium salts (wherein M = As, S
b, P), and 2,4-ditrichloromethyltriazine derivative, 2,6-dinitrobenzyl tosylate, p-nitrobenzyl-9,10-diethoxyanthracene 2-sulfonate as an organic acid generator. It is shown. All acid generators generate strong acid by photoexcitation reaction, but both are acid monomers [Reference T.
X.Neeran et al., Proc. SPIE, 1086, pp.2 (1989). H.
Ito, Proc, SPIE, 920, pp.33 (1988) .A. Bruns, Micro
electronic Eng., 6, pp. 467 (1987). M. Nishiki et a
l., 1st Micro Process. Conference, pp.62 (1988).]

【0004】[0004]

【発明が解決しようとする課題】上述した従来の化学増
幅系レジストでは感度、解像力が大幅に改善されたもの
の、レジスト形状のトップ部がネガ型は丸く、ポジ型で
はT字形になりやすいという問題があった。これは光照
射により微量発生した酸がベーク処理あるいは空気中の
塩基物質(アミン等)によってレジスト表面領域で消失
するために起こる[参考文献 S.A. MacDonald et al.,
Proc. SPIE, 1466, pp.2 (1991) ]。そのためレジスト
形状が劣化するだけでなく、寸法均一性、解像力が低下
する。また特に空気中の塩基性物質等の外部環境の影響
を低減するため、レジスト上に保護膜を塗布する手法も
試みられている。この手法は確かに形状安定性に有効で
あるが、反面リソグラフィ工程を複雑化し、また保護膜
とレジストの界面にミキシング層を形成しレジスト残渣
を生じやすい。
Although the above-mentioned conventional chemically amplified resists have greatly improved sensitivity and resolution, there is a problem that the negative top portion of the resist shape is round and the positive shape tends to be T-shaped. was there. This occurs because a small amount of acid generated by light irradiation disappears in the resist surface area by baking treatment or basic substances (amines etc.) in the air [Reference SA MacDonald et al.,
Proc. SPIE, 1466, pp.2 (1991)]. Therefore, not only the resist shape is deteriorated, but also dimensional uniformity and resolution are deteriorated. Further, in particular, in order to reduce the influence of the external environment such as a basic substance in the air, a method of applying a protective film on the resist has been attempted. This method is certainly effective for shape stability, but on the other hand, it complicates the lithography process and tends to form a resist residue by forming a mixing layer at the interface between the protective film and the resist.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

[目的]本発明の目的は、化学増幅系レジストを微細パ
ターン形成に使用したとき、レジスト形状劣化や解像性
低下のないレジスト材料を提供することにある。
[Purpose] It is an object of the present invention to provide a resist material which does not deteriorate the resist shape or decrease the resolution when a chemically amplified resist is used for forming a fine pattern.

【0006】[手段]本発明の化学増幅系レジスト材料
は酸発生剤として、酸2量体あるいはそれ以上の酸多量
体を生成できる有機材料を用いるものである。次にその
原理について述べる。図1は酸2量体を発生する酸発生
剤の例を示したものである。これらの材料は出発物質と
して図5に述べた酸発生剤の出発材料と同様の2量体
(縮合反応等によって合成)を用いて合成できる。また
比較的分子量の低い高分子材料に酸発生基を複数個付加
させてもよい。酸2量体中の2つの酸性基は束縛され近
接して存在するので酸触媒反応の効率は単量体の効率と
ほとんど変わらない。図1は酸2量体を発生する酸発生
剤の例であり、(a)は、ジ(2,6−ジニトロベンジ
ルオキシスルホニルベンゼン)アルキレン、(b)は、
ジ(2,6−ジニトロベンジルオキシスルホニル)フェ
ニレン、(c)は、ジ(2,6−ジニトロベンジルオキ
シカルボニル)アルキレン、(d)は、2,6−ジ(4
−ニトロベンジルオキシスルホニル)−9,10−ジア
ルキルアントラセンの光励起反応を示したものである。
これらの式中、R〜Rは2つの酸発生部を連結する
アルキル基であり任意の炭素鎖長をもつ。R、R
アルキル基、アルコキン基等の置換基を示す。一方、ア
ミン等の塩基物が混入しても、2つの酸性基が同時に中
和される場合は少ない。従って一方が中和されても触媒
反応の効率はほとんど影響されず、上述したレジスト表
面領域の酸消失に起因する表面効果を大幅に低減するこ
とが可能となる。さらに、一般に多量体になると分子量
が増大するため、触媒反応を起こすためのベーク処理
(通常露光後ベーク処理、Post Exposure Bake(PE
B)処理と略す)をしても、分子拡散が抑制されるので
寸法精度の確保もはかることができる。また同様の理由
で、露光後長時間放置すると生じやすいレジストパター
ンのだれ(酸の拡散と室温での触媒反応に起因)も抑え
ることができ、プロセスマージンも増大する。
[Means] The chemically amplified resist material of the present invention uses, as an acid generator, an organic material capable of forming an acid dimer or an acid multimer of more than that. Next, the principle will be described. FIG. 1 shows an example of an acid generator that generates an acid dimer. These materials can be synthesized by using, as a starting material, a dimer (synthesized by condensation reaction or the like) similar to the starting material of the acid generator described in FIG. A plurality of acid-generating groups may be added to a polymer material having a relatively low molecular weight. Since the two acidic groups in the acid dimer are bound and exist close to each other, the efficiency of the acid-catalyzed reaction is almost the same as that of the monomer. FIG. 1 is an example of an acid generator that generates an acid dimer. (A) is di (2,6-dinitrobenzyloxysulfonylbenzene) alkylene, (b) is
Di (2,6-dinitrobenzyloxysulfonyl) phenylene, (c) is di (2,6-dinitrobenzyloxycarbonyl) alkylene, (d) is 2,6-di (4
FIG. 2 shows a photoexcitation reaction of -nitrobenzyloxysulfonyl) -9,10-dialkylanthracene.
In these formulas, R 1 and R 2 are alkyl groups connecting two acid generating parts and have an arbitrary carbon chain length. R 3 and R 4 represent a substituent such as an alkyl group or an alkoquine group. On the other hand, even if a basic substance such as an amine is mixed, it is rare that two acidic groups are simultaneously neutralized. Therefore, even if one of them is neutralized, the efficiency of the catalytic reaction is hardly affected, and the surface effect resulting from the disappearance of the acid in the resist surface region can be significantly reduced. Further, since the molecular weight generally increases in the case of a multimer, a bake treatment (normal post-exposure bake treatment, Post Exposure Bake (PE
Even if the treatment (B) is abbreviated), molecular diffusion can be suppressed, so that dimensional accuracy can be ensured. For the same reason, dripping of the resist pattern (due to acid diffusion and catalytic reaction at room temperature) which tends to occur when left for a long time after exposure can be suppressed and the process margin is increased.

【0007】[0007]

【実施例】次に本発明の実施例について図面を参照して
説明する。 [実施例1]使用するレジストの特性はネガ型で酸発生
剤−架橋剤−樹脂の3成分から成る。但し、酸発生剤は
2量体の酸を発生できる物質である。具体的には、酸発
生剤として例えば図1の(a)の材料を架橋剤はメラミ
ン誘導体、樹脂はPVP(ポリビニルフェノ−ル樹脂)
の3成分から成るものについてである。図2はMOSト
ランジスタの微細多結晶シリコンゲートパターンの形成
に本発明のレジスト材料を適用した結果を示すが、基本
的なプロセスは通常の酸触媒レジストと変わらない。図
2(a)はシリコン基板201にゲート酸化膜202を
熱酸化により形成し、さらにその上に多結晶シリコン膜
203を化学気相成長した後、本発明の酸触媒をネガレ
ジスト204を塗布した姿態を示す。その後、ゲート多
結晶シリコン電極を形成するため、レジスト204にエ
キシマレーザ光を照射する(図2(b))。
Embodiments of the present invention will now be described with reference to the drawings. [Example 1] The characteristics of the resist used were negative and consisted of three components: acid generator-crosslinking agent-resin. However, the acid generator is a substance capable of generating a dimer acid. Specifically, for example, the material shown in FIG. 1A is used as the acid generator, the melamine derivative is the crosslinking agent, and the PVP (polyvinylphenol resin) is the resin.
Of the three components of. FIG. 2 shows the results of applying the resist material of the present invention to the formation of a fine polycrystalline silicon gate pattern of a MOS transistor, but the basic process is the same as that of a normal acid catalyst resist. In FIG. 2A, a gate oxide film 202 is formed on a silicon substrate 201 by thermal oxidation, a polycrystalline silicon film 203 is further grown thereon by chemical vapor deposition, and a negative resist 204 is applied with the acid catalyst of the present invention. Show the appearance. Then, in order to form a gate polycrystalline silicon electrode, the resist 204 is irradiated with excimer laser light (FIG. 2B).

【0008】その後、熱ベーク処理を130〜160
℃、30秒〜3分程度実施し、酸触媒による架橋反応を
マスク開口部のみに生じさせる(図2(c))。その際
通常の酸単量体を発生する化学増幅系レジストでは、ベ
ーク処理までの時間を短縮し、かつ空気中から混入する
塩基の影響を低減するため、例えば露光装置と現像装置
の結合や、外部環境からウェハーの分離するためのシー
ルド機能の設置等の新たな対策が必要となる。一方、本
発明の酸2量体を発生するレジストでは、外部環境の影
響を受けにくいため、通常の清浄対策で充分であり、か
つベーク処理までの時間が長くても酸の拡散が小さいの
で、露光装置と現像装置を必ずしも連結する必要はな
い。次にテトラメチルアンモニウムハイドライド(TM
AH)等のアルカリ現像液で現像すると図2(d)に示
す寸法制御性の優れ、かつレジストスカムのないレジス
トパターン208が得られる。最後に上記レジストパタ
ーン208をマスクとして多結晶シリコン203を、C
4 ,CCl2 2 、あるいはHBr 等の反応ガスプラ
ズマにより異方性エッチングし、さらにレジストを除去
することによりゲート電極が形成される。
After that, a heat baking treatment is performed at 130 to 160.
It is carried out at 30 ° C. for about 3 seconds to 3 minutes to cause the acid-catalyzed crosslinking reaction only in the mask openings (FIG. 2C). At that time, in a chemically amplified resist that generates an ordinary acid monomer, in order to shorten the time until the bake treatment and reduce the influence of the base mixed in from the air, for example, a combination of an exposure device and a developing device, New measures such as the installation of a shield function to separate the wafer from the external environment are required. On the other hand, in the resist which generates the acid dimer of the present invention, since it is not easily affected by the external environment, ordinary cleaning measures are sufficient, and the acid diffusion is small even if the time until baking is long, It is not always necessary to connect the exposure device and the development device. Next, tetramethylammonium hydride (TM
When developed with an alkaline developer such as AH), a resist pattern 208 having excellent dimensional controllability and no resist scum as shown in FIG. 2D is obtained. Finally, using the resist pattern 208 as a mask, the polycrystalline silicon 203 is
F 4, CCl 2 F 2, or anisotropically etched by reactive gas plasma such as HB r, the gate electrode is formed by removing the resist.

【0009】[実施例2]次にポジ型レジストに本発明
を適用した結果について述べる(図3)。図3(a)
は、図2(b)と同様である。次にエキシマレーザ光を
照射する(図3(b))。この場合もネガ型と同様、塩
基性物質が外部から混入しても触媒反応を規定する実効
的酸濃度は不変である。従って、露光後ベーク処理を1
30〜160℃、0.5〜3分程度行うことにより、樹
脂のアルカリ可溶性を抑えている保護基の脱離を充分に
行うことが可能である(図3(c))。次にアルカリ現
像液でレジスト現像すると図(3d)に示す様に垂直な
レジストパターン308が得られる。最後にレジストを
マスクとして多結晶シリコン膜をエッチングしてゲート
電極を形成する。以上、微細ゲート電極形成に関しての
み述べたが、配線パターンコンタクトホールパターン
等、その他の微細レジストパターン形成にも適用可能で
ある。
Example 2 Next, the result of applying the present invention to a positive type resist will be described (FIG. 3). Figure 3 (a)
Is the same as in FIG. Then, excimer laser light is irradiated (FIG. 3B). Also in this case, as in the case of the negative type, even if a basic substance is mixed in from the outside, the effective acid concentration that regulates the catalytic reaction remains unchanged. Therefore, the post exposure bake process is 1
By performing the treatment at 30 to 160 ° C. for about 0.5 to 3 minutes, it is possible to sufficiently remove the protective group that suppresses the alkali solubility of the resin (FIG. 3 (c)). Next, resist development is performed with an alkali developing solution to obtain a vertical resist pattern 308 as shown in FIG. Finally, the polycrystalline silicon film is etched using the resist as a mask to form a gate electrode. Although only the formation of the fine gate electrode has been described above, it can be applied to the formation of other fine resist patterns such as a wiring pattern and a contact hole pattern.

【0010】[0010]

【発明の効果】以上のように、本発明によれば、多量体
の酸を発生する酸発生剤を含む化学増幅系レジストを微
細パターン形成に適用すると、レジストトップ形状が矩
形で、外部環境(空気中の塩基性物質)に強いレジスト
パターンが形成でき、さらにレジスト寸法変動も小さく
抑えることができるという効果が奏される。
As described above, according to the present invention, when a chemically amplified resist containing an acid generator capable of generating a multimeric acid is applied to fine pattern formation, the resist top shape is rectangular and the external environment ( It is possible to form a resist pattern that is strong against a basic substance in the air) and to suppress the resist dimension variation.

【図面の簡単な説明】[Brief description of drawings]

【図1】酸2量体を発生する酸発生剤。FIG. 1 is an acid generator that generates an acid dimer.

【図2】本発明のネガ型レジスト材料を使用し、MOS
トランジスタの微細多結晶シリコンゲートパターンを形
成する工程を示す断面図である。
FIG. 2 is a schematic diagram of a negative resist material of the present invention
FIG. 7 is a cross-sectional view showing a step of forming a fine polycrystalline silicon gate pattern of a transistor.

【図3】本発明のポジ型レジスト材料を使用し、MOS
トランジスタの微細多結晶シリコンゲートパターンを形
成する工程を示す断面図である。
FIG. 3 is a schematic diagram of a MOS using the positive resist material of the present invention.
FIG. 7 is a cross-sectional view showing a step of forming a fine polycrystalline silicon gate pattern of a transistor.

【図4】従来の化学増幅系ネガ型レジストの酸触媒反応
の例を示す図である。
FIG. 4 is a diagram showing an example of an acid-catalyzed reaction of a conventional chemically amplified negative resist.

【図5】従来の化学増幅系ポジ型レジストの酸触媒反応
の例を示す図である。
FIG. 5 is a diagram showing an example of an acid-catalyzed reaction of a conventional chemically amplified positive resist.

【図6】従来、化学増幅系レジストで使用されている酸
発生剤(酸単量体を発生する)を示す図である。
FIG. 6 is a view showing an acid generator (which generates an acid monomer) conventionally used in a chemically amplified resist.

【符号の説明】[Explanation of symbols]

201,301 シリコン基板 202,302 ゲート酸化膜 203,303 多結晶シリコン膜 204 酸2量体を発生する酸発生剤を含有する化学増
幅系ネガ型レジスト 304 酸2量体を発生する酸発生剤を含有する化学増
幅系ポジ型レジスト 205,305 エキシマレーザ光 206,306 露光領域 207 ネガ型レジストの架橋領域 307 ポジ型レジストの保護基脱離領域 208,308 現像後のレジストパターン
201,301 Silicon substrate 202,302 Gate oxide film 203,303 Polycrystalline silicon film 204 Chemical amplification type negative resist containing acid generator that generates acid dimer 304 Acid generator that generates acid dimer Chemical amplification type positive resist contained 205,305 Excimer laser light 206,306 Exposure area 207 Crosslinking area of negative resist 307 Protective group elimination area of positive resist 208,308 Resist pattern after development

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 感光性酸発生剤より生成した酸の触媒反
応を利用してレジストの溶解性を変化させる化学増幅系
レジストにおいて、酸の多量体を発生させる酸発生剤を
含有することを特徴とする化学増幅系レジスト。
1. A chemically amplified resist in which the solubility of the resist is changed by utilizing a catalytic reaction of an acid generated from a photosensitive acid generator, characterized by containing an acid generator for generating an acid multimer. Chemically amplified resist.
【請求項2】酸の多量体を発生させる酸発生剤が、ジ
(2,6−ジニトロベンジルオキシスルホニルベンゼ
ン)アルキレン、ジ(2,6−ジニトロベンジルオキシ
スルホニル)フェニレン、ジ(2,6−ジニトロベンジ
ルオキシカルボニル)アルキレン、又は、2,6−ジ
(4−ニトロベンジルオキシスルホニル)−9,10−
ジアルキルアントラセンのいずれかであることを特徴と
する請求項1記載の化学増幅系レジスト。
2. An acid generator for generating an acid multimer is di (2,6-dinitrobenzyloxysulfonylbenzene) alkylene, di (2,6-dinitrobenzyloxysulfonyl) phenylene, di (2,6-). Dinitrobenzyloxycarbonyl) alkylene or 2,6-di (4-nitrobenzyloxysulfonyl) -9,10-
The chemically amplified resist according to claim 1, which is any one of dialkylanthracenes.
JP5180806A 1993-06-25 1993-06-25 Resist material Pending JPH07134410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5180806A JPH07134410A (en) 1993-06-25 1993-06-25 Resist material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5180806A JPH07134410A (en) 1993-06-25 1993-06-25 Resist material

Publications (1)

Publication Number Publication Date
JPH07134410A true JPH07134410A (en) 1995-05-23

Family

ID=16089680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5180806A Pending JPH07134410A (en) 1993-06-25 1993-06-25 Resist material

Country Status (1)

Country Link
JP (1) JPH07134410A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418143A (en) * 1987-07-14 1989-01-20 Nippon Kayaku Kk Photosensitive resin composition
JPH01293339A (en) * 1988-05-23 1989-11-27 Tosoh Corp Photoresist composition
JPH03223864A (en) * 1990-01-30 1991-10-02 Wako Pure Chem Ind Ltd Resist material
JPH03273252A (en) * 1989-08-08 1991-12-04 Tosoh Corp Dissolution preventing agent and positive type resist composition
JPH04269754A (en) * 1991-02-26 1992-09-25 Hitachi Chem Co Ltd Positive type photosensitive resin composition and photosensitive element using same
JPH04280249A (en) * 1990-08-09 1992-10-06 American Teleph & Telegr Co <Att> Regist material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418143A (en) * 1987-07-14 1989-01-20 Nippon Kayaku Kk Photosensitive resin composition
JPH01293339A (en) * 1988-05-23 1989-11-27 Tosoh Corp Photoresist composition
JPH03273252A (en) * 1989-08-08 1991-12-04 Tosoh Corp Dissolution preventing agent and positive type resist composition
JPH03223864A (en) * 1990-01-30 1991-10-02 Wako Pure Chem Ind Ltd Resist material
JPH04280249A (en) * 1990-08-09 1992-10-06 American Teleph & Telegr Co <Att> Regist material
JPH04269754A (en) * 1991-02-26 1992-09-25 Hitachi Chem Co Ltd Positive type photosensitive resin composition and photosensitive element using same

Similar Documents

Publication Publication Date Title
KR100212933B1 (en) Positive resist composition
JP4467857B2 (en) Modification of 193nm photosensitive photoresist material by electron beam exposure
US6900001B2 (en) Method for modifying resist images by electron beam exposure
KR20170042726A (en) Sulfonic Derivative Compounds as Photoacid Generators in Resist Applications
KR100773011B1 (en) Low-activation energy silicon-containing resist system
JP2002006512A (en) Fine pattern forming method, fine pattern forming material and method for producing semiconductor device using the method
JP4410977B2 (en) Chemically amplified resist material and patterning method using the same
JPH05127369A (en) Resist material
JPH07261393A (en) Negative resist composition
JPH07261392A (en) Chemical amplification resist and resist pattern forming method using the same
JPH09244247A (en) Resist material and resist pattern forming method
US20230384683A1 (en) Photoresist with polar-acid-labile-group
WO2013070511A1 (en) Hybrid photoresist composition and pattern forming method using thereof
JPH1195418A (en) Photoresist film and pattern forming method
JP3249194B2 (en) Photosensitive resist composition
JPH07134410A (en) Resist material
JPH09211871A (en) Formation of resist pattern
JP3392728B2 (en) Pattern formation method
JPH0669118A (en) Formation of resist pattern
JP3152201B2 (en) Pattern formation method for chemically amplified resist
US20030087194A1 (en) Pattern formation method
JPH06214402A (en) Formation of fine pattern
JP3517144B2 (en) Photosensitive composition
JPH10115922A (en) Resist material
JPH11153867A (en) Resist pattern forming method